GROUPE D'ÉTUDE DE THÉORIES STABLES

ANAND PILLAY

The models of a non-multidimensional ω-stable theory

Groupe d'étude de théories stables, tome 3 (1980-1982), exp. nº 10, p. 1-22 http://www.numdam.org/item?id=STS_1980-1982_3_A10_0

© Groupe d'étude de théories stables (Secrétariat mathématique, Paris), 1980-1982, tous droits réservés.

L'accès aux archives de la collection « Groupe d'étude de théories stables » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE MODELS OF A NON-MULTIDIMENSIONAL W-STABLE THEORY

by Anand PILLAY (")
[University of Manchester]

I give a (self-contained) account of the classification of the models of a non-multidimensional ω -stable theory. This result is the generalisation of the Baldwin-Lachlan-Morley classification of the models of an X-categorical theory, and includes of course the possible spectra that can occur. (Remember that the spectrum of a theory T is given by the function I(-,T), where for n a cardinal, I(n,T) is the number of models of T of power n, up to isomorphism.) The crude idea is that, instead of a model of T being determined by the cardinality of one indiscernible set (as when T is X-categorical), a model of T is now determined by the cardinalities of each member of a fixed "independent" family of indiscernible sets.

I assume the basic facts about stability, forking, definability, rank, etc., which can be found in [4] or even [5].

T will be a countable complete ω -stable theory. The ω -stability of T furnishes us with several nice properties. The most important of these will be:

- (i) for any subset A of a model M of T , there is a (real) prime model of $\operatorname{Th}(\mathbb{N}$, a) , a \in A ,
- (ii) if M \models T and p \in S(M), then there is a finite A \subset M such that p is definable over A (thus p does not fork over A and p \ A is stationary),
 - (iii) all types over arbitrary subsets are ranked by Morley rank.

I will also follow the usual practice of working in a large sufficiently saturated model of ${\mathbb T}$.

I. Strongly regular types.

Strongly regular types are generalisations of types of Morley rank 1 , degree 1 . If $p \in S(\mathbb{N})$, I denote by $\mathbb{M}(p)$, the model which is prime over $\mathbb{N} \cup \{\overline{a}\}$, where $tp(\overline{a}/\mathbb{N}) = p$. This model might also be denoted by $\mathbb{N}(\overline{a})$, and is unique up to \mathbb{N} -isomorphism.

Definition 1.1. - Let $p \in S_1(\mathbb{N})$, p not algebraic and $\phi(x) \in p$ (ϕ might countain parameters from \mathbb{N}). The pair (p, $\phi)$ is said to be strongly regular if whenever $b \in \mathbb{N}(p)$, $b \notin \mathbb{M}$ and $\mathbb{N}(p) \models \phi(b)$, then $tp(b/\mathbb{N}) = p$. p is said to be

^(*) Anand PILLAY, Dept of Mathematics, The University, MANCHESTER, M13 9PL (Grande-Bretagne).

strongly regular if there is $\phi \in p$ such that (p , $\phi)$ is strongly regular.

LEMMA 1.2. - Suppose that p and $q \in S(H)$, p is strongly regular and q is realised in M(p). Then p is realised in M(q), (We assume q is not algebraic).

<u>Proof.</u> - Suppose that (p, φ) is strongly regular. Let a realise p, and $\overline{b} \in \mathbb{N}(a)$ such that \overline{b} realises q. It is clear that a and \overline{b} are note independent over \mathbb{N} $(\overline{b} \not\in \mathbb{N})$. Thus there is a formula $\alpha(x, \overline{y})$ over \mathbb{N} such that $\mathbb{N}(a) \models \alpha(a, \overline{b})$, but $\mathbb{N}(a) \models \overline{\alpha}(m, \overline{b})$ for all $m \in \mathbb{N}$. Note that " $\varphi(x) \wedge \alpha(x, \overline{b})$ " is consistent. Now $\mathbb{N}(q) = \mathbb{N}(\overline{b}) \prec \mathbb{N}(a)$, and let $c \in \mathbb{N}(\overline{b})$ such that $\mathbb{N}(b) \models \varphi(c) \wedge \alpha(c, \overline{b})$. Then $c \notin \mathbb{N}$, $c \in \mathbb{N}(a)$ and $\mathbb{N}(a) \models \varphi(c)$. Thus $\operatorname{tp}(c/\mathbb{N}) = p$, and so p is realised in $\mathbb{N}(q)$.

Definition 1.3. - Let p and q be strongly regular types over M such that q is realised in M(p) . Then we say that p and q are equivalent, p \sim q .

(By lemma 1.2, this definition makes sense).

The next lemma shows that "enough" strongly regular types exist.

LEMA 1.4. - Suppose that M < N , the L(M) formula $\phi(x)$ is "augmented" in N , and a is chosen in ϕ^N - M such that tp(a/M) has least possible Morley rank. Then tp(a/M) is strongly regular.

<u>Proof.</u> - (Let R(-) denote Morley rank). Let $R(tp(a/H)) = \alpha$, and pick L(M)-formula $\psi(x)$ such that $|-\psi(x)| --> \phi(x)$, $N |==\psi(a)$ and $R(\psi(x)) = \alpha$, and degree $(\psi(x)) = 1$. Now $M(a) \le N$, and so it is clear that $(tp(a/H), \psi)$ is strongly regular.

Definition 1.5. - Let $p(\overline{x})$ and $q(\overline{y})$ be types over M . p and q are said to be <u>perpendicular</u> $(p \perp q)$ if $p(\overline{x}) \cup q(\overline{y})$ determines a complete \overline{x} \hat{y} type over M .

Note. - If p(x) and q(y) are types over a model if, then $p\perp q$ if, and only if, whenever a and b realise p and q respectively, then a and b are independent over M .

Fact 1.6. - Let \bar{a} and \bar{b} be independent over M . Let A be a atomic over M $\cup \{\bar{a}\}$ and B atomic over M $\cup \{\bar{b}\}$. Then A and B are independent over M .

Now the proof of lemma 1.2 actually implies that if tp(a/N) is strongly regular and $\overline{b} \in M(a) - M$, then $tp(a/N \cup \{\overline{b}\})$ is isolated. A simple consequence of this and fact 1.6 is the following:

Observation 1.7. - Let p_1 , p_2 , q_1 , q_2 be all strongly regular types over M such that $p_1 \sim p_2$ and $q_1 \sim q_2$. Then $p_1 \perp q_1$ if, and only if, $p_2 \perp q_2$.

PROPOSITION 1.8. - Let p and q be strongly regular types over M . Then p and q are perpendicular if, and only if, p and q are not equivalent.

<u>Proof.</u> It is clear that if p and q are equivalent then they are not perpendicular. Conversely, assume that p and q are not equivalent. We wish to show that they are perpendicular. By 1.7, we can assume that $R(p) = \alpha$ is minimal among strongly regular types over M equivalent to p, and similarly for q, with $R(q) = \beta$. So we can find formulae $\varphi(x)$ and $\varphi(x)$, both of degree 1, and of rank α and β respectively, such that (p, φ) and (q, ψ) are strongly regular. Suppose (without loss) that $\alpha \leq \beta$. Now if p and q are not perpendicular, then there are realisations a and b of p and q respectively, such that a and b are not independent over M. As in the proof of 1.2, if follows that $\varphi(x)$ is "augmented" in M(b) (i. e. $\varphi^{M(b)} - M$ is nonempty). By lemma 1.4, there is $c \in \varphi^{M(b)} - M$, such that tp(c/M) is strongly regular. Clearly, tp(c/M) is equivalent to q, and $R(tp(c/M)) \leq \alpha$. If $R(tp(c/M)) = \alpha$, then clearly tp(c/M) = p, which contradicts the non-equivalence of p and q. On the other hand, if $R(tp(c/M)) < \alpha$, then we contradict the minimal choice of R(q). Thus the proposition is proved.

PROPOSITION 1.9. - Let $\mathbb{N} \leq \mathbb{N}'$, $p \in S_1(\mathbb{N})$ and p' the nonforking extension (or heir) of p over \mathbb{N}' . Then p is strongly regular if, and only if, p' is strongly regular.

<u>Proof.</u> - First suppose that p' is strongly regular. Then there is an $L(\mathbb{N})$ formula $\varphi(x)$ such that (p', φ) is strongly regular (Any $L(\mathbb{N}')$ formula $\varphi(x) \in p'$ such that degree $(\varphi) = 1$, and $R(\varphi) = R(p')$ will suffice. But $p \in p'$, and R(p) = R(p'). Thus φ can be chosen over \mathbb{M}). We show that (p, φ) is strongly regular. Let a realise p'. So $tp(a/\mathbb{M}) = p$, and $H(p) = M(a) \leq M'(a)$. Let $b \in \mathbb{M}(a)$, $b \notin \mathbb{M}$ and b satisfy φ . Now b and a are not independent over \mathbb{M} . Thus $b \not\in \mathbb{M}'$. But then $tp(b/\mathbb{M}') = p'$ (by strong regularity of (p', φ) .) Thus $tp(b/\mathbb{M}) = p$. So (p, φ) is strongly regular.

Conversely, suppose that $\phi(x) \in p$, and (p, ϕ) is strongly regular. Let a realise p'. If (p', ϕ) is not strongly regular, then there is b in $\phi^{N'(a)}$ -M' such that $tp(b/M') \neq p$. Now p' is definable by a schema d, over M (where d also defines p), and also a and b are not independent over M'. Thus there are L-formulae $\psi(y, \overline{z})$ and $\omega(x, y, \overline{w})$, and \overline{c} and \overline{d} in M' such that

$$M'(a) \mid = (\pi y)(\varphi(y) \wedge \psi(y, \overline{c}) \wedge - d(\psi)(\overline{c}) \wedge \omega(a, y, \overline{d})),$$

where the formula $\alpha(x, y, \overline{w})$ is not represented in p! (so neither in p). But tp(a/N!) is the heir of tp(a/N). Thus we can find $\overline{c}!$ and $\overline{d}!$ in N such that

$$\mathbb{M}(\mathbf{a}) \mid = (\mathbf{1} \ \mathbf{y})(\phi(\mathbf{y}) \wedge \psi(\mathbf{y} \ , \ \overline{\mathbf{c}}') \wedge \neg d(\psi)(\overline{\mathbf{c}}') \wedge \alpha(\mathbf{a} \ , \ \mathbf{y} \ , \ \overline{\mathbf{d}}')) \ .$$

If we let b' be such a y in M(a), then b' \not M, N(a) |= φ (b') and tp(b'/A) \not p. This contradicts the fact that (p, φ) is strongly regular, and completes the proof.

Definition 1.10. - Let A be a subset (of the big model), $p \in S_1(A)$ a stationary type, and $\phi(x) \in p$. We call (p, ϕ) strongly regular if there is a model M countaining A and nonforking extension p' of p over M such that (p', ϕ) is strongly regular. Again p will be called strongly regular if there is $\phi(x)$ such that (p, ϕ) is strongly regular.

Note. - If follows immediately from 1.9 that for $p \in S_1^{(A)}$, p is strongly regular if, and only if, for all M extending A and nonforking extension p^* of p to p^* is strongly regular.

PROPOSITION 1.11. - Let p and q be strongly regular types over M, and let p' and q' be their respective heirs over M' \prec M. Then p \bot q if, and only if, p' \bot q'.

