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THE MODELS OF A NON-MULTIDIMETSIONAL 03C9-STABLE THEORY

Anand PILLAY (*)
[University of Manchester]

Théories Stables
(B. POIZAT)
Vol. 3, 1980-1982, n° 10, 22 p.

I give a (self-contained) account of the classification of the models of a non-

multidimensional w-stable theory. This result is the generalisation of the Baldwin-

Lachlan-Morley classification of the models of an X1-categorical theory and indues

of course the possible spectra that can occur. (Remember that the spectrum of a

theory T is given by the function I(- , T) , where Îor  a cardinal, p T)
is the number of models of T of power ~ , up tb isomorphism. ) The crude idea is

that, instead of a model of T being determined by the cardinalfty of one indiscer-

nible set (as when T is ~1 -categorical), a model of T is now determined by the

cardinalities of each member of a fixed "independent" family of indiscernible sets.

I assume the basic facts about stability, forking, definability, rank, etc., which

can be found in [4~ or even [5J.

T will be a countable complete w-stable theory. The w-stability of T furnishes

us with several nice properties. The most important of these will be :

(i) for any subset A of a model 1’1 of T , there is a (real) prime model of

rr h (1’1 , a), aEA,

(ii) if M I=T and then there is a finite such that p is

definable over A (thus p does not fork over A and A is stationary),

(iii) all types over arbitrary subsets are ranked by Morley rank.

I will also follow the usual practice of working in a large sufficiently saturated

model of T .

I . 

Strongly regular types are generalisations of types of Morley rank 1 degree 1.

If p E s(r-r) , I denote by the model which is prime over 1.1 u (aj , where

p . This model might also be denoted by M(a), and is unique up to r1-

isomorphism.

Def inition 1.1. - Let p E s 1 (ii) , , p not algebraic and .p(x) ~ p ((p might coun-

tain parameters from M) . The pair (p , 03C6) is said to be strongly regular if whe-

never b E M(p) y b ~ M and then tp(b/I..I) = p . p is said to be

(’’) Anand PILLAY, Dept of Mathematics, The University MANCHESTER, M13 9PL

(Grande-Bretagne).
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strongly regular if there is (pep such that (p , (p) is strongly regular.

1.2. - Suppose that p and qe S(1.i), t p is strongly regular and q is

realised in rl(p) . Then p is realised in M(q) , (We assume q is not algebraic)

Proof. - Suppose that (p , 9) is strongly regular. Let a realise p , and

b E M(a) such that b realises q . It is clear that a and b are note indepen-
over M M) . Thus there is a formula y) over M such that

)=o(a , b) , but j=-i~(m , b) for all m el-1 . Note that

" b) " is consistent. Now 14(q) = and let c ~ such

that 9= I1 ’-’(c , b) . Then M 
, c ~ M(a) and 1= y(c) . Thus

p , y and so p is realised in M(q) .

Definition 1.3. - Let p and q be strongly regular types over M such that q

is realised in M(p) . Then we say that p and q are equivalent, p ~ q .

(By lemma 1.2, this definition makes sense).

The next lemma shows that "enough" strongly regular types exist.

1.4. - Suppose that M  N , y the formula cp(x) is "augmented" in

N , and a is chosen in cpN -]B’1 such that has least possible Morley rank.
Then is strongly regular.

Proof. - (Let R(-) denote i’lorley rank). Let G , and pick 
formula such --&#x3E; 03C6(x), N |==03C8(a) and R(y(x» = 0153 , and

degree (~(x)) = 1 . Now M(a) ~ N , and so it is clear that (tp(a/ri) , ~) is

strongly regular.

Definition 1.5. - Let p(K) and q(y) be types over M . , p and q are said

to be perpendicular (p.L q) if p(x) u determines a complete x 
" 

y type
over M .

Note. - If p(x) and q(y) are types over a model , then q if, and

only if, 9 whenever a and b realise p and q respectively, then a and b
are independent over M .

Pact 1.6. - Let a and b be independent over M . Let A be a atomic over

M u taj and B atomic over Fl u Then A and B are independent over 

Now the proof of lemma 1.2 actually implies that if is strongly regular
and b E M, then tp(a/M~ {b}) is isolated. A simple consequence of this
and fact 1.6 is the following : o

Obsorvation 1.7. - Let P1’ y P2 ’ y q1 ’ q2 be all strongly regular types over M

such that p1 ~ P2 and q1 ~ q2 . Then p1 | q if, and only if, q2 .

