## GROUPE D'ÉTUDE DE THÉORIES STABLES

## ANAND PILLAY

## Well-definable types over subsets

*Groupe d'étude de théories stables*, tome 3 (1980-1982), exp. n° 2, p. 1-4 <a href="http://www.numdam.org/item?id=STS\_1980-1982\_3\_A2\_0">http://www.numdam.org/item?id=STS\_1980-1982\_3\_A2\_0</a>

© Groupe d'étude de théories stables (Secrétariat mathématique, Paris), 1980-1982, tous droits réservés.

L'accès aux archives de la collection « Groupe d'étude de théories stables » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



## WELL-DEFINABLE TYPES OVER SUBSETS by Anand PILLAY (\*)

In this short note I give a "direct" proof of a beautiful result of elementary stability theory. The result is that for T stable, if  $d_1$  and  $d_2$  are "good" defining schemae over a set A, and  $d_1(A) = d_2(A)$ , then for all  $B \supset A$ ,  $d_1(B) = d_2(B)$ , that is,  $d_1$  and  $d_2$  are equivalent. This result does not mention forking, although the "usual" proof of it uses forking. Our proof will be forking-free. In fact, we show directly that if the result fails then T has the order property.

T is complete, and we work, as usual, in a very saturated model of T. I recall the following definitions.

Definition 1. - Let A be a set of parameters (i. e. a subset of the big models), and  $n < \omega$ . Let  $\overline{x}$  denote an n-tuple of variables. An n-schema over A, is a map d which associates to each L-formula  $\phi(\overline{x}, \overline{y})$  an L(A)-formula  $\psi(\overline{y}) \cdot \psi(\overline{y})$  is denoted  $d\phi(\overline{y})$ . A schema over A is just an n-schema over A for some  $n < \omega$ .

Definition 2. - Let d be a schema over A. Let B be a set. Then  $d(B) = \{ \phi(\overline{x}, \overline{b}) : \phi(\overline{x}, \overline{y}) \in L \text{ and } \models d\phi(\overline{b}) \}.$ 

Note. - B is usually taken to include A. d(B) need neither be consistent nor complete.

Definition 3. - d is said to be a good defining schema over A, if d is a schema over A and moreover for all B,  $d(B) \in S(B)$ , i. e. d(B) is consistent and complete.

<u>Fact</u> 4. - Let d be a schema over A. Then the following are equivalent, (i) d is a good defining schema over A.

- (ii) for some model  $M \supset A$ ,  $d(M) \in S(M)$ ,
- (iii) for each L-formula  $\phi(\bar{x},\bar{y})$  and finite collection  $\{\phi_{\underline{i}}(\bar{x},\bar{y}_{\underline{i}}): i < m\}$  of L-formulae, we have

$$\models (\forall \ \overline{y})((d \neg \varphi)(\overline{y}) \iff \neg \ d\varphi(\overline{y}))$$

<sup>(\*)</sup> Anand PILLAY, Dept of Mathematics, The University, MANCHESTER, M13 9PL (Grande-Bretagne).

and

$$\models (\forall \ \overline{y}_0 \ \cdots \ \overline{y}_{m-1})(\bigwedge_{\underline{i} < \underline{m}} \ d\varphi_{\underline{i}}(\overline{y}_{\underline{i}}) \ \rightarrow \ (\exists \ \overline{x})(\bigwedge_{\underline{i} < \underline{m}} \varphi_{\underline{i}}(\overline{x} \ , \ \overline{y}_{\underline{i}}))) \ .$$

Remember that, even for T stable there may be a schema d over a set A such that  $d(\Lambda) \in S(A)$  and d is not a good defining schema. It is also easy to manufacture examples of  $d_1$ ,  $d_2$  schemae over A such that  $d_1$  is a good defining schema over A,  $d_2$  is not a good defining schema over A and  $d_1(\Lambda) = d_2(A)$ .

If d is a schema over a model M, and  $d(M) \in S(M)$ , then, by Fact 4, d is a good defining schema. Moreover, it is easy to see that if d' is another schema over M such that d(M) = d'(M), then d and d' are equivalent. (d and d' are said to be equivalent if, for all B, d(B) = d'(B).) This holds whether T is stable or not.