<u>Proof.</u> - Suppose that p dans q are not perpendicular. Then there are realisations a and b of p and q respectively, such that a and b are not independent over M . Let a' ^ b' realise the heir of $tp(a ^ b/M)$ over M'. Then $tp(a ^ t/M^1) = p^t$, $tp(b ^ t/M^1) = q^t$, and a' and b' are not independent over M'. Thus $p^t \not= q^t$.

Conversely, suppose that p and q are perpendicular. We may again suppose that p and q are chosen with minimal rank in their equivalence classes. So we have $(p\ ,\phi)$ strongly regular, with $R(p)=R(\phi)=\alpha$, and $(q\ ,\psi)$ strongly regular, with $R(q)=R(\psi)=\beta$, and suppose $\alpha\leqslant\beta$. So $(p^{\iota}\ ,\phi)$ and $(q^{\iota}\ ,\psi)$ are strongly regular. If p^{ι} and q^{ι} are not perpendicular, then again if follows that $\phi(x)$ is augmented in $M^{\iota}(q^{\iota})$. As q^{ι} is the heir of q , it is easy to prove that $\phi(x)$ is augmented in M(q) , but this will again contradict the minimal choice of R(q) . So the proposition is proved.

By propositions 1.8 and 1.11, we have :

COROLLARY 1.12. - Let p and q be strongly regular types over M, and M < M', and p', q' the heirs of p and q over M'. Then p \sim q if, and only if, p' \sim q'.

<u>Definition</u> 1.13. - Let $p(\overline{x})$ and $q(\overline{y})$ be in S(A), where A is an arbitrary subset. Then p and q are said to be <u>orthogonal</u> if for all $B \supseteq A$ and nonfor-king extensions p' and q' of p and q over B, $p'(\overline{x}) \lor q'(\overline{y})$ determines a complete type over B.

PROPOSITION 1.14. - Let p and q be strongly regular types over A. Then the following are equivalent:

- (i) p and q are orthogonal,
- (ii) for some M ⊃ A, (M a model), and nonforking extensions p', q' of p, q over M, p' and q' are perpendicular.

Proof. - By proposition 1.11.

Note. - It was shown in [3] that if p and q are <u>any</u> types over M, and p', q' their heirs over some M' > M, then p \perp q if, and only if, p' \perp q'. It follows that proposition 1.14 holds without the hypothesis that p and q are strongly regular. However 1.14 in its present form will suffice for our needs.

Given strongly regular types p and q over A, we will call p and q equivalent if they are not orthogonal. By 1.8 and 1.14, this is consistent with def. 1.3.

I complete this section with a couple of observations which will be of use later on.

LEMMA 1.15. - Let $\{p_i : i \in I\}$ be a set of stationary pairwise orthogonal types over A. For each $i \in I$, let $\{\bar{a}_j^i : j < \gamma_i\}$ be an independent set of realisations of p_i over A. Then $\{\bar{a}_j^i : i \in I, j < \gamma_i\}$ is independent over A.

Proof. - It suffices to show that if \bar{a}_1 , \bar{a}_2 , ..., \bar{a}_n is independent over A, and $tp(\bar{b}/A)$ and $tp(\bar{a}_1/A)$ are orthogonal for i=1, ..., n, then $\{\bar{a}_1$, \bar{a}_2 , ..., \bar{a}_n , $\bar{b}\}$ is independent over A. This we show by induction. So suppose that we already have $\{\bar{a}_1$, ..., \bar{a}_r , $\bar{b}\}$ is independent over A, where r < n. Thus $tp(\bar{b}/\{\bar{a}_1$, ..., $\bar{a}_r\} \cup A)$ does not fork over A, and we know anyway that $tp(\bar{a}_{r+1}/\{\bar{a}_1$, ..., $\bar{a}_r\} \cup A)$ does not fork over A. Thus by the orthogonality of $tp(\bar{b}/A)$ and $tp(\bar{a}_{r+1}/A)$, \bar{a}_{r+1} and \bar{b} are independent over A. \cup $\{a_1$, ..., $a_r\}$. Thus $\{\bar{a}_1$, ..., \bar{a}_r , \bar{a}_r , \bar{a}_r , \bar{a}_r , $\bar{b}\}$ is independent over A.

LEMMA 1.16. - Let M be a model, and $\{p_i; i \in I\}$ a maximal collection of pairwise orthogonal strongly regular types over M. Let A \subseteq M be such that each p_i is definable over A, and for each $i \in I$, let $\{a_j^i; j < \gamma_i\}$ be a maximal independent set of realisations of p_i A in M. Then $J = \{a_j^i; i \in I, j < \gamma_i\}$ is independent over A, and moreover M is minimal over A \cup J.

<u>Proof.</u> - By 1.14, the types $p_i \ \ A$ are strongly regular and pairwise orthogonal. Thus the independence of J over A follows by 1.15.

Suppose that M were not minimal over A \cup J. Then there would be a model N such that A \cup J \subseteq N $\not \geq$ M \cdot By 1.4, we can find a \in M - N such that tp(a/N) is strongly regular. Let p = tp(a/N), and let p' be the heir of p over M \cdot So p' is strongly regular (1.9), and by the choice of the p' s there is s \in I such that p' and p are not orthogonal. But p does not fork over N, and so p \ N is strongly regular and not orthogonal to p (by prop. 1.9 and prop. 1.11). Thus p \ N and p are equivalent, and so p \ N is realised in N(a), where we can assume that N(a) \leq M \cdot Let c \in N(a) realise p \ N \cdot Then, as p \ N does not fork over A, if follows that c and $\{a_j^S; j \leq r_j\}$ are independent over A \cdot But this contradicts the maximal choice of the independent set $\{a_j^S; j \leq r_j\}$ of realisations of p \ A in M \cdot So the lemma is proved.

II. Dimension.

Let M be a model, $A \subseteq M$ and $p \in S(A)$. A set I of tuples from M will be called a basis for p in M, if I is a set of realisations of p in M, independent over A, and maximal such (Note that if p is stationary, then I is also indiscernible over A).

PROPOSITION II.1. - Suppose that $p \in S(A)$, $A \subseteq M$ and p has some infinite basis in M. Then all bases for p in M have the same cardinality.

<u>Proof.</u> - If not, then it is clear that there are bases I and J of p in M with J infinite and |I| < |J|. As I is maximal, for each $\overline{c} \in J$, $tp(\overline{c}/I \cup A)$ forks over A. So there is some finite $I_{\overline{c}} \cup I$ such that $tp(\overline{c}/I_{\overline{c}} \cup A)$ forks over A.

So by the cardinality difference, there is finite I' \subset I and $\overline{c}_n \in$ J for $n < \omega$, such that $\operatorname{tp}(\overline{c}_n/I^! \cup A)$ forks over A , for each $n < \omega$. But then, as the $c_n^!$ s are independent over A , we have for each $n < \omega$, $\operatorname{tp}(\overline{c}_{n+1}/\{\overline{c}_0,\ldots,\overline{c}_n\} \cup I^! \cup A)$ forks over A \cup $\{\overline{c}_0,\ldots,\overline{c}_n\}$, and thus $\operatorname{tp}(I^!/\{\overline{c}_0,\ldots,\overline{c}_n,\overline{c}_{n+1}\} \cup A)$ forks over $\{\overline{c}_0,\ldots,\overline{c}_n\} \cup A$. But this contradicts superstability.

<u>Definition II.2.</u> - If all bases of p in \mathbb{M} have the same cardinality, then we define $dim(p, \mathbb{M})$ to be this cardinality.

Note. - We will see later on that if $p \in S(A)$ is strongly regular and $A \subseteq M$, then $\dim(p, M)$ is always defined.

Let I be an infinite indiscernible set (maybe of tuples), and B an arbitrary set. Recall that Av(I/B) is defined as follows: for $\overline{b} \in B$, $\phi(\overline{x}, \overline{b}) \in Av(I/B)$ if, for cofinitely many \overline{c} in I, we have $|=\phi(\overline{c}, \overline{b})$. Then Av(I/B) is a complete and consistent type over B. Moreover, suppose that p is a stationary type over A, and I is an infinite independent set of realisations of p over A (so I is indiscernible over A), and $B \supseteq A$. Then Av(I/B) is precisely p' the nonforking extension of p over B.

LEMMA II.3.

- (i) Let I be an infinite indiscernible set over A, and M prime over A \cup I. Then I is a maximal indiscernible set over A in M.
- (ii) Let I \cup {c} be an infinite indiscernible set over A , and let M be prime over A \cup I . Then tp(c/A \cup I) |— Av(I/M) .
- (iii) Let p be a stationary type over A , and I an independent set of realisations of p over A . Let I_1 be an infinite subset of I , and M be prime over A \cup I_1 , and let p' denote the nonforking extension of p over M . Then I I_1 is an independent (over M) set of realisations of p' .

Proof.

- (i) If I is not maximal indiscernible over A in M, extend it by c in M. Now $\operatorname{tp}(c/A \cup I)$ is isolated by a formula $\alpha(x,\overline{a},\overline{d})$, where $\overline{a} \in A$ and $\overline{d}^c I$. In particular, M $|=\alpha(x,\overline{a},\overline{d})$ --> $x \neq c'$ for all $c' \in I$ (as $c \notin I$). But M $|=\alpha(c,\overline{a},\overline{d})$, I \cup {c} is indiscernible over A and I is infinite. Thus we can find c' in I such that M $|=\alpha(c',\overline{a},\overline{d})$, and this is a contradiction.
- (ii) I show that if I \cup {c} is indiscernible over A , then $\operatorname{tp}(c/\mathbb{N}) = \operatorname{Av}(I/\mathbb{N})$ (where \mathbb{N} is prime over A \cup I). So let $\varphi(x$, $\overline{m}) \in \operatorname{Av}(I/\mathbb{N})$, where $\overline{m} \in \mathbb{M}$. I will show that this formula is satisfied by c. Now $\operatorname{tp}(\overline{m}/A \cup I)$ is isolated by a formula $\varphi(\overline{y}$, \overline{a} , \overline{d}) where $\overline{a} \in A$ and $\overline{d} \subseteq I$. Now as $\varphi(x$, \overline{m}) is satisfied by cofinitely many members of I, there is $c' \in I$, $c' \not\in d'$ such that $\mathbb{N} = \varphi(c', \overline{m})$. Thus $\mathbb{N} = V \overline{y}(\varphi(\overline{y}, \overline{a}, \overline{d}) \longrightarrow \varphi(c', \overline{y}))$. But $\operatorname{tp}(c \wedge \overline{d/a}) = \operatorname{tp}(c \wedge \overline{d/a})$. So we have $V = V \overline{y}(\varphi(\overline{y}, \overline{a}, \overline{d}) \longrightarrow \varphi(c, \overline{y}))$, whereby $V = \varphi(c, \overline{m})$, and we finish.
- (iii) Let c_1 , ..., c_n be in $I-I_1$. We must show that c_1 , ..., c_n is an independent set of realisations of p' over M. Let p^n denote $\operatorname{tp}(c_1 \ ^\circ \dots \ ^\circ c_n/A)$. Then I can be considered (by partitioning it into n-tuples) as an independent set of realisations over A of p^n . But then by (ii) and the remarks preceding this lemma, $\operatorname{tp}(c_1 \ ^\circ \dots \ ^\circ c_n/M)$ does not fork over A, and this is just what we want.