PROPOSITION 1.8. - Let p and q be strongly regular types ovE~r 14 . Then p

and q are perpendicular i.f, and only if, p and q are not equivalent.
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Proof. - It is clear that if p and q are equivalent then they are not perpen-

dicular. Conversely, assume that p and q are not equivalent, wish to show

that they are perpendicular. By 1.7, we can assume that R(p) = c~ is minimal among

s trongly regular types over M equivalent to p, y and similarly for q, with

R(q) == )3 . So we can find formulae ~?(x) and ~(x) , both of degree 1 , and of

rank ~ and p respectively, such that (p , ~p) and ( q , ~) are strongly regu-

lar. Suppose (without loss) that ~ ~ ~ . . Now if p and q are not perpendicular,
then there are realisations a and b of p and q respectively, such that a

and b are not independent over M . As in the proof of 1.2, if follows that 

is "augmented" in M(b) (i. e. cp - M is nonempty). By lemma 1.4, there is
c such that is strongly regular. Clearly, is

equivalent to q, and R(tp(c/N)) ~~ .If y then clearly

p , y which contradicts the non-equivalence of p and q . On the other

hand, if  0:’ 
, then we contradict the minimal choice of R( q ) . Thus

the proposition is proved.

PROPOSITION 1.9. - Let 1=i  P’1’ , p E S (M) and p’ the nonforking extension

(or heir) of p over r.1’ . Then p is strongly regular if, and only if, p’ is

strongly r e gular .

Proof. - First suppose that p’ is strongly regular. Then there is an L(h) for-

mula such that (p’ ~p) is strongly regular (Any L(r1’) formula (p(x) E p
such that degree (cp) - 1 , and R(p’) will suffice. But p 

C p’ , and

R(p) = R( p’ ) . Thus (p can be chosen over M ). We show that (p, y ’-P) is strongly

regular. Let a realise p’ . So p , and Il(p) = M(a)  Let

b ~ M(a) y b ~ M and b satisfy 03C6. Now b and a are not independent over M.

Thus b /=. lil1’ . But then p’ (by strong regularity of (p’ , c.p) .) Thus

tp(b/I-i) = p . So (p, ;) is strongly regular.

Conversely, suppose that p , and (p, y 9) is strongly regular. Let a

realise p’ . . If ( p ’ y cp) is not strongly regular, then there is b in 

such that p . Now p’ is definable by a schema d y over M (where d

also defines p ), and also a and b are not independent over . Thus there

are L-formulae  (y z) and B.~(x , y , w) , and c and d in such that

where the formula c~(x ~ y is not represented in p’ (so neither in p ) . But

is the heir of Thus we can find c’ and d’ in such that

If we let bl be such a y j.n 1vI( a~ , then il(a) )=~(b~) and

p . This contradicts the fact that (p , ~p) is strongly regular, and

completes the proof.
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Definiti on 1.10. - Let A be a subset (of the big model), p E S 1 (A) a statio-

nary type, and (p(x) E p . We call strongly regular if there is a model
M countaining A and nonforking extension p’ of p over M such that (p’ ~ ~)
is strongly regular. Again p will be called strongly regular if there is (p(x)
such that (p , (p) is strongly regular.

Note. - If follows immediately from 1.9 that for P is strongly

regular if, and only if, for all M extending A and nonforking extension p’ t of

p to I-i ., p’ t is strongly regular.

PROPOSITION 1.11~ - Let p and q be strongly regular types over , and let

p’ and q’ be their respective heirs over M . Then q if, and only if,
q’ . 

- 

"

Proof. - Suppose that p dans q are not perpendicular. Then there are reali-
sations a and b of p and q res actively, such that a and b are not in-

dependent over M . Let a’ " b’ realise the heir of tp( a " over M’ . Then

p ’ , q ’ , and a’ and b’ are not independent over M’ .

Thus q’ .

Conversely, suppose that p and q are perpendicular. We may again suppose that

p and q are chosen with minimal rank in their equivalence classes. So we have
(p , (p) strongly regular, with R(p) = R((p) = ~ , and (q , -~) strongly regular,
with R(q) = R(~) = ~ , and suppose    . So and (q’ , ~ ) are

strongly regular. If p’ and qt are not perpendicular, then again if follows
that (p(x) is augmented in M~(q’) . As q’ I is the heir of q , it is easy to

prove that (p(x) is augmented in M(q) , but this will again contradict the mini-

mal choice of R(q) . So the proposition is proved.