The following is an example of a theory T (unstable of course) for which there are good defining schemae  $d_1$  and  $d_2$  over a set A such that  $d_1(\Lambda) = d_2(\Lambda)$ , but  $d_1$  and  $d_2$  are not equivalent. Let T be  $\text{Th}(\mathbb{Q}_2, <)$ . Let  $M = (\mathbb{Q}_2, <)$ , and let a, b be elements of the big model such that

$$\models$$
 a > q for all q  $\in$  M and  $\models$  b < q for all q  $\in$  M .

So  $\operatorname{tp}(a/M) \neq \operatorname{tp}(b/M)$ . It is easy to see that both  $\operatorname{tp}(a/M)$  and  $\operatorname{tp}(b/M)$  are definable over  $\Phi$ . (For example, for each  $y \in M$ ,  $\models a > y$  if, and only if,  $\models y = y$ .) Let  $d_1$  and  $d_2$  be defining schemae over  $\Phi$  for  $\operatorname{tp}(a/M)$  and  $\operatorname{tp}(b/M)$  respectively. So (by Fact 4) both  $d_1$  and  $d_2$  are good defining schemae over  $\emptyset$ . Also  $d_1(\emptyset) = d_2(\emptyset) = \operatorname{the unique} 1$ -type of T over  $\emptyset$ . But of course  $d_1$  and  $d_2$  are not equivalent (as  $d_1(M) \neq d_2(M)$ ).

The main property of good defining schemae that we use, is the following (which is trivial):

Fact 5. - Let d be a good defining schema over  $\Lambda$ . Let  $\phi(\overline{x}, \overline{y}) \in L$ . Let B be a set and  $\overline{b}$ ,  $\overline{b}' \in B$  be such that  $tp(\overline{b}/\Lambda) = tp(\overline{b}'/\Lambda)$ . Then  $\phi(\overline{x}, \overline{b}) \in d(B)$  if, and only if,  $\phi(\overline{x}, \overline{b}') \in d(B)$ .

As we are proving things "from scratch" here, we give the following standard lemma:

LEMMA 6. - Let T be stable. Suppose that  $d_1$ ,  $d_2$  are good defining schemae over A and that  $tp(\overline{a}/A) = d_1(A)$  and  $tp(\overline{b}/A) = d_2(A)$ . Then

$$\operatorname{tp}(\overline{a}/\Lambda \cup \overline{b}) = \operatorname{d}_1(\Lambda \cup \overline{b}) \quad \underline{\text{if, end only if,}} \quad \operatorname{tp}(\overline{b}/\Lambda \cup \overline{a}) = \operatorname{d}_2(\Lambda \cup \overline{a}) \ .$$

<u>Proof.</u> - Without loss of generality let us assume that  $\operatorname{tp}(\overline{b}/\hbar \cup \overline{a}) = \operatorname{d}_2(\hbar \cup \overline{a})$ , but, for some  $L(\Lambda)$ -formula,  $\varphi(\overline{x}, \overline{y})$ ,  $\models \varphi(\overline{a}, \overline{b})$  and  $\neg \varphi(\overline{x}, \overline{b}) \in \operatorname{d}_1(\Lambda \cup \overline{b})$ . Now we define  $\overline{a}_1$ ,  $\overline{b}_1$  for i < a as follows,  $\overline{a}_0 = \overline{a}$ ,  $\overline{b}_0 = \overline{b}$ ,  $\overline{a}_{n+1}$  is a

realisation of  $d_1(\Lambda \cup \{\overline{a}_i \land \overline{b}_i : i \leqslant n\})$  and  $\overline{b}_{n+1}$  is a realisation of  $d_2(\hbar \cup \{\bar{a}_i \ \hat{b}_i: \ i\leqslant n\} \cup \{\bar{a}_n\})$  . It is then easy to see, using Fact 5, that  $otin \varphi(ar{a}_i \ ar{b}_j)$  if, and only if, i  $\leqslant$  j . Thus T has the order property, which contradicts stability.