LEMMA II.4.

- (i) Let p and q be equivalent strongly regular types over a model M , and let N > M . If I is a basis of p in N , then there is a basis J of c in N with $|I| \leqslant |J|$.
- (ii) Let p and q be equivalent strongly regular types over a set A, and let $\mathbb{N} \supset \mathbb{A}$. If p has an infinite basis in \mathbb{N} , then so does q, and moreover $\dim(p,\mathbb{N}) = \dim(q,\mathbb{N})$.

Proof.

- (i) Let I be a basis of p in N, and write I as $\{a_{\alpha} \; ; \; \alpha < \varkappa\}$. Define models \mathbb{N}_{α} in N for $\alpha < \varkappa$, and elements b_{α} for $\alpha < \varkappa$, as follows: $\mathbb{N}_{0} = \mathbb{N}$, $\mathbb{N}_{\alpha+1} = \mathbb{N}_{\alpha}(a_{\alpha})$, and $\mathbb{N}_{\delta} = \mathbb{N}_{\alpha < \delta} = \mathbb{N}_{\alpha}$. Clearly $\mathrm{tp}(a_{\alpha}/\mathbb{N}_{\alpha})$ is the heir of p over \mathbb{N}_{α} and so strongly regular and equivalent to a_{α} , the heir of c over \mathbb{N}_{α} (by 1.12). Thus c_{α} is realised in $\mathbb{N}_{\alpha+1}$, and let b_{α} be such a realisation. By fact 1.6, $\{b_{\alpha} \; ; \; \alpha < \varkappa\}$ is an independent set of realisations of q over N, and so can be extended to a maximal such set in N.
- (ii) It is enough by II.1 and symmetry to show that if p has an infinite basis I in N , then q has a basis J in N with $|I|\leqslant |J|$. So let I be an infinite basis of p in N . Partition I as $I_1\cup I_2$, where I_1 is infinite and $|I|=|I_2|$. Let \mathbb{R}^1 be an elementary substructure of N which is prime over

A \cup I₁. Let p' be the nonforking extension of p over M'. Then by II.3 (iii), I₂ is a basis of p' in N . But p' is strongly regular and equivalent to q', the (strongly regular) nonforking extension of q over M'. So by (i) there is a basis J' of q' in N , with $|J^i| \geqslant |I_2| = |I|$. But J' is clearly an independent set of realisations of q in N and so can be extended to a basis J of q in N, and clearly $|I| \leqslant |J|$.

Let p be a stationary type over A , and let \overline{a}_1 , \overline{a}_2 , ... , \overline{a}_n an independent set of realisations of p over A . Then I will denote $\operatorname{tp}(\overline{a}_1$ ^ ... ^ $\overline{a}_n/A)$ by p^n .

PROPOSITION II.5. - Let p and q be strongly regular types over a set A, and suppose that, for all n, m < ω , pⁿ(\bar{x}) \cup q^m(\bar{y}) determines a complete type over A. Then p and q are orthogonal.

<u>Proof.</u> - So suppose that, for all n, $m < \omega$, $p^n(\bar{x}) \cup q^m(\bar{y})$ is complete. It follows that if I is an independent set of realisations of p over A, and J is an independent set of realisations of q over A, then I and J are independent over A. Now pick I and J as in the last sentence, and such that both are infinite and |I| < |J|. Let N be prime over $A \cup J \cup I$. I assert that I is a basis for p in M. Note first that I is indiscernible over $A \cup J$. Now if c were a realisation of p in M such that I $U\{c\}$ were independent over A, then by our hypothesis, I $\cup \{c\}$ and J would be independent over A, and thus I $\cup \{c\}$ would be indiscernible over $A \cup J$, contradicting lemma II.3 (i). Thus I is a basis for p in M, and so $\dim(p, M) = |I|$. But clearly $\dim(q, M) \geqslant |J| > |I|$. So by lemma II.4, p and q are not equivalent, that is, p and q are orthogonal.

Note. - Proposition II.5 is actually true without the restriction that p and q be strongly regular (although we will not need this here). This fact, together with lemma 1.15 characterises orthogonality for types over sets.

LEMMA II.6. - Let $p \in S_1(A)$ and (p, ϕ) strongly regular. Suppose that $B \supseteq A$ and that p^i and q are in $S_1(B)$, where p^i is the nonforking extension of p over B, $q \neq p^i$, and $\phi \in q$. Then p^i and q are orthogonal.

<u>Proof.</u> - It is enough to prove this in the case where B is a model, say M, and in this case it is enough to show that p' and q are perpendicular. So let a and b be realizations of p' and q respectively. I show that a and b are independent over M. Now as $q \neq p'$, there is some L(M) formula $\psi(x)$ such that $\psi(x) \in q$ but $\neg \psi(x) \in p$. Suppose that $\alpha(x, y)$ is an L(M)-formula such that $|= \alpha(b, a)$. Thus $|= (\exists x)(\phi(x) \land \alpha(x, a))$. So

$$\mathbb{M}(a) \mid = (\text{1} x)(\phi(x) \wedge \phi(x) \wedge \omega(x , a)) .$$

Let $c \in \mathbb{N}(a)$ be such that $\mathbb{N}(a) \models \phi(c) \land \psi(c) \land \omega(c, a)$. So c satisfies $\phi(x)$ but c does not realise p'. Thus $c \in \mathbb{N}$ (by strong regularity of (p', ϕ)). Thus we have shown that $tp(a/\mathbb{N} \cup \{b\})$ is the heir of p', whereby a and b are independent over \mathbb{N} .

If follows from lemma II.6 that if p is strongly regular then p is regular ($p \in S(A)$ is said to be regular if whenever $B \supset A$, p' is the nonforking extension of p over B and q is a forking extension of p over B, then p' and q are orthogonal). Now for regular types the "nonforking" notion of independence on realisations of such types satisfies the familiar exchange principle. Namely: let $p \in S(A)$ be regular, $A \subseteq M$, and let \overline{a}_i , for i < n, and \overline{b} realise p in M, where $\{\overline{a}_i$; $i < n\}$ is a basis for p in M. Let \overline{a}_m be the first element such that $tp(\overline{b}/\{\overline{a}_i$; $i < m\})$ forks over M. Then $\{\overline{a}_0$, ..., \overline{a}_{m-1} , \overline{b} , \overline{a}_{m+1} , ..., $\overline{a}_{n-1}\}$ is a basis for p in M. (This is a simple consequence of regularity and the basis properties of forking). Thus we have:

PROPOSITION II.7. - Let $p \in S_1(A)$ be strongly regular, and $A \subseteq M$. Then all bases for p in M have the same cardinality (and thus we can speak of dim(p, M))

PROPOSITION II.8. - Let p and q be equivalent strongly regular types over a model M, and let N > M. Then $\dim(p, N) = \dim(q, N)$.

Proof. - By lemma II.4 and proposition II.8.

I recall the following:

Fact II.9. - Let $p \in S(\mathbb{M})$ and $\phi(\overline{x}) \in p$. Then p does not fork over $\bigcup \phi^{\mathbb{M}}$.

LEMMA II.10. - Let $p \in S_1(A)$, (p, ϕ) strongly regular, and $A \subseteq M \prec N$. Let p' denote the nonforking extension of p over M. Let I_1 be a basis for p in M, and let I_2 be an independent over M set of realisations of p' in M, and finally let $c \in M$ and $tp(c/I_1 \cup I_2 \cup A)$ is the nonforking extension of p over $I_1 \cup I_2 \cup A$. Then $tp(c/I_2 \cup M)$ does not fork over A (and thus $I_2 \cup \{c\}$ is an independent set of realisations of p' in M, over M.)

<u>Proof.</u> - It is enough to show that $\operatorname{tp}(\{c\} \cup I_2/\mathbb{N})$ does not fork over A . By fact II.9, it is enough to show that $\operatorname{tp}(\{c\} \cup I_2/\mathbb{N})$ does not fork over A . Now, by hypothesis, $\operatorname{tp}(I_2/\phi^{\mathbb{N}} \cup A)$ does not fork over A , and thus it suffices to prove that $\operatorname{tp}(c/I_2 \cup \phi \cup A)$ does not fork over $I_2 \cup A$. But $I_1 \subseteq \phi^{\mathbb{N}}$, and we know that $\operatorname{tp}(c/I_2 \cup I_1 \cup A)$ does not fork over $I_2 \cup A$. So this leaves us having to prove that

 $\mathsf{tp}(\mathbf{c}/\mathbf{I}_2 \cup \phi^{\mathbb{M}} \cup \mathbf{A}) \quad \text{does not fork over} \quad \mathbf{I}_2 \cup \mathbf{I}_1 \cup \mathbf{A} \ .$

Let $\overline{d} \subseteq \varphi^{\overline{M}}$, and $d \in \varphi^{\overline{M}}$, and suppose that we already know that $\operatorname{tp}(c/I_2 \cup I_1 \cup \overline{d} \cup A)$ does not fork over $I_2 \cup I_1 \cup A$. Now it is clear that $\operatorname{tp}(d/I_2 \cup I_1 \cup \overline{d} \cup A) \neq \operatorname{tp}(c/I_2 \cup I_1 \cup \overline{d} \cup A)$ (either $\operatorname{tp}(d/A) \neq p$, or d and I_1 are dependent over A). But d satisfies $\varphi(x)$. So by strong regularity of (p,φ) and lemma II.6, c and d are independent over $I_2 \cup I_1 \cup \overline{d} \cup A$. Thus $\operatorname{tp}(c/I_2 \cup I_1 \cup \overline{d} \wedge d \cup A)$ does not fork over $I_2 \cup I_1 \cup A$. So (*) is proved, and so also the lemma.

PROPOSITION II.11. - Let $p \in S(A)$ be strongly regular, $A \subseteq N < N$, and p' the nonforking extension of p over M. Then $\dim(p, N) = \dim(p, N) + \dim(p', N)$

Proof. - By lemma II.10, if $~I_1~$ is a basis for p in M , and $~I_2~$ is a basis for p' in N , then $~I_1~\cup~I_2~$ is a basis for p in N .

III. Non-multidimensional theories.

Definition III.1.

- (i) Let M be a model of T . Then $\mu(\mathbb{M})$ denotes the maximum number of pairwise orthogonal strongly regular types over M .
- (ii) T will be said to be multidimensional if for any λ there is a model M of T with $\mu(\mathbb{N}) \geqslant \lambda$. Otherwise T is said to be non-multidimensional.

I now give some background on material to come. Firstly, if p_1 is a type over a finite set \overline{a} , then p_1 can be written in the form $p(\overline{x}, \overline{a})$ (so $p(\overline{x}, \overline{y})$ is a type over \emptyset). Moreover, if $tp(\overline{a}) = tp(\overline{b})$, then $p(\overline{x}, \overline{b})$ is in $S(\overline{b})$, and for exemple, $p(\overline{x}, \overline{a})$ is strongly regular if, and only if, $p(\overline{x}, \overline{b})$ is strongly regular.