By propositions 1.8 and 1.11, we have :

COROLLARY 1.12. - Let p and q be strongly regular types over M , ~ and M  M’ ,
and p’ , q’ the heirs of p and q over M’ . Then p ~ q if, and only if,

q~ .

Definition 1.13. - Let p(x) and q(y) be in S(A) , where A is an arbitrary
subset. Then p and q are said to be orthogonal if for all B =3 A and nonfor-

king extensions p’ and q’ t of p and q over B , p q’ (y) determines a

complete type over B .

PROPOSITION 1.14. - Let p and q be strongly regular types over A . Then the

following are equivalent :

(i ) p and q are orthogonal,

(ii ) for some A , ( M a model), and nonforking extensions p’ , q’ t of p ,

q p’ and q’ are perpendicular.
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Proof. - By proposition 1.11.

?lote. - It wvas shown in [3] that if p and q are any types over M. and p’ ,
qt their heirs over some hi &#x3E; Ik1 , then p i q if, and only if, q’ f It

follows that proposition 1.14 holds without the hypothesis that p and q are

strongly regular. However 1 . 14 in its present form will suffice for our needs.

Given. strongly regular types p and q over A , we will call p and q equi-
valent if they are not orthogonal. By 1 .8 and 1.14, this is consistent with def. 1.3.

I complete this section with a couple of observations which will be of use later
on.

LEMMA 1 . 15. - Let [p. ; i E I) be a set of stationarv pairwise orthogonal types- 1.. . - - .- .. 

- .- - - ... 
-..-- - 

-- .- - ..-...-., - °. ,, - 

- 

- -.- 

-. 
- 

--

over A . For each i E I , let  y, j be an independent set of realisa-
tions of p. over A . Then i F I, j  y, j is independent over A .

1- - J 1

Proof. - It suffices to show that if ä1’ ä2 ’ ... , än is independent over A ,
and tp(b/A) and tp(ä./A) are orthogonal for i = 1 , ... , n -, then

1. -

[äl ’ ä2 ’ ... , än ’ b) is independent over A . This we show by induction So

suppose that we already have [ä1’ ... , är ’ b j is independent over A , where
r  n . Thus tp(’b/ lä1 ’ ... , ärj u A) does not fork ovor A, and we know anyway
that tp(ar+1 l/{äl’ ... , ä J u A) does not fork over A . Thus by the orthogona-r+ r

lity of tp(b/A) and tp(ä r+ I/A) , ar+1 and b are independent over

A u {al ’ ... , a r } . Thus täl’... , ä r a r+ 1, b J is independent over A .

LElBIi’.1A 1 . 16. - Let ril be a model, and (p. ; i E IJ a maximal collection of
- - 1

pairmise orthogonal strongly regular types over Let A c r’;l be such that each

p. is definable over A , and for each I s I ,let  t°. ) be a maximal

independent set of realisations of A in rJI . Then J = i E I , jy. j
1 - - J J.

is independent over A , and moreover ?’I is mininal over A u J .

Proof. - By 1.14, the types A .are strongly regular and pairwise orthogonal.
Thus the independence of J over A follows by 1 . 15.

Suppose that ?I were not minimal over A u J . Then there would be a model N

such that A U J C N fi M . By 1 .4, we can find a E M - N such that tp(a/N) is

strongly regular. Let p = tp(a/N) , and let p’ be the heir of p over M . So

pI is strongly regular ( 1.9) , and by the choice of the s there is s E I

such that p1 and p are not orthogonal. But p does not fork over N , and
s s

so N is strongly regular and not orthogonal to p (by prop, 1.9 and prop.

1.11). Thus p ) Nand p are equivalent, and so PN is realised in N(a) ,s s

where we can assume that N(a)  lkl . Let c e N(a) realise p h N . Then, as
s

p t N does not fork over A , if follows that c and  y J are indepen-S J s

dent over A . But this contradicts the maximal choice of the independent set

{asj; j  ý j of realisations of p t A in M . So the lemma is proved.J S S
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II. Dimension.