PROPOSITION 7. - Let T be stable. Let d<sub>1</sub>, d<sub>2</sub> be good defining schemae over A such that  $d_1(A) = d_2(A)$ . Then for all B,  $d_1(B) = d_2(B)$ .

<u>Proof.</u> - Without loss of generality, let us assume that  $A = \cancel{p}$ . If the proposition fails then we have, for some formula  $\varphi(\overline{x}, \overline{y})$  and tuple  $\overline{b}$ ,

$$\phi(\overline{x}\mbox{ , }\overline{b})\mbox{ }\in\mbox{ }d_1(\mbox{ }b)\mbox{ }\mbox{ and }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\phi(\overline{x}\mbox{ }\mbox{ }\mbox{$$

We now define inductively  $\bar{a}_i$  and  $\bar{b}_i$  for  $i < \omega$  such that

(i)  $\operatorname{tp}(\overline{b}/\emptyset) = \operatorname{tp}(\overline{b}/\emptyset)$ ,

 $n < \omega$ 

(v)  $\operatorname{tp}(\bar{a}_{n}/\bar{a}_{0} \hat{b}_{0} \dots \hat{\bar{a}}_{n-1} \hat{\bar{b}}_{n-1}) = \operatorname{d}_{2}(\bar{a}_{0} \hat{\bar{b}}_{0} \dots \hat{\bar{a}}_{n-1} \hat{\bar{b}}_{n-1})$ , for  $n < \omega$ .

First let  $\bar{a}_0$  be any realisation of  $d_1(\emptyset)$ , and let  $\bar{b}_0$  be a tuple such that  $\operatorname{tp}(\overline{b}_0) = \operatorname{tp}(\overline{b})$  and  $\operatorname{tp}(\overline{a}_0/\overline{b}_0) = \operatorname{d}_1(\overline{b}_0)$ . Clearly (i) is satisfied, as is (iv). The satisfaction of (ii) is given by Fact 5 and the fact that  $\,\phi(\overline{x}\,\,,\,\,\overline{b})\,\in\,d_{_{\bar{1}}}(\overline{b})\,$  . (v) follows from the fact that  $d_1(\Phi) = d_2(\Phi)$ .

Now suppose that a and b have been defined for i < n satisfying the requirements. We proceed to define  $\bar{a}_{n+1}$  and  $\bar{b}_{n+1}$ .

be a realisation of  $d_2(\bar{a}_0 \hat{b}_0 \hat{b}_0 \dots \hat{a}_n \hat{b}_n)$ . Now by induction hypothesis

$$tp(\overline{a}_0 \wedge \overline{b}_0 \wedge \cdots \wedge \overline{a}_{n-1} \wedge \overline{b}_{n-1}) = tp(\overline{a}_1 \wedge \overline{b}_1 \wedge \cdots \wedge \overline{a}_n \wedge \overline{b}_n)$$

and

$$tp(\bar{a}_{n}/\bar{a}_{0} \hat{b}_{0} \hat{b}_{0} \hat{b}_{0} \hat{b}_{0} \hat{b}_{0} \hat{b}_{n-1} \hat{b}_{n-1}) = d_{2}(\bar{a}_{0} \hat{b}_{0} \hat{b$$

It follows from Fact 5 that

(\*) 
$$\operatorname{tp}(\bar{a}_0 \, \hat{b}_0 \, \hat{b}_0 \, \hat{b}_0 \, \hat{b}_0 \, \hat{b}_n \, \hat{a}_{n-1} \, \hat{b}_{n-1} \, \hat{a}_n) = \operatorname{tp}(\bar{a}_1 \, \hat{b}_1 \, \hat{b}_1 \, \hat{b}_1 \, \hat{b}_n \, \hat{a}_n \, \hat{b}_n \, \hat{a}_{n-1})$$

As  $\neg \varphi(\bar{x}, \bar{b}) \in d_2(\bar{b})$  and  $tp(\bar{b}_i) = tp(\bar{b})$  for all  $i \le n$ , we have

(\*\*) 
$$\models \neg \phi(\bar{a}_{n+1} , \bar{b}_i) \text{ for all } i \leqslant n \text{ .}$$