Secondly, suppose that $p \in S(A)$, and $q \in S(B)$ (A and B subsets of the big model). Then, because p and q are not types over the same set it does not make immediate sense to speak of, for example, p and q being orthogonal or not orthogonal. However we can interpret this to mean that for some C which includes A and B, any nonforling extensions of p and q over C are orthogonal (or not orthogonal, as the case might be). (We assume p and q to be stationary). Then by the results in section I, p and q will be orthogonal if, and only if, for any $C \supseteq A \cup B$ in the nonforking extensions of p and q over C are orthogonal.

Finally, we assume familiarity with the notion of strong type (denoted stp). The important facts are the following assuming ω -stability. If $p \in S_n(A)$, then there is $E \in FE_n(A)$ (that is, $E(\overline{x}, \overline{y})$ is an equivalence relation on n-tuples, definable over A, and with a finite number of classes), such that if \overline{a} and \overline{b} realise p then \overline{a} and \overline{b} have the same strong type over $A(\text{stp}(\overline{a}/A) = \text{stp}(\overline{b}/A))$ if, and only if, $|=E(\overline{a}, \overline{b})$. Also, if I is independent over A, and all

elements of I have the same strong type over A, then I is indiscernible over A. Moreover, if I and J are two such sets, and the elements of I and J have the same type over A, then tp(I/A) = tp(J/A). (In the cases in which we shall be interested, A will be the empty set and so will be omitted.) (Also $stp(\overline{a}/A) = stp(\overline{b}/B)$ implies $tp(\overline{a}/A) = tp(\overline{b}/A)$.)

PROPOSITION III.2. - The following are equivalent (for the theory T).

- (i) For all M , $\mu(M) \leqslant \frac{1}{2}$.
- (ii) T is non-multidimensional.
- (iii) If $p(x, \bar{a}) \in S(\bar{a})$ is strongly regular, and $stp(\bar{a}) = stp(\bar{b})$, then $p(x, \bar{a})$ and $p(x, \bar{b})$ are not orthogonal (that is equivalent).

Proof. -

- (i) implies (ii) is immediate.
- (ii) \Longrightarrow (iii): Suppose that $p(x,\bar{a}) \in S(\bar{a})$ is strongly regular, $stp(\bar{a}) = stp(\bar{b})$, but $p(x,\bar{a})$ and $p(x,\bar{b})$ are orthogonal. First we can assume that \bar{a} and \bar{b} are independent (For if not, then choose \bar{c} such that \bar{c} and $\bar{a} \wedge \bar{b}$ are independent, and $stp(\bar{c}) = stp(\bar{a}) = stp(\bar{b})$. Then $p(x,\bar{a})$ and $p(x,\bar{c})$ are orthogonal). Let λ be any cardinal, and let $\{\bar{a}_{\alpha} : \alpha < \lambda\}$ be an independent set of realisations of $tp(\bar{a})$, such that $\bar{a}_0 = \bar{a}$, $\bar{a}_1 = \bar{b}$, and, for all $\alpha < \lambda$, $stp(\bar{a}_{\alpha}) = stp(\bar{a})$. So $\{\bar{a}_{\alpha} : \alpha < \lambda\}$ is indiscernible, and, for $\alpha < \beta < \lambda$, $p(x,\bar{a}_{\alpha})$ and $p(x,\bar{a}_{\beta})$ are orthogonal, (and strongly regular). Let $\bar{a}_{\alpha} = \bar{a}$ be the nonforking extension of $p(x,\bar{a}_{\alpha})$ over \bar{a} . Then the \bar{a}_{α} are pairwise orthogonal strongly regular types over \bar{a} . Thus \bar{a} is multidimensional.
- (iii) \Longrightarrow (i): Let M be a model, and $q \in S(\mathbb{M})$ strongly regular. There is finite \overline{a} in M such that q is definable over \overline{a} . So $p = q \lceil \overline{a}$ is strongly regular, and q is the unique nonforking extension of p over M. Thus it suffices to show that there are at most S_0 pairwise orthogonal strongly regular types over finite sets. Now there are only S_0 many possible types of finite sets. Moreover for any \overline{a} , there are at most S_0 types in $S_1(\overline{a})$. Also for any \overline{a} and strongly regular $p(x,\overline{a}) \in S_1(\overline{a})$, there can be only finitely many pairwise orthogonal types of the form $p(x,\overline{b})$, where $tp(\overline{b}) = tp(\overline{a})$ (by (iii) and the paragraph preceding this proposition). Thus we finish.

PROPOSITION III.3. - Let T be non-multidimensional and N a model of T. Then there is a countable M < N , and a set J \subseteq N , J independent over M such that N is minimal over M \cup J .

<u>Proof.</u> - By III.2, $\mu(N)$ is countable. So we can find countable $M \leq N$ such that each of some maximal collection of pairwise orthogonal strongly regular types over N, is definable over M. Now use lemma 1.16.

T will be maid to be unidimensional if, for each $\mathbb{N} \mid = \mathbb{T}$, $\mu(\mathbb{N}) = 1$.

PROPOSITION III.4. - T is unidimensional if, and only if, T is & -categorical.

<u>Proof.</u> — Suppose that T is not unidimensional and let M be a model and p , q orthogonal strongly regular types over M . Assume that p and q are chosen with least possible Morley ranks in their respective equivalence classes, say $R(p) = \alpha$, $R(q) = \beta$, $\alpha \leqslant \beta$, and (p , ϕ) is strongly regular, where $R(\phi) = \alpha$. As in the proof of 1.8, $\phi(\mathbf{x})$ is not augmented in M(q), and this, as is well known contradicts R_1 -categoricity.

Conversely, suppose that T is unidirensional. Let \mathbb{M}_0 be the prime model of T. Then there is a strongly regular type p over \mathbb{M}_0 . If N is any model of T, then \mathbb{M}_0 is elementarily embedded in N, and p' the heir of p over N, is strongly regular, and so is essentially the only strongly regular type over N. So N is prime over \mathbb{M}_0 and a basis for p' in N. Such a basis is just a Morley sequence of p over M, and its type is determined. Thus if $|\mathbb{N}_1| = |\mathbb{N}_2| = \lambda > \frac{1}{100}$, then \mathbb{N}_1 is prime over \mathbb{M}_0 UI and \mathbb{N}_2 is prime over \mathbb{M}_0 UJ, where I and J must both have cardinality λ , and have the same type over \mathbb{M}_0 . So $\mathbb{N}_1 \cong \mathbb{N}_2$.

PROPOSITION III.5. - Let T be non-multidimensional, and p(x, \overline{a}) a strongly regular type in S(\overline{a}). Suppose that stp(\overline{b}) = stp(\overline{a}) and M contains \overline{a} and \overline{b} . Then dim(p(x, \overline{a}), N) = dim(p(x, \overline{b}), N).

Proof. - Suppose first that \bar{a} and \bar{b} are independent (over \emptyset). Let $\mathbb{M}_1 \leq \mathbb{M}_2$ be prime over $\bar{a} \wedge \bar{b}$, and let p_1 , q_1 be the nonforking extensions of $p(x,\bar{a})$ and $p(x,\bar{b})$ over \mathbb{M}_1 . Now $tp(\bar{a} \wedge \bar{b}) = tp(\bar{b} \wedge \bar{a})$, and thus $(\mathbb{M}_1,\bar{a},\bar{b}) \cong (\mathbb{M}_1,\bar{b},\bar{a})$, whereby $\dim(p(x,\bar{a}),\mathbb{M}_1) = \dim(p(x,\bar{b}),\mathbb{M}_1)$. By III.2, p_1 and q_1 are equivalent, and thus $\dim(p_1,\mathbb{M}) = \dim(q_1,\mathbb{M})$. Thus by II.11, $\dim(p(x,\bar{a}),\mathbb{M}) = \dim(p(x,\bar{b}),\mathbb{M})$.

Now in the general case, let \bar{c} be such that $stp(\bar{c}) = stp(\bar{a}) = stp(\bar{b})$, and \bar{c} and \bar{a} \hat{b} are independent (over \emptyset). Let $M' = M(\bar{c})$, and p', q' the nonforking extensions of $p(x,\bar{a})$ and $p(x,\bar{b})$ over M. Then $\dim(p',M') = \dim(q',M')$ (as p' and q' are strongly regular and equivalent), and both these dimensions are finite (otherwise M'-M contains an infinite independent set over M, each element of which is dependent on \bar{c} over M; which contradicts superstability). But by the first part of the proof,

$$\dim(p(x, \overline{c}), M') = \dim(p(x, \overline{a}), M') = \dim(p(x, \overline{b}), M!)$$

$$\dim(p(x, \overline{a}), \mathbb{N}^{\dagger}) = \dim(p(x, \overline{a}), \mathbb{N}) + \dim(p^{\dagger}, \mathbb{M}^{\dagger})$$

and

$$\dim(p(x, \overline{b}), M') = \dim(p(x, \overline{b}), M) + \dim(q', M') \qquad (II.11).$$

Thus $\dim(p(x, \overline{a}), M) = \dim(p(x, \overline{b}), M)$, and we finish.

I now proceed to show that in the non-multidimensional case, all strongly regular types can be taken as being definable over the prime model of T (and thus in proposition III.3, M can be taken to be M_{Ω} the prime model of T).

LEMMA III.6. - Let T be non-multidimensional. Let M < M' $\not =$ N be models. Then there is $c \in \mathbb{N} - \mathbb{M}^*$, such that $tp(c/\mathbb{M}^*)$ is strongly regular, and $tp(c/\mathbb{M}^*)$ does not fork over M.

Proof. - Choose $c \in N-M'$ such that tp(c/M) is of least possible Morley rank. Thus clearly there is $\overline{a} \in M$ and $\phi(x,\overline{a}) \in tp(c/M)$, and for all $d \in (\phi(x,a))^N - M'$, tp(d/M) = tp(c/M). Let us denote tp(c/M) by p. Now if tp(c/M') does not fork over M (and so is the nonforking extension of p), then it is clear that $(tp(c/M'),\phi)$ is strongly regular, and we finish. So let us assume that tp(c/M') forks over M, and we seek a contradiction. Now, as tp(c/M') forks over M (by our assumption), R(tp(c/M')) < R(p). We can clearly assume that c has been chosen also to satisfy R(tp(c/M')) being as small as possible (among those x in N-M' for which tp(x/M) = p). So tp(c/M') is strongly regular (I.4). Now let \overline{b}_0 be chosen in M' such that tp(c/M') is definable over \overline{b}_0 , and let $q(x,\overline{b}_0)$ denote $tp(c/\overline{b}_0)$. Thus $q(x,\overline{b}_0)$ is strongly regular. Now let \overline{b}_1 be such that $tp(\overline{b}_1/M) = tp(\overline{b}_0/M)$ and \overline{b}_0 and \overline{b}_1 are independent over M.