Let ?.I be a model, and peS(A) . A set I of tu.ples from M will be

called a basis for p in M , if I is a set of realisations of p in M , inde-

pendent over A, and maximal such (Note that if p is stationary, then I is

also indiscernible over A ).

PROPOSITION 11.1. - Suppose that p F S(A) , and p has some infinite

basis in I-I. . Then all bases for p in M have the same cardinality.

Proof. - If not, then it is clear that there are bases I and J of p in M

with J infinite and jlj  ) J) . As I is maximal, for each c ~ J,
tp(ë/I u A) forks over A. So there is some finite I- u I such that

u A) forks over A.

So by the cardinality difference, there is finite I and c 
n 

E J for nW,
such that tp(c u A) forks over A, for each n  w . But then, as the 3

are independent over A, we have for each n  ~ , tp(c /tc~,...,~ J u I’ u A)
forks ... , ’ ~ , and thus " °° ’ ~n ’ forks

over i.c.. , ... , ënJ u A . But this contradicts superstability.
Definition II.2. - If all bases of p in M have the same cardinality, then we

define dim(p , M) to be this cardinality.

Note. - We will see later on that if p F S(A) is strongly regular and 
then dim(p, M) is always defined.

Let I be an infinite indiscernible set (maybe oi tuples), and B an arbitrary
set. Recall that Av(I/B) is defined as follows : for b E B, p(x , b) E Av(I/B)
if, for cofinitely many c in I , we have = ~(ë , b) . Then Av(I/B) is a com-

plete and consistent type over B . Moreover, suppose that p is a stationary type
over A, and I is an infinite independent set of realisations of p over A

(so I is indiscernible over A ), and B ~ A . Then Av(l/B) is precisely p’
the nonforking extension of p over B.

LEMMA II . 3 .

(i) Let I be an infinite indiscernible set over A , and prime over A u I .

Then I is a maximal indiscernible set over A in I’l .

(ii) Let I u be an infinite indiscernible set over A, and let M be prime
over Aul. Then tp(c/A u r) j2014Av(l/H) .

(iii) Let p be a stationary type over A, and I an independent set of reali-

sations of p over A . Let I be an infinite subset of I , and II be prime
over and let p’ denote the nonforking extension of p over M . Then

is an independent (over M ) set of realisations of p’ .
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Proof.

(i) If I is not maximal indiscernible over A in f1 , 
y extend it by c in Fi .

Now I) is isolated by a formula 03B1(x, a, d:) where a ~ A and 

In particular, M j= ~(x , ~ "d) --&#x3E; x 1 c’ for all c’ ~ I (as cr/ I ). But

M |=03B1(c , a , d), I u {Cj is indiscernible over A and I is infinite. Thus

we can find c’ in I such that M j=~(c’ , ~ , d) , and this is a contradiction.

(ii) I show that if I u td is indiscernible over A, then tp(c/M) = Av(I/I.I)
(where h is prime over A u I ). So let (p(x , m) e Av(l/Il) , where m e M . I

will show that this formula is satisfied by c . Now tp(m/A u I) is isolated by
a formula cp(y , ~ , d) where a e A Now as ~(x, ill) is satisfied

by cofinitely many members of I , there is c’ ~ I , d’ such that

I..I j== 03C6(c’ , m) . Thus M | = V y(03C6(y, a, d) --&#x3E; )) . But
d5) = tp(c " d!ä) . So we have )= V (cp(00FF , ä , d) --&#x3E; y(c , )) , whereby

)= ~(c , m) ~ and we finish.

Let c1’ ... , ’ ~n be 11 . We must show that c - ... ~ ~n is

an independent set of realisations of p’ over M . . Let pn denote

A ... A Then I can be considered (by partitioning it into n-tuples)
as an independent set of realisations over A of But then (ii) and the re-
marks preceding this lemma, A ... A does not fork over A, and this
is just what we want.

LEMMA II.4.

(i) Let p and q be equivalent strongly regular types over a model M , y and

let N &#x3E; M . If I is a basis of p in N , then there is a basis J of c in

N with I JI .

(ii) Let p and q be equivalent strongly regular types over a set A , and let

N ~ A . If p has an infinite basis in N , y then so does q , , and moreover

M) = dim(q , lyl ) .

Proof.

(i) Let I be a basis of p in N , and write I as  n}. Define

models in n  K , and elements bex for ~  ï-t , as follows : MO=M,
= 1B1, (a ) , and = Clearly is the heir of p over M 

a
and so strongly regular and equivalent to a , the heir of cover M 

a 
(by 1.12).