By (\*), we can find  $\overline{b}'$  such that

(\*') 
$$\operatorname{tp}(\overline{a}_0 \, \widehat{b}_0 \, \widehat{b}_0 \, \widehat{b}_1 \, \widehat{b}_n) = \operatorname{tp}(\overline{a}_1 \, \widehat{b}_1 \, \widehat$$

Thus we have, using the induction hypothesis,

(\*\*\*) 
$$\models \varphi(\overline{a}, \overline{b}') \text{ for } 1 \leqslant i \leqslant n+1.$$

The trouble is that we might not have  $\models \phi(\overline{a}_0$ ,  $\overline{b}^!)$ . To overcome this, we let  $\overline{a}^!$  be a realisation of  $d_1(\overline{b}_0 \hat{a}_1 \hat{b}_1 \dots \hat{a}_{n+1} \hat{b}^!)$ . As  $tp(\overline{b}_1) = tp(\overline{b})$  for all  $i \leq n$  and also  $tp(\overline{b}^!) = tp(\overline{b})$ , it follows that

(\*\*\*\*) 
$$\models \varphi(\bar{a}', \bar{b}')$$
 and  $\models \varphi(\bar{a}', \bar{b}_i)$  for all  $i \leq n$ .

Now by (iv) of the induction hypothesis and the definition of  $\bar{a}'$  , it follows that

(I) 
$$\operatorname{tp}(\overline{a}_0 \, \widehat{b}_0 \, \widehat{\dots} \, \widehat{a}_n \, \widehat{b}_n) = \operatorname{tp}(\overline{a}^{\scriptscriptstyle \dagger} \, \widehat{b}_0 \, \widehat{\dots} \, \widehat{a}_n \, \widehat{b}_n) .$$

Now lemma 6 (and the definition of  $\bar{a}'$ ) imply that

(II) 
$$\operatorname{tp}(\overline{a}_{n+1}/\overline{a}' \, \widehat{b}_{0} \, \widehat{\dots} \, \widehat{a}_{n} \, \widehat{b}_{n}) = \operatorname{d}_{2}(\overline{a}' \, \widehat{b}_{0} \, \widehat{\dots} \, \widehat{a}_{n} \, \widehat{b}_{n}) .$$

Then (I) and (II) imply that

$$\operatorname{tp}(\overline{a}_0 \wedge \overline{b}_0 \wedge \dots \wedge \overline{a}_n \wedge \overline{b}_n \wedge \overline{a}_{n+1}) = \operatorname{tp}(\overline{a}' \wedge \overline{b}_0 \wedge \dots \wedge \overline{a}_n \wedge \overline{b}_n \wedge \overline{a}_{n+1}).$$

Thus we can find  $\overline{b}_{n+1}$  such that

(III) 
$$\operatorname{tp}(\bar{a}_0 \land \bar{b}_0 \land \dots \land \bar{a}_n \land \bar{b}_n \land \bar{b}_{n+1} \land \bar{b}_{n+1})$$

$$= \operatorname{tp}(\overline{a}' \, \, \widehat{b}_0 \, \, \widehat{\dots} \, \, \widehat{a}_n \, \, \widehat{b}_n \, \, \widehat{a}_{n+1} \, \, \widehat{b}') \, .$$

Now we check the satisfaction of conditions (ii)-(v), for

$$\{\bar{a}_0, \bar{b}_0, \dots, \bar{a}_{n+1}, \bar{b}_{n+1}\}$$

(11) follows from the induction hypothesis, (\*\*), (\*\*\*), (\*\*\*\*) and (III). (iii) is a consequence of (\*') and (III). (iv) (with n+1 in place of n) is by the definition of  $\bar{a}'$  and (III). (v) (again with n+1 in place of n) is by the definition of  $\bar{a}_{n+1}$  and (III).

Thus the induction can be carried out, whereby condition (ii) says that T has the order property, contradicting stability. So Proposition 7 is proved.

Let me briefly remark on how Proposition 7 follows easily given forking theory. One just needs to observe that (for T stable), if d is a good defining schema over  $\Lambda$  then

- (a) d(A) is stationary, and
- (b) for any  $B \supset A$ , d(B) is the nonforking extension to B of d(A).