Thus $\operatorname{stp}(\overline{b}_0) = \operatorname{stp}(\overline{b}_1)$ (this is easy), and so by III.2, $\operatorname{q}(\mathbf{x} \ , \overline{b}_0)$ and $\operatorname{q}(\mathbf{x} \ , \overline{b}_1)$ are equivalent. Let q_0 and q_1 be the nonforking extensions f, $\operatorname{q}(\mathbf{x} \ , \overline{b}_0)$ and $\operatorname{q}(\mathbf{x} \ , \overline{b}_1)$ respectively over $\operatorname{M} \cup \{\overline{b}_0 \ , \overline{b}_1\}$. (So in particular $\operatorname{q}_0 \ \cap \operatorname{M} \cup \overline{b}_0 = \operatorname{tp}(\operatorname{c/M} \cup \overline{b}_0)$.) So q_0 and q_1 are strongly regular types over the same set which are not orthogonal. Thus by II.5, there are n , $\operatorname{m} < \omega$ such that $\operatorname{q}_0^{\operatorname{n}}(\overline{\mathbf{x}}) \cup \operatorname{q}_1^{\operatorname{m}}(\overline{\mathbf{y}})$ is not a complete type over $\operatorname{M} \cup \{\overline{b}_0 \ , \overline{b}_1\}$. Thus (as q_0 and q_1 are stationary), there are c_1 , ..., c_n independent realisations of q_0 over $\operatorname{M} \cup \{\overline{b}_0 \ , \overline{b}_1\}$, and d_1 , ..., d_m independent realisations of q_1 over $\operatorname{M} \cup \{\overline{b}_0 \ , \overline{b}_1\}$, and $\{\operatorname{d}_1 \ , \dots , \operatorname{d}_m\}$ are not independent over $\operatorname{M} \cup \{\overline{b}_0 \ , \overline{b}_1\}$. By minimalising m , we can assume that $\{\operatorname{c}_1 \ , \dots , \operatorname{c}_n\}$ and $\{\operatorname{d}_1 \ , \dots , \operatorname{d}_{m-1}\}$ are independent over $\operatorname{M} \cup \{\overline{b}_0 \ , \overline{b}_1\}$. Let us denote $\{\operatorname{d}_1 \ , \dots , \operatorname{d}_n\}$ by $\overline{\operatorname{c}}$ and $\{\operatorname{d}_1 \ , \dots , \operatorname{d}_{m-1}\}$ by $\overline{\operatorname{d}} \cdot \operatorname{A}$ assert that

(*)
$$\overline{b}_0$$
 ^ \overline{c} and \overline{b}_1 ^ \overline{d} are independent over M .

First note that $\operatorname{tp}(\overline{d}/\overline{b}_0 \cup \overline{b}_1 \cup \mathbb{M})$ does not fork over $\overline{b}_1 \cup \mathbb{N}$, and that $\operatorname{tp}(\overline{b}_1/\overline{b}_0 \cup \mathbb{M})$ does not fork over \mathbb{M} . Thus $\operatorname{tp}(\overline{b}_1 \wedge \overline{d}/\overline{b}_0 \cup \mathbb{M})$ does not fork over \mathbb{M} , and so

(i)
$$tp(\overline{b}_0/\overline{b}_1 \ ^\bullet \overline{d} \cup \mathbb{M}) \ \text{does not fork over} \ \mathbb{M} \ .$$

Also $\operatorname{tp}(\overline{\mathbf{c}}'/\overline{b}_0 \cup \overline{b}_1 \hat{\mathbf{d}} \cup \mathbb{N})$ does not fork over $\mathbb{N} \cup \overline{b}_0$. This together with (i) yields $\operatorname{tp}(\overline{b}_0 \hat{\mathbf{c}}'/\overline{b}_1 \hat{\mathbf{d}} \cup \mathbb{N})$ does not fork over \mathbb{N} , which means (*)

Note also that $\operatorname{tp}(c_n/\{c_1,\ldots,c_{n-1},\cup\overline{d}\cup\overline{b}_0\cup\overline{b}_1\cup\mathbb{N})$ does not fork over $\mathbb{M}\cup\{\overline{b}_0,\overline{b}_1\}$, but that

$$(\begin{tabular}{l} (\begin{tabular}{l} \begin{tabular}{l} \begin{ta$$

Now $\operatorname{tp}(c_n/\mathbb{N} \cup \overline{b}_0) = \operatorname{tp}(c/\mathbb{N} \cup \overline{b}_0)$. So we can assume that $c_n = c$ (leave \overline{b}_0 fixed but shift around the other c_i is , the d_i is and \overline{b}_1 so as to preserve the type of everything over \mathbb{M}), let us denote d_m by d. So $\operatorname{tp}(d \wedge \overline{b}_1/\mathbb{N}) = \operatorname{tp}(c \wedge \overline{b}_0/\mathbb{M})$, whereby $\operatorname{tp}(d/\mathbb{M}) = p$, and $\operatorname{tp}(d/\mathbb{N} \cup \overline{b}_1)$ forks over \mathbb{M} , and so there is finite $\Delta \subseteq L$ such that

(.47*)
$$R(tp(d/M \quad \overline{b}_1), \Delta, 2) < R(p, \Delta, 2) = r.$$

Let us now sum up the information obtained ; denoting now $\left< c_1^{}$, ... , $c_{n-1}^{} \right>$ by \overline{c} , and as before $\left< d_1^{}$, ... , $d_{m-1}^{} \right>$ by \overline{d} .

- (a) c and \overline{c} are independent over $\mathbb{M}\,\cup\,\overline{b}_{0}$.
- (b) \overline{b}_{c} ^ \overline{c} ^ c and \overline{b}_{1} ^ \overline{d} are independent over M (by (*)).
- (c) There is a formula $\chi(x$, \overline{z}) and \overline{e} \mathfrak{E} \mathbb{M} such that $|=\chi(c,d^*\overline{d}^*\overline{c}^*\overline{b}_0^*\overline{b}_1^*\overline{e})$, but $\chi(x$, \overline{z}) is not in bound $(\operatorname{tp}(c/\overline{b}_0))$ (and so $\chi(x$, \overline{z}) is not represented in $\operatorname{tp}(c/\mathbb{N}^1)$) (by (**)).
- (d) There is an L(H) formula $\psi(x, \overline{w})$ such that d satisfies $\psi(x, \overline{b}_1)$ and $R(\psi(x, b_1), \Delta, 2) < r$ (by (***)).

Remember for any type q and finite $\Delta \subset L$, there is finite subtype of q, say q^1 such that $\mathbf{R}(\mathbf{q}, \Delta, 2) = \mathbf{R}(\mathbf{q}^1, \Delta, 2)$.

Remember that d also satisfies the formula $\phi(x$, $\bar{a})$. Thus by (c) and (d), we have

$$|=(\text{$\underline{\textbf{y}}$})(\phi(\textbf{y}~\textbf{,}~\overline{\textbf{a}})~\wedge~\chi(\textbf{c}~\textbf{,}~\textbf{y}^{\bar{\textbf{d}}}\bar{\textbf{c}}^{\bar{\textbf{b}}}\bar{\textbf{b}}_{\bar{\textbf{0}}}^{\bar{\textbf{b}}}\bar{\textbf{b}}_{\bar{\textbf{0}}}^{\bar{\textbf{b}}})~\wedge~\psi(\textbf{y}~\textbf{,}~\overline{\textbf{b}}_{\bar{\textbf{1}}}^{\bar{\textbf{0}}})~\text{"}R(\psi(\textbf{x}~\textbf{,}~\overline{\textbf{b}}_{\bar{\textbf{1}}}^{\bar{\textbf{0}}})~\textbf{,}~\Delta~\textbf{,}~2)~<~\textbf{r"})~.$$

By (b) we can find \overline{b}_1^1 and \overline{d}_1^1 in M such that

$$|= (\text{$\underline{\textbf{y}}$})(\phi(\textbf{y} \text{ , } \overline{\textbf{a}}) \ \land \ \chi(\textbf{c} \text{ , } \textbf{y}^{\overline{\textbf{d}}} \underline{\textbf{i}}^{\overline{\textbf{c}}} \overline{\textbf{b}}_{\underline{\textbf{0}}}^{\overline{\textbf{b}}} \underline{\textbf{i}}^{\overline{\textbf{c}}} \overline{\textbf{e}}) \ \land \ \psi(\textbf{y} \text{ , } \overline{\textbf{b}}_{\underline{\textbf{1}}}^{\overline{\textbf{i}}}) \ \land \ \text{"R}(\psi(\textbf{x} \text{ , } \overline{\textbf{b}}_{\underline{\textbf{1}}}^{\overline{\textbf{i}}}) \text{ , } \Delta \text{ , } 2) < \textbf{r"}).$$

Now by (a) and the fact that $\ tp(c/M')$ is definable over $\ M\cup\ \overline{b}_0$, we can find \overline{c} 's with that

 $\mathbb{N} \mid = (\exists y) (\phi(y \ , \ \overline{a}) \ \land \not \exists (c \ , \ y \ \overline{d}' \ \bar{c} \ \bar{b}_0 \ \bar{b}_1 \ \bar{e}) \ \land \ \psi(y \ , \ \overline{b}_1') \ \land \ "R(\psi(x \ , \ \overline{b}_1') \ , \ \triangle \ , \ 2) < r").$

Fick $a \in \mathbb{N}$ to be such a y as given above. First note that $a \notin \mathbb{N}^{\bullet}$, for if not then $\chi(x$, $\overline{z})$ would be represented in $\operatorname{tp}(c/\mathbb{N}^{\bullet})$, contradicting (c). Thus as a satisfies $\phi(x$, $\overline{a})$, we must have $\operatorname{tp}(a/\mathbb{N}) = p$ (by choice of p and $\phi(x$, $\overline{a})$). But now, as a satisfies $\psi(x$, $\overline{b}_{1}^{\bullet})$ and $\Re(\psi(x)$, $\overline{b}_{1}^{\bullet})$, Δ , 2) < r = $\Re(p$, Δ , 2), we must have that $\operatorname{tp}(a/\mathbb{N}) \neq p$. This contradiction proves the lemma.

PROPOSITION III.7. - Let $\mathbb{M} \prec \mathbb{M}^1$ be models of \mathbb{T} , where \mathbb{T} is non-multidimensional, and let $p \in S(\mathbb{M}^1)$ be strongly regular. Then there is $q \in S(\mathbb{M}^1)$, such that q is strongly regular, q is equivalent of p, and q does not fork over \mathbb{M} .

<u>Proof.</u> - Lemma III.6 gives us c in M'(p) - M' such that tp(c/M') is strongly regular, and does not fork over M. Clearly tp(c/M') is equivalent to p.

COROLLARY III.8. - Let T be non-multidimensional. Let M be a model, A a set, and N prime over M \cup A . Then N is minimal over M \cup A .

<u>Proof.</u> - If not, there is model M' such that M \cup A \subseteq M' $\not =$ N . Lemma III.6 gives us $c \in \mathbb{N}$ - M' such that $tp(c/\mathbb{M}^!)$ does not fork over M . But $tp(c/\mathbb{M})$ is not isolated, and $tp(c/\mathbb{M} \cup A)$ is isolated, whereby $tp(c/\mathbb{M} \cup A)$ forks over M , and so $tp(c/\mathbb{M}^!)$ forks over M . Contradiction.