Thus is realised in rvr ~+1 , and let b 
a 

be such a realisation. By fact 1.6,
is an independent set of realisations of q over M, and so can be

extended to a maximal such set in N .

(ii) It is enough by II.1 and symmetry to show that if p has an infinite basis

I in N , then q has a basis J in N with |J| . So let I be an infi-

basis in N . as 1~ where I is infinite and

Ir21 . Let M’ be an elementary substructure of N which is prime over



10-08

A u I, ’ Let p s be the nonforking extension of p over Then by 11.3 ( iii ~ ,

I 2 is a basis of p’ J in :N . But p’ t is strongly regular and equivalent to q’ , ,

the (strongly regular) nonforking extension of q over I’P . . So by (i) there is a

basis J’ of q’ in N , with )l?) = But J’ is clearly an inde-

pendent set of realisations of q in N and so can be extended to a basis J of

q in N y and clearly 

Let p be a stationary type over A, y and let y a2 , ... , an an indepen-

dent set of realisations of p over A. Then I will denote " ... 
" 

by p .

PROPOSITION II.5. - Let p and q be strongly regular types over a set A, y and

suppose that, for all n, m  w , p (x) u q (y) determines a complete type over

A . Then p and q are orthogonal.

Proof. - So suppose that, 9 for all n, ~ m  u is complete. It

follows that if I is an independent set of realisations of p over A, y and J

is an independent set of realisations of q over then I and J are inde-

pendent over A . Now pick I and J as in the last sentence, y and such that both

are infinite and III  J ~ . Let M be prime over A u J u I . I assert that I

is a basis for p in M . Note first that I is indiscernible over J . Now

if c were a realisation of p in M such that I U were independent over

A , then by our hypothesis, y I u and J would be independent over A, and

thus I u would be indiscernible over A u J , contradicting lemma II.3 (i).
Thus I is a basis for p in 11 , and so dim(p y N) == But clearly

dim( q , M) ~ So by lemma II , 4, p and q are not equivalent, that is,

p and q are orthogonal.

Note. - Proposition 11.5 is actually true without the restriction that p and q

be strongly regular (although we will not need this here). This fact, together with

lemma 1.15 characterises orthogonality for types over sets.

11.6. - Let S (A) and ( p , (p) strongly regular. Suppose that B;:)A

and that p’ 1 and q are in S (B) , where p t is the nonforking extension of p

over ’B, q ~ p’ , and cp E q . Then p’ and q are orthogonal.

Proof. - It is enough to prove this in the case where B is a model, y say ~d

in this case it is enough to show that p’ t and q are perpendicular. So let a

and b be realizations of p’ and q respectively. I show that a and b are

independent over 11. Now as 
, 

p’ , y there is some formula ~-(x) such

that ~(x~ E q but -, ,(x) E p . Suppose that y) is an such

that ( = ~(b , a) . Thus = (h x)(~(x) A 1v(x , a)) . So
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Let c e Il(a) be such that ?"I(a) ) = p(c) A a) . So c satisfies

’f(x) but c does not realise p ’ . Thus c e 11 (by strong regularity of (p~ ~)).
Thus we have shown that tp(a/M u (bj) is the heir of p’ , y whereby a and b

are independent over M .

If follows from lemma II.6 that if p is strongly regular then p is regular
( p~ S(A) is said to be regular if whenever B ~ A , p’ is the nonforking exten-

sion of p over Band q is a forking extension of p over B , then p’ and

q are orthogonal). Now for regular types the "nonforking" notion of independence
on realisations of such types satisfies the familiar exchange principle. Namely i

let p E S(A) be regular, A c r!l , and let ä. , for i  n , and b realise p

in H , where {.a. ; i  nj is a basis for p in 11 . . Let a be the first

element such that i  m}) forks over I.I . Then

{a0. y ... y y ... an-1} is a basis for p in M . (This is a
simple consequence of regularity and the basis properties of forking). Thus we
have i

PROPOSITION 11.7. - Let p e be strongly regular, and A C M . Then all

bases for p in M have the same cardinality (and thus we can speak of dim(p , M) ) ]

PROPOSITION II.8. - Let p and q be equivalent strongly regular types over a

model lVI, , and let N &#x3E; ?&#x3E;I . Then dim(p, N) = dim(q , N) .