Let me now state a few obvious things. Let us assume T to be non-multidimensional, and let \mathbb{M}_0 be the prime model of T . Let $\{p_i:i<\mu\leq i\}$ be a maximal collection of pairwise orthogonal strongly regular types over \mathbb{M}_0 . Let N be any model of T . So \mathbb{M}_0 is elementarily embedded in N , and let p_i^* for $i<\mu$, be the heirs of the p_i over N . Then $\{p_i^*:i<\mu\}$ is a maximal collection of pairwise orthogonal strongly regular types over N . For choose strongly regular $\mathbf{c}\in S(\mathbb{N})$. By III.7, q is equivalent of $\mathbf{q}\in S(\mathbb{N})$, where p is strongly regular and does not fork over \mathbb{M}_0 . But there is $i<\mu$ such that $\mathbf{p} \upharpoonright \mathbb{M}_0$ is equivalent to \mathbf{p}_i^* and so \mathbf{p} is equivalent to \mathbf{p}_i^* , and so \mathbf{q} is equivalent to \mathbf{p}_i^* .

IV. The spectrum.

In this section T will be assumed to be non-multidimensional, and $^{\rm M}_{\rm O}$ will denote the prime model of T .

First, some more preliminary results.

LEMMA IV.1. - Let M be a model, $\overline{a} \in \mathbb{N}$, $p(x, \overline{a}) \in S(\overline{a})$ be strongly regular, and $tp(\overline{a})$ isolated. Suppose that $\overline{b} \in \mathbb{M}$, $tp(\overline{b}) = tp(\overline{a})$ and $p(x, \overline{b})$ is equivalent to $p(x, \overline{a})$. Then $dim(p(x, \overline{a}), \mathbb{M}) = dim(p(x, \overline{b}), \mathbb{M})$.

<u>Proof.</u> - Let $^{\mathbb{N}}_{\mathbb{O}} \prec \mathbb{N}$ be a copy of the prime model such that $\overline{\mathbf{a}} \in \mathbb{N}_{\mathbb{O}}$. It is easy

to find $\bar{c} \in \mathbb{M}_{\bar{O}}$ such that $\operatorname{stp}(\bar{c}) = \operatorname{stp}(\bar{b})$. By III.2, $\operatorname{p}(\mathbf{x}, \bar{b})$ and $\operatorname{p}(\mathbf{x}, \bar{c})$ are equivalent. Thus $\operatorname{p}(\mathbf{x}, \bar{a})$ and $\operatorname{p}(\mathbf{x}, \bar{c})$ are equivalent. Let p_1 and p_2 be the nonforking extensions of $\operatorname{p}(\mathbf{x}, \bar{a})$ and $\operatorname{p}(\mathbf{x}, \bar{c})$ over $\operatorname{M}_{\bar{O}}$. So p_1 and p_2 are equivalent and strongly regular, and thus by II.8, $\dim(\operatorname{p}_1, \operatorname{M}) = \dim(\operatorname{p}_2, \operatorname{M})$. But it is clear that $(\operatorname{M}_{\bar{O}}, \bar{a}) = (\operatorname{M}_{\bar{O}}, \bar{c})$, and so $\dim(\operatorname{p}(\mathbf{x}, \bar{a}), \operatorname{M}_{\bar{O}}) = \dim(\operatorname{p}(\mathbf{x}, \bar{c}), \operatorname{M}_{\bar{O}})$. Thus by II.11, we have

$$dim(p(x, \overline{a}), N) = dim(p(x, \overline{c}), N)$$
.

But by III.5,

$$dim(p(x, \overline{c}), M) = dim(p(x, \overline{b}), M)$$

and so we have

$$\dim(p(x, \overline{a}), M) = \dim(p(x, \overline{b}), M)$$

as desired.

LEMMA IV.2. (which does not need non-multidimensionality). - Let $p \in S(M_O)$, p definable over $a \in M_O$, $p_1 = p \upharpoonright a$, and p_1 has an infinite basis in M_O (thus $\dim(p_1, M_O) = k_O$). Then $M_O(p) \cong M_O$.

<u>Proof.</u> - $\mathbb{M}_0(p)$ is countable, and thus it is enough to show that $\mathbb{M}_0(p)$ is atomic (i. e. realises only isolated types). Let $\overline{c} \in \mathbb{M}_0(p)$ be such that $\operatorname{tp}(\overline{c}/\mathbb{M}_0) = p$ and $\mathbb{M}_0(p)$ is atomic over $\mathbb{M}_0 \cup \overline{c}$. It is enough to show that $\mathbb{M}_0 \cup \overline{c}$ is atomic. So let $\overline{b} \in \mathbb{M}_0$. I show that $\operatorname{tp}(\overline{b} \wedge \overline{c})$ is isolated, in fact that $\operatorname{tp}(\overline{a} \wedge \overline{b} \wedge \overline{c})$ is isolated. Let \overline{c}_i , for $i < \omega$, be a basis for $p_1 = p \wedge \overline{a}$ in \mathbb{M}_0 . Then by superstability, there must be $i < \omega$ such that \overline{c}_i and \overline{b} are independent over \overline{a} . Then clearly $\operatorname{tp}(\overline{a} \wedge \overline{b} \wedge \overline{c}_i) = \operatorname{tp}(\overline{a} \wedge \overline{b} \wedge \overline{c})$, and $\operatorname{tp}(\overline{a} \wedge \overline{b} \wedge \overline{c}_i)$ is isolated, as it is realised in the prime model \mathbb{M}_0 . So we finish.

Note. - An extension of the above proof shows that if $p \in S(M)$ and for some $\overline{a} \in M$ over which p is definable, $p \setminus \overline{a}$ has an infinite basis in M, then for all $\overline{a} \in M$ over which p is definable $p \setminus \overline{a}$ has an infinite basis in M.

COROLLARY IV. 3. - Let $\{p_i : i < n \ (\leq \aleph_0)\}$ be a set of pairwise orthogonal strongly regular types over M_0 , such that for each i there is $a_i \in M_0$ such that p_i is definable over a_i , and $\dim(p_i \mid a_i$, $M_0)$ is infinite. For each i < n, let J_i be an independent set of realisations of p_i over M_0 , such that $|J_i| \leq \omega$. Then $M_0(\bigcup_{i < n} J_i) = M_0$.

<u>Proof.</u> - It is easy, using IV.2, induction and fact 1.6, to show that $\mathbb{M}_0(J_0)$ is isomorphic to \mathbb{M}_0 (let $J_0 = \{c_n : n < \lambda\}$, let $\mathbb{M}_1 = \mathbb{M}_0(c_0)$, and in general $\mathbb{M}_{n+1} = \mathbb{M}_n(c_n)$. Then $\operatorname{tp}(c_n/\mathbb{M}_n)$ is the heir of p_0 over \mathbb{M}_n , and $\mathbb{M}_{n+1} \cong \mathbb{M}_0$. So $\mathbb{M}_n = \mathbb{M}_n$ is isomorphic to \mathbb{M}_0 , and is also easily see to be the same as

 $\mathbb{M}_0(J_0)$). Then it is easy to see that $\operatorname{tp}(J_1/\mathbb{M}_0(J_0))$ does not fork over \mathbb{M}_0 , and so we can repeat the process to get $\mathbb{M}_0(J_0)(J_1)\cong\mathbb{M}_0$. Carry on, and putting $\mathbb{M}^0=\mathbb{M}_0$, and $\mathbb{M}^{n+1}=\mathbb{M}^n(J_n)$, we see that $\bigcup_{n< n}\mathbb{M}^n$ is isomorphic to \mathbb{M}_0 and is the same as $\mathbb{M}_0(\bigcup_{i\leq n}J_i)$.

LEMMA IV.4. - Let $\{p_i; i < \kappa\}$ be pairwise orthogonal types over a model M, and let for each $i < \kappa$, J, be a set of independent realisations of p_i over M.

Let N be prime over M $U_{\mathbf{i}} < \mu$ $J_{\mathbf{i}}$. Then for each $\mathbf{i} < \mu$, $J_{\mathbf{i}}$ is a basis for $p_{\mathbf{i}}$ in N.

Proof. - Consider J_0 for example. Let us define $M_i < N$ for $1 \leqslant i \leqslant n$, such that M_1 is prime over $M \cup J_1$, and for $i \geqslant 1$, M_{i+1} is prime over $M_i \cup J_{i+1}$ and $M_\delta = \bigcup_{i < n} M_i$ for δ limit. Let M^i be M_n . Let p_0^i be the heir of p_0 over M_i for $i \leqslant n$. Then it is easy to show by induction, using the orthogonality of p_0 and the p_i^i s and fact 1.6, that $p_0 \mid -p_0^i$ for $1 \leqslant i \leqslant n$. Thus J_0 is a basis for p_0^n in N if, and only i^* , J_0 is a basis for p_0^n in N, and clearly J_0 is an independent set of realisations of p_0^n over M^i in N. By III.8 for example, N is prime over $M^i \cup J_0$, and so J_0 is easily seen to be a basis for p_0^n in N. So the lemma is proved.

LEMMA IV.5. - Let $p \in S(\overline{a})$ be strongly regular, where $tp(\overline{a})$ is isolated, and for some copy of $M_{\overline{0}}$ which contains \overline{a} , $dim(p, M_{\overline{0}}) = 0$. Let A be any countable set which is atomic over \overline{a} , and let p' be the nonforking extension of p over $A \cup \overline{a}$. Then $p \mid -p'$.

<u>Proof.</u> - Let A be as given. Then A \cup \bar{a} is an atomic countable set, and we can find a copy of the prime model M_0 such that A \subseteq M_0 . By isomorphism, p is not realised in M_0 . So by lemma II.11, for any c realising p, $\operatorname{tp}(c/M_0)$ does not fork over \bar{a} , and thus $\operatorname{tp}(c/A \cup \bar{a})$ does not fork over \bar{a} . So clearly p |-p|

We can now begin on the classification. First let μ be the maximum number of pairwise orthogonal strongly regular types over M_0 , the prime model of T. (We call μ the number of dimensions of T). Let p_i for $i < \mu$, be pairwise orthogonal and strongly regular types over M_0 , and a maximal such collection. Now let N be any model. So $M_0 < N$, and (by 1.16, III.7 and remarks at the end of III) N is prime over (in fact minimal over) $M_0 \cup \bigcup_{i < \mu} J_i$ where J_i is a basis for p_i in N, and moreover (by 1.15) $tp(\bigcup_{i < \mu} J_i/M_0)$ is deterined just by N_i ; $i < \mu$ where $N_i = |J_i|$. Conversely, given a sequence N_i ; $i < \mu$ of cardinals, there is a model N prime over $M_0 \cup \bigcup_{i < \mu} J_i$ where J_i is an independent set of realisations of p_i , and thus by IV.4, a basis for p_i in N. So if we are considering the models of N0 up to isomorphism over some fixed copy of the prime model M_0 (which we could do by for example adding names for the elements of N_0 to the langage, and replacing N_0 by $N_1 \cap M_0$ in this new language), then

the models would correspond exactly to the possible sequences of cardinals $\langle ^{\Lambda}{}_{\bf i} ; {\bf i} < \mu \rangle$. However in the general case, one model might contain different copies of $^{M}{}_{\bf 0}$ and correspond to different sequences of cardinals. So we have to be more careful in the choices of the $^{p}{}_{\bf i}$, and use some material developed in this section and section III. This we proceed to do, summing up the results later on in a theorem.