Proof. - By lemma 11.4 and proposition II.8.

I recall the following :

fact 11.9. - Let p E s(M) and p . Then p does not fork over U (p~ .
LEMMA 11.10. - Let p ~ Sl(A), strongly regular, and  N . Let

pI denote the nonforking extension of p over M . Let I be a basis for p in

~ ~ I~t I2 be an independent over M set of realisations of pI in N , and

finally let c = N and tp(c/I U I U A) is the nonforking extension of p

over 11 u I UA . Then tp(c/I U H) does not fork over A (and thus 12 u tcl
is an independent set of realisations of p’ in N 1 over M .)

Proof* - It is enough to show that tp(tcj u 1~/11) does not fork over A. By
fact II.9y it is enough to show that tp({c} u U A) does not fork over A.

Nowy by hypothesis, u A) does not fork over A y and thus it suffices

to prove that tp(c/I u A) does not fork over I u A . But and

we know that tp(c/I u I ~ u A) does not fork over I u A . So this leaves us
having to prove that

( ./) u 03C6 u A) does not fork over I U I u A.
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Let y and d suppose that we already know that

11 u d u A) does not fork over I2 ~ I 1 u A . Now it is clear that
u I 1 u d u A) ~ tp(c/I2 ~ I1 u d u A) ( either tp(d/A) I- p , or d and

I1 are dependent over A ). But d satisfies (x) - So by strong regularity of

c~) and lemma II.6, c and d are independent over I u d U A o Thus
u I 1 u d " d u A) does not fork over 1 2 u I 1 u A . So (-’’) is proved, and

so also the lemma.

PROPOSITION 11.11. - Let p E S(A) be strongly regular, H  N , 9 and p’
the nonforking extension of p over M . fI Then dim(p , N) == dim(p , H) + dim(p’ , y N~

Proof. - By lemma 11.10, if I1 is a basis for p in and I 2 is a basis

for p’ in N , , then I1 u 12 is a basis for p in N .

III. Non-multidimensional theories.

Definition 111.1.

(i) Let H be a model of T . Then denotes the maximum number of pair-
wise orthogonal strongly regular types over lv .

(ii) T will be said to be multidimensional if for any A there is a model JYI

of T with ~ h . Otherwise T is said to be non-multidimensional.

I now give some background on material to come. Firstly, y if p 1 is a type over
a finite set a , then p 1 can be written in the form p(x , a) (so p(x , y) is

a type over ~ ). Moreover, if tp(a) = tp(b) , then b) is in S(b) , and..
for example, p(x , y a) is strongly regular if, and only ify p(~ y b) is strongly
regular.

Secondly, suppose that p E S(A) , and q E S(B) ( A and B subsets of the

big model). Then, because p and q are not types over the same set it does not
make immediate sense to speak of, for example, p and q being orthogonal or not

orthogonal. However we can interpret this to mean that for some C which includes

A and B, y any nonforling extensions of p and q over C are orthogonal (or
not orthogonal, as the case might be). assune p and q to be stationary).
Then by the results in section I, p and q will be orthogonal if, and only if.
for any A ~ B n the nonforking extensions of p and q over C are orthogo-
nal.

Finally, we assume familiarity with the notion of strong type (denoted stp ).
The important facts are the following assuming w-stability. If p eS n (A) , then

there is E E FE (A) (that is, E(x , y) is an equivalence relation on n-tuples9
definable over A, and with a finite number of classes), such that if a and b

realise p then a and b have the same strong type over stp(b/A))
if, 9 and only if, )= E(a , p b) . Also, if I is independent over A , y and all
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elements of I have the same strong type over A, y then I is indiscernible over

A , Moreover, if I and J are two such sets, and the elements of I and J

have the same type over A , then tp(I/A) = tp(J/A) . (In the cases in which we

shall be interested9 A will be the empty set and so will be omitted.) (.Also

stp(a/A) = stp(b/B) implies 

PROPOSITION 111.2. - The f ollowing are equivalent (for the theory T ).

(i) For all M , 9 $ ~ .
(ii) T is non-multidimensional.

(iii) If p(x, a) E S(a) is strongly regular, and stp(a) = stp(b) , then

p(x , a) and p(x , b) are not orthogonal (that is equivalent).

Proof. -

(i) implies (ii) is immediate.

(ii) =&#x3E; (iii) : Suppose that p(x, ä) E S(a) is strongly regular,

stp(a) = but p(x , y a) and p(x , y b) are orthogonal. First we can assume

that a and b are independent (For if not, then choose c such that c and

ä " b are independent, and stp(c) = stp(a) = stp(b) . Then p(x, a) and

p(x , c) are orthogonal). Let A be any cardinal, and let ~a~ ; ~  Jt3 be an

independent set of realisation’s of tp(a) , such that a~ = a , y a - b , and, for

all a  03BB, stp(a03B1) = stp(a) .So  03BB} is indiscernible, and, for

0153  4  A, p(x , a03B1) and p(x , Z,) are orthogonal, (and strongly regular). Let

M be a model containing all the a . For each a  03BB, y let p be the nonforking

extension of p(x, aa) over M . Then the p are pairwise orthogonal strongly

regular types over M . Thus T is multidimensional.

(iii) =&#x3E; (i) : ti Let M be a model, and q E strongly regular. There is

finite a in Ivl such that q is definable over a . So p = q ta is strongly

regular, and q is the unique nouforking extension of p over Thus it suf-

fices to show that there are at most ~~ pairwise orthogonal strongly regular .

types over finite sets. Now there are only ~~ many possible types of finite sets.

Moreover for any a , there are at most ~~ types in S (5) . Also for any a

and strongly regular p(x, y S 1 (a~ , there can be only finitely many pairwise

orthogonal types of the form p(x, b) where tp(b) = tp(a) (by (iii) and the

paragraph preceding this proposition). Thus we finish.

PROPOSITION III.3. - Let T be non-multidimensional and N a model of T . Then

there i s a countabl e I’I  N , and a se t J ~ N ~ J independent over M such that

N i s minimal over M u J .
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Proof. - By I1I.2, is countable. So we can find countable N  N such that

each of some maximal collection of pairwise orthogonal strongly regular types over

N , is definable over M . Now use lemma 1.16.

T will be maid to be unidimensional if, for each = T, == 1 .

PROPOSITION 111.4. - T is unidimensional if, and only if, T ~ 

Proof. - Suppose that T is not unidimensional and let M be a model and p, q

orthogonal strongly regular types over M . Assume that p and q are chosen with

least possible Morely ranks in their respective equivalence classes, say R(p)==Qr’ ,
R(q) == ~ , ~ ~ j3 , and (p y (p) is strongly regular, where R(~) = 0153 . As in the

proof of 1.8, is not augmented in I’l(q) , and this, as is well known contra-

dicts R1-categoricity.
Conversely, suppose that T is unidimensional. Let M be the prime model of T .

Then there is a strongly regular type p over M . If N is any model of T,

then is elementarily embedded in N , and p1 the heir of p over N , is

strongly regular, and so is essentially the only strongly regular type over N . So

N is prime over K 0 and a basis for p’ in N . Such a basis is just a Morley

sequence of p over N , and its type is determined. Thus if |N1| = = À &#x3E; 0,
then N 1 is prime over u I and N is prime over M u .J , where I 

must both have cardinali ty A, , and have the same type over 1B-10 . So N 1 == N 2 .

PROPOSITION 111.5. - Let T be non-multidimensional, and p(x, a) a strongly

regular type in S(a) . Suppose that stp(b) = stp(a) and i’i contains a and b.

Then dim(p(x, ä) , N) = dim(p(x , b) , N) .

Proof. - Suppose first that ä and b are independent (over Ø). Let M1 M
be prime over a 

" 

b , and let q be the nonforking extensions of p(x, a)
and p(x , °°1°) over N . Now 

" E) = tp(b " ä) , and thus

(Fi~ , Z , I) - (1B ’ b , ~) , whereby dim(p(x, ä) , = dim(p(x , E) , ]B11) . By
III.2, p and ’11 are equivalent, and thus dim(p , M) == dime ’11 ’ ?I) * Thus by

II.l1, dim(p(x ,a) , M) = dim(p(x , b) , 

Now in the gen3ral case, let c be such that stp(c) = stp(a) = stp(b) , and c

and a " b are independent (over Ø ). Let = n(c), and p’ , q’ the non-

forking extensions of p(x , ä) and p(x, b) over M . Then

, M’) = (as pI and q’ are strongly regular and equivalent),
and both these dimensions are finite (otherwise M~ - M contains an infinite inde-

pendent set over M , each element of which is dependent on cover M ; ; which

contradicts suoerstability). But by the first part of the proof,

and we know that
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and

I now proceed to show that in the non-multidimensional case , all strongly regular

types can be taken as being definable over the prime model of T (and thus in pro-

position III.3, M can be taken to be the prime model of T ).