First let K_i , for $i < \mu$, be the equivalence classes (or non-rothogonality classes) of strongly regular types over M_0 . We choose, for each $i < \mu$, $p_i \in K_i$ and $\bar{a}_i \in M_0$, such that p_i is definable over \bar{a}_i , and also satisfying the following two conditions, where $q_i(x,\bar{a}_i)$ denotes $p_i \mid \bar{a}_i$ (so $q_i(x,\bar{y}_i)$ is over \emptyset):

- (i) $\text{dim}(\textbf{q}_{\hat{\textbf{i}}}(\textbf{x}~,~\overline{\textbf{a}}_{\hat{\textbf{i}}})~,~\textbf{M}_{\hat{\textbf{j}}})$ is 0 or infinite (i. e. $\aleph_{\hat{\textbf{b}}}$), for all i < μ , and
- (ii) if $i < j < \mu$, then either $tp(\overline{a}_i) = tp(\overline{a}_j)$ and $q_i(x, \overline{y}_i) = q_j(x, \overline{y}_j)$, or for no $p \in K_j$ is there $\overline{a} \in M_0$ such that p is definable over \overline{a} , $tp(\overline{a}) = tp(\overline{a}_i)$ and $p \upharpoonright \overline{a} = q_i(x, \overline{a})$.

(Note that if the second disjunct of (ii) holds, then we also have that for no $p \in K_i$ is there $\bar{a} \in M_0$ such that p is definable over \bar{a} , $tp(\bar{a}) = tp(\bar{a}_j)$ and $p \upharpoonright \bar{a} = q_j(x, \bar{a})$.)

This is achieved quite easily. To get (i) for example, suppose p_i has been chosen in K_i , and, for some $\bar{a} \in M_0$, p_i is definable over \bar{a} and $\dim(p_i \mid \bar{a}, M_0) = n < \omega$. Let c_1 , ..., c_n be a basis for $p_i \mid \bar{a}$ in M_0 , and put $\bar{a}_i = \bar{a} \land \langle c_1, \ldots, c_n \rangle$. Then clearly $\dim(p_i \mid \bar{a}_i, M_0) = 0$. (ii) can easily be obtained by defining the p_i and \bar{a}_i inductively.

This having been done, pick some particular i < μ , and let us put $p = p_i$, $a = \bar{a}_i$, and $q(x, \bar{y}) = q_i(x, \bar{y}_i)$. For how many $j < \mu$, do we have $tp(\bar{a}_j) = tp(\bar{a})$ and $q_j(x, \bar{y}_j) = q(x, \bar{y})$ (and thus $p_j \upharpoonright \bar{a}_j = q(x, \bar{a}_j)$)? I assert that there can be only finitely many such j. For if not, then there is infinite $J \subseteq \omega$, such that the types $\{q(x, \bar{a}_j) : j \in J\}$ are pairwise orthogonal, and $tp(\bar{a}_j) = tp(\bar{a})$ for all $j \in J$. Thus (see background at the beginning of section III), there is $j_1 < j_2$ in J such that $stp(\bar{a}_j) = stp(\bar{a}_{j2})$. But by III.2, this contradicts the orthogonality of $q(x, \bar{a}_j)$ and $q(x, \bar{a}_j)$. (Remember $q(x, \bar{a})$ is strongly regular). Thus there are only finitely many such j.

Thus by renumbering the q_i and renaming the p_i and \bar{a}_i , we have :

LEMMA IV.6. - There is $\mu' \leqslant \kappa_0$, and for each $i < \mu'$, some finite n_i , and $q(x, y_i)$ over \emptyset , and for each $i < \mu'$ and $j < n_i$, types p_i^j over M_0 and tuples a_i^j in M_0 such that

(i) $\{p_i^j : i < \mu^i, j < n_i^j\}$ is a maximal collection of pairwise orthogonal strongly regular types over M_0 .

- (ii) p_i^j is definable over \bar{a}_i^j ,
- (iii) for any i < μ ', for j₁ < j₂ < n_i, tp($\overline{a_i}^{j_1}$) = tp($\overline{a_i}^{j_2}$) = r_i , and, for each j < n_i, p_i^{j} \ a_i^{j} = $q_i(x, \overline{a_i^{j}})$,
 - (iv) for each i and j, $\dim(a_i(x, \overline{a}_i^j), M_0) = 0$ or \emptyset ,
- (v) \underline{if} $i_1 < i_2 < \mu^i$, $\underline{then \ there \ are \ no}$ \overline{a}_1 , \overline{a}_2 \underline{in} \mathbb{M}_0 $\underline{such \ that}$ $tp(\overline{a}_1) = r_{i_1}$ \underline{and} $tp(\overline{a}_2) = r_{i_2}$, \underline{and} $q_{i_1}(x, \overline{a}_1)$ $\underline{is \ equivalent \ to}$ $q_{i_2}(x, \overline{a}_2)$.
 - (vi) $\mu^* = \frac{1}{2} \frac{\text{if, and only if, }}{\mu} = \frac{1}{2} \frac{1}$

LENMA IV.7. - Let N be any model of T, and let $i_1 < i_2 < \mu$. Then there are no \bar{a}_1 and \bar{a}_2 in N such that $tp(\bar{a}_1) = r_{i_1}$, $tp(\bar{a}_2) = r_{i_2}$, and $q_{i_1}(x, \bar{a}_1)$ is equivalent of $q_{i_2}(x, \bar{a}_2)$.

<u>Proof.</u> - Suppose that there are \bar{a}_1 and \bar{a}_2 in N as described, and we get a contradiction. Let N_0 be some copy of the prime model in N. Now both r_1 and r_1 are isolated types, and so it is easy to find \bar{a}_1' and \bar{a}_2' in N_0 such that $\operatorname{stp}^2(\bar{a}_1') = \operatorname{stp}(\bar{a}_1)$ and $\operatorname{stp}(\bar{a}_2') = \operatorname{stp}(\bar{a}_2)$. Thus by III.2, $q_1(x, \bar{a}_1')$ is equivalent to $q_1(x, \bar{a}_1)$, and $q_1(x, \bar{a}_2')$ is equivalent to $q_1(x, \bar{a}_2)$. But then $q_1(x, \bar{a}_1')^1$ is equivalent to $q_1(x, \bar{a}_1')^1$ is equivalent to $q_1(x, \bar{a}_1')$, which contradicts lemma IV.6 (v).

Now we go through the cases depending on the number of dimensions.

Case 1. — μ is finite. So also μ' is finite. Let $A = \bigcup \{\bar{a}_i^j \ ; \ i < \mu', j < n_i \}$ and let q_i^j be the nonforling extension of $q_i(x, \bar{a}_i^j)$ over A. Let Λ_i^j for $i < \mu'$ and $j < n_i$ be cardinals chosen arbitrarily subject to the proviso that $\Lambda_i^j \ge K_0$ if $\dim(q_i(x, \bar{a}_i^j), M_0) = K_0^j$. Let $A(\Lambda_i^j; i < \mu', j < n_i)$ denote the model prime over $A \cup \bigcup (I_i^j; i < \mu', j < n_i)$, where I_i^j is an independent set of realisations of q_i^j over A of cardinality Λ_i^j . Note that $A(\bar{\lambda})$ (where $\bar{\lambda} = (\Lambda_i^j; i < \mu', j < n_i)$) is well defined by 1.15 and uniqueness of prime models.

Observation IV.8.

- (i) $\dim(q_i^j, A(\overline{\lambda})) = \lambda_i^j$.
- (ii) $\dim(q_i(x, \bar{a}_i^j), A(\bar{\lambda})) = \Lambda_i^j$.

Proof.

- (i) Let N be prime over $\mathbb{N}_0 \cup \mathbb{I}\{x_{\mathbf{i}}^j; \mathbf{i} < \mu^i, \mathbf{j} < \mathbf{n}_{\mathbf{i}}\}$ where $X_{\mathbf{i}}^j$ is an independent set of realisations of $p_{\mathbf{i}}^j$ over \mathbb{N}_0 of cardinality $\lambda_{\mathbf{i}}^j$. Then $\dim(p_{\mathbf{i}}^j, \mathbb{N}) = \lambda_{\mathbf{i}}^j$, by lemma IV.4. It is easily seen that N is isomorphic (over A) to $A(\overline{\lambda})$, and that (by II.11 and choice of $p_{\mathbf{i}}^j$ and $\overline{a}_{\mathbf{i}}^j$) that $\dim(q_{\mathbf{i}}^j, \mathbb{N}) = \lambda_{\mathbf{i}}^j$.
- (ii) We use (i). First suppose that $\dim(q_i(x,\bar{a}_i^j),\mathbb{M}_0)=0$. Then as $\operatorname{tp}(\mathbb{A}/\bar{a}_i^j)$ is isolated, we have by IV.5 that $q_i(x,\bar{a}_i^j)|_{-q_i^j}$, and thus

$$\dim(q_{i}(x, \overline{a}_{i}^{j}), A(\overline{\lambda})) = \dim(q_{i}^{j}, A(\overline{\lambda})) = \lambda_{i}^{j}.$$

Secondly, suppose that $\dim(q_i(x,\bar{a}_i^j),N_0)$ is infinite. Then so must be $\dim(q_i(x,\bar{a}_i^j),A(\overline{\lambda}))$. But only finitely many members of a basis for $q_i(x,\bar{a}_i^j)$ in $A(\overline{\lambda})$ can be made to fork by $A-\bar{a}_i^j$ (remember that A is finite at the moment). Thus clearly $\dim(q_i(x,\bar{a}_i^j),A(\overline{\lambda}))=\dim(q_i^j,A(\overline{\lambda}))=\lambda_i^j$.

Conversely we know that any model N of T can be written as (i. e. is isomorphic to) $A(\langle \lambda_i^j ; i < \mu^i, j < n_i \rangle)$, where λ_i^j must be infinite if $\dim(q_i(x, a_i^j), N_0)$ is infinite (by I. 16, III.7, and remarks at the end of section III). It is also clear that $|A(\overline{\lambda})| = \max(\{\lambda_i^j ; i < \mu^i, j < n_i\} \cup \{\lambda_j^j\})$. When is $A(\lambda) = A(\overline{\lambda}^n)$.

Case 1 (i). - μ = 1 . So μ' = 1 , and n_0 = 1 . Also $A = \overline{a_0}$. Let us write $\overline{a_0}$ as \overline{a} and $q_0(x, \overline{y_0})$ as $q(x, \overline{y})$. Now suppose that $M = \overline{a}(\lambda) \cong \overline{a}(\lambda^*)$. Then there is $\overline{a} \in M$, $tp(\overline{a}) = tp(\overline{a})$, and $M = \overline{a}(\lambda^*)$. So $dim(q(x, \overline{a}), M) = \lambda$, and $dim(q(x, \overline{a}), M) = \lambda^*$ (by IV.8 (ii)). But as $\mu = 1$, we must have that $q(x, \overline{a})$ and $q(x, \overline{a})$ are equivalent, but then by lemma IV.1, we have that $\lambda = \lambda^*$. So we have $\overline{a}(\lambda) \cong \overline{a}(\lambda^*)$ if, and only if, $\lambda = \lambda^*$. Thus in this case

$$I(n, T) = 1$$
 if $n > k_0$.

If $\dim(q(x, \overline{a}), \mathbb{M}_0) = 0$, then $I(\mathcal{U}_0, T) = \mathcal{U}_0$ (as all finite dimensions can occur),

and if $dim(q(x, \overline{a}), M_0)$ is infinite, then

$$I(k)$$
, $T) = 1$.

Case 1 (ii). - $\mu > 1$ (but still finite).

Let $\bar{\mu}$ denote $\langle \mu_i^j$; $i < \mu^i$, $j < n_i \rangle$ (no connection with μ , the number of dimension). Suppose that $N = A(\bar{\lambda}) \cong A(\bar{\mu})$. Thus there is A^* in N with $\operatorname{tp}(A^*) = \operatorname{tp}(A)$, and $N = A^*(\bar{\mu})$. Denote by \bar{a}_i^{j*} the copy of \bar{a}_i^j in A^* . Then $\{q_i(x,\bar{a}_i^{j*});\ i < \mu^i$, $j < n_i \}$ is a set of pairwise orthogonal strongly regular types, and by IV.8 (ii), $\dim(q_i(x,\bar{a}_i^{j*}),M_0) = \mu_i^j$. So as the $q_i(x,\bar{a}_i^j)$ are a maximal collection of pairwise orthogonal strongly regular types, and by lemma IV.7, there is σ such that for each $i < \mu^i$, $\sigma(i,-)$ is a permutation of n_i and $q_i(x,\bar{a}_i^{j*})$ is equivalent to $q_i(x,\bar{a}_i^{j*})$. Thus by lemma IV.1, $\mu_i^j = \Lambda^{O(i,j)}$. Thus $A(\bar{\lambda}) \cong A(\bar{\mu})$ implies that $\bar{\mu} = \sigma(\bar{\lambda})$, where σ is a permutation of the sequence $\bar{\lambda}$ (As the number of dimensions is finite, there can only be finitely many such permutations).

above there can be only finitely many other sequences $\bar{\mu}$ giving rise to the same model, and thus we have

$$I(k)$$
, T) = $|\alpha| + k$, for all $\alpha \geqslant 0$.

Case 1 (ii) (b). - For all i < μ ', j < n_i , dim($q_i(x, \bar{a}_i^j)$, $M_0) = \kappa_0$. But then the countable models of T are just models isomorphic to $A(\bar{\lambda}_0)$, and thus T is $\bar{\kappa}_0$ -categorical, i. e. $I(\bar{\kappa}_0, T) = 1$. Now suppose that $A(\bar{\lambda}) \cong A(\bar{\mu})$ as above and thus that there is $A^* \subseteq N = A(\kappa)$, with $N = A^*(\bar{\mu})$, and σ with $q_i(x, \bar{a}_i^{j*})$ equivalent to $q_i(x, \bar{a}_i^{\sigma(i,j)})$. Then as T is κ_0 -categorical, all types are isolated, and thus $tp(A \cap A)$ is realised in every model of T. Clearly the fact that $q_i(x, \bar{a}_i^j)$ is equivalent of $q_i(x, \bar{a}_i^{j*})$, say, depends only on $tp(\bar{a}_i^j \cap \bar{a}_i^{j*})$. So we let G denote the group of permutations σ of μ , induced as above, and clearly $A(\bar{\lambda}) \cong A(\bar{\mu})$ if, and only if, there is $\sigma \in G$ with $\sigma(\bar{\lambda}) = (\bar{\mu})$. By our case hypothesis, only infinite values are possible for the λ_i^j . Let us denote by $(|\alpha+1|^{\mu})^{*}$ the number of sequences of length μ of ordinals $\leq \alpha$, at least one of which is α . Thus it is clear that

$$I(\mathcal{E}_{\sigma}, T) = (|n+1|^{\mu})^{*}/G$$
, for all $\alpha > 0$;

Casa 2. - $\mu = i \xi$, and so μ' is also $i \xi$.

Let me denote by $\mathbb{M}_0(\lambda_{\mathbf{i}}^{\mathbf{j}})_{\mathbf{i},\mathbf{j}}$ the model prime over $\mathbb{M}_0 \cup \cup \{\mathbf{I}_{\mathbf{i}}^{\mathbf{j}} \; ; \; \mathbf{i} < \mu^{\mathbf{i}} \; , \; \mathbf{j} < n_{\mathbf{i}} \}$ where $\mathbf{I}_{\mathbf{i}}^{\mathbf{j}}$ is an independent set of realisations of $p_{\mathbf{i}}^{\mathbf{j}}$ over \mathbb{M}_0 . We know that any $\lambda_{\mathbf{i}}^{\mathbf{j}}$ can occur. I first want to observe that if $\dim(q_{\mathbf{i}}(\mathbf{x}\;,\,\bar{a}_{\mathbf{i}}^{\mathbf{j}})\;,\,\mathbb{M}_0) = \mathbb{M}_0$, then we can assume that $\lambda_{\mathbf{i}}^{\mathbf{j}}$ is always 0 or uncountable.

LEMMA IV. 9. - Let $N = M_0(\lambda_{\mathbf{i}}^{\mathbf{j}})_{\mathbf{i},\mathbf{j}}$, where, for $(\mathbf{i},\mathbf{j}) \in X$, $\dim(\mathbf{q}_{\mathbf{i}}(\mathbf{x},\mathbf{a}_{\mathbf{i}}^{\mathbf{j}}), M_0) = K_0$, and $\lambda_{\mathbf{i}}^{\mathbf{j}} \leq K_0 \cdot \frac{\mathrm{Then}}{2} N \cong M_0(\lambda_{\mathbf{i}}^{\mathbf{j}^{\mathbf{j}^{\mathbf{k}}}})_{\mathbf{i},\mathbf{j}} \xrightarrow{\mathrm{where}} \lambda_{\mathbf{i}}^{\mathbf{j}^{\mathbf{k}}} = \lambda_{\mathbf{i}}^{\mathbf{j}}$ if $(\mathbf{i},\mathbf{j}) \notin X$, and $\lambda_{\mathbf{i}}^{\mathbf{j}^{\mathbf{k}}} = 0$ if $(\mathbf{i},\mathbf{j}) \in X$.

Proof. - Easy using IV.3 and IV.5.

Thus the models of T are all of the form $\mathbb{M}_0(\overline{\lambda})$ where $\lambda_{\mathbf{i}}^{\mathbf{j}}$ can be anything, if $\dim(\mathbf{q}_{\mathbf{i}}(\mathbf{x}\;,\mathbf{a}_{\mathbf{i}}^{\mathbf{j}})\;,\mathbb{M}_0)=0$, and is 0 or uncountable otherwise. Moreover, it is easy to see, using II.11 and IV.5, that $\dim(\mathbf{q}_{\mathbf{i}}(\mathbf{x}\;,\mathbf{a}_{\mathbf{i}}^{\mathbf{j}})\;,\mathbb{M}_0(\overline{\lambda}))=\lambda_{\mathbf{i}}^{\mathbf{j}}$, if $\dim(\mathbf{q}_{\mathbf{i}}(\mathbf{x}\;,\mathbf{a}_{\mathbf{i}}^{\mathbf{j}})\;,\mathbb{M}_0(\overline{\lambda}))=\lambda_{\mathbf{i}}^{\mathbf{j}}$, and $\dim(\mathbf{q}_{\mathbf{i}}(\mathbf{x}\;,\mathbf{a}_{\mathbf{i}}^{\mathbf{j}})\;,\mathbb{M}_0(\overline{\lambda}))=\lambda_{\mathbf{i}}^{\mathbf{j}}$. Thus, as in case 1, it follows that if $\mathbb{M}_0(\overline{\lambda})=\mathbb{M}_0(\overline{\mu})\;$, then there is σ such that for $\mathbf{i}<\mu'$, and $\mathbf{j}<\mathbf{n}_{\mathbf{i}}$, $\sigma(\mathbf{i}\;,\mathbf{j})<\mathbf{n}_{\mathbf{i}}$, and for all \mathbf{i} , \mathbf{j} , $\mu_{\mathbf{j}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$. But μ' is infinite, and if $\mathbf{i}_1<\mathbf{i}_2<\kappa_0$, we can vary $\lambda_{\mathbf{i}}^{\mathbf{j}}$ and $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$. But μ' is infinite, and if $\mathbf{i}_1<\mathbf{i}_2<\kappa_0$, we can vary $\lambda_{\mathbf{i}}^{\mathbf{j}}$ and $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, where $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\sigma(\mathbf{i}\;,\mathbf{j})}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}$, $\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{j}}=\lambda_{\mathbf{i}}^{\mathbf{$

Thus we have proved:

THEOREM IV.10. - Let T be non-multidimensional ω -stable. Let $I(\aleph_{\alpha}$, T) denote the number of models of T of power \aleph_{α} up to isomorphism. Then there is $\mu \leqslant \aleph_{\alpha}$, where μ is called the number of dimensions of T, such that:

1° $\underline{\text{if}}$ $\mu = 1$, $\underline{\text{then}}$ $I(k_{\alpha}, T) = 1$ $\underline{\text{for all}}$ $\alpha > 0$, $\underline{\text{and}}$ $I(k_{0}, T) = 1$ $\underline{\text{or}}$ k_{0} .

2° If $\mu \ge 1$ but finite, then either $I(x_{\alpha}, T) = |\alpha + \omega|$, for all $\alpha \ge 0$, or $I(x_{\alpha}, T) = 1$ and there is G a group of permutations of μ such that for $\alpha \ge 0$ $I(x_{\alpha}, T) = (|\alpha + 1|^{\mu})^{\pi}/G$, where $(|\alpha + 1|^{\mu})^{\pi}$ is the number of sequences of length μ of ordinals $\le \alpha$ at least one of which is α , and β_i ; $i \le \mu \ge \gamma_i$; $i \le \mu \ge i$, and only if, $\beta_{\sigma(i)} = \gamma_i$ for each $i \le \mu$, for

some $\sigma \in G$.

3° If $\mu = \frac{1}{10}$, then $I(\aleph_{\alpha}; T) = |\alpha + 1|^{\aleph_{\alpha}}$, for all $\alpha > 0$ and $I(\aleph_{\alpha}, T) = 1$, $\frac{1}{10}$ or $\frac{1}{10}$.

A few final comments; It can be shown fairly easily that if T is (ω -stable) and multidimensional, then for $\alpha > 0$, $I(\aleph_{\alpha}, T) \geqslant 2^{|\alpha|}$. Thus there is some content to the multidmensional/non-multidimensional dichotomy.

SHELAH has classified in a similar manner as above, the Fa-saturated models of a superstable non-multidimensional theory.

The main result in this paper, and the main notions employed are due to S. SHELAH, "appearing" in [5]. The bulk of our section I parallels the development of the material in LASCAR [3] (sections 2 and 3). The important proposition III.5 is due to BOUSCAREN and LASCAR [1]. Some results on the spectrum were also obtained by LACHLAN [2].

REFERENCES

- [1] BOUSCAREN (E.) and LASCAR (D.). Countable models of non-multidimensional w-stable theories (to appear).
- [2] LACHLAN (A. H.). Spectra of w-stable theories, Z. für math. Logik, t. 24, 1978, p. 129-139.
- [3] LASCAR (D.). Ordre de Rudin-Keisler et poids dans les théories stables (to appear).
- [4] LASCAR (D.).and POIZAT (B.). An introduction to forking, J. of symb.
 Logis, t. 44, 1979, p. 330-350.
- [5] SHELAH (S.). Classification theory and the number of non-isomorphic models. Amsterdam, New York, Oxford, North-Holland publishing Company, 1978 (Studies in Logic, 92).