III.6. - Let T be non-multidimensional. Let M  1B1’ ~ N be models. Then

there is c eN - such that is strongly regular~ and tp(c/M’)
does not fork over M .

Proof. - Choose c E N - lli’ t such that is of least possible Morley rank.

Thus clearly there is a E M and 03C6p(x, a) ~ tp(c/M) y and for all

d E a))N - ?.i ’ , tp( d/2«1 ) = tp(c/M) . Let us denote tp( cfi,I ) by p. Now if

does not fork over M (and so is the nonforking extension of p ) , then
it is clear that is strongly regular, and we finish. So let us

assume that tp(c/M’) forks over M y and we seek a contradiction. Now, as tp(c/N*)
forks over H (by our assumption), R(tp(c/I"I’ ) ) R(p) . We can clearly assume
that c has been chosen also to satisfy R(tp(c/M’)) being as small as possible

(among those x in N - M’ for which tp(x/14) = p). So tp(c/N’) is strongly re-

gular (1.4). Now let b0 be chosen in such that is definable over

and let q(x , ~) denote Thus q(x , bO) is strongly regular.

Now let b be such that and B and b1 are independent

over 

Thus = (this is easy), and so by III.2, q(x , y Eo) and

are equivalent. Let q0 and q be the nonforking extensions

f , and q(x , hl) respectively over M u [bO ’ D1} . (So in particular
~ b0 = tp(c/F.I u bO) .) So 10 and q1 are strongly regular types over the

same set which are not orthogonal. Thus by II. 5, there are n, m such that

~(x) u q~(~) is not a complete type over °°1°~l . Thus (as ’10 and q~
are stationary), ’ there are c ~ ... y c n independent realisations of q 0 over

M u ~ ~ and ¿l’ , ... ~ d independent realisations of q1 over 

such that ... ,cn} and y ... ,dmJ are not independent over

M u bl} . By minimalising m , we can assume that y ... ,cn} and

... ° are independent over N u hl} . Let us denote

... , c) by c and (d1 ’ y ... , dm-1&#x3E; by d. I assert that
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First note that u b1 u M) does not fork over b1 u and that

u M) does not fork over M . Thus A 
u N) does not fork over

M , and 8 0

(i) does not fork over N.

Also A duN) does not fork over M u bO . This together with (i)
yields tp(bO A 

ë’/b1 A d uN) does not fork over N ,which means (,,") !

Note also that ... , y c .j u b1 u r-r) does not fork over

M b1} , but that

(~’) ... ~ c J ud 
A 

dn ubo uN) does not fork over N 

Now tp(cn/N = tp(c/n u bO) . So we can assume that cn =c (leave bO
fixed but shift around the other c. ~s ~ the d. ~s and b so as to preserve

the type of everything over M), let us demote dm by d . So

tp(d A b/H) = tp(c A b0/M) ,whereby tp(d/M) = p , and tp(d/H u b1) forks

over M, and so there is finite ~ ~ L such that

Now by (a) and the fact that is definable over M u we can find

c’ 0398 M’ such that

Let us now sum up the information obtained ; denoting now /c. y ... ~ c .) by

ë , and as before  dl ’ ... , dm-l&#x3E; by d .

(a) c and ë are independent over IIi u bO .
(b) ë A C and iB 

A d are independent over 11 (by (o~)).

(c) There is a formula X(x, ’Z) and e 0398 H such that I = A ë) ,
but z) is not in bound (tp(c/~ )) (and so x(x ~ z) is not represented
in tp(c/I.~) ) (by (.;~-,~)).

(d) There is an L(N) formula ~(x, w) such that d satisfies ~(x, y h1) and

b~) , ~ , , 2)  r ( by (?-’h~)).

remember for any type q and finite ü ~ L ~ there is finite subtype of q,

say q~ such that R(q ~ ~ , 2) ==R(q~ ~ ð , 2) .)

Remember that d also satisfies the formula ~(x, a) . Thus by (c) and (d)~ we

have

By (b) we can find and d’ in M such that
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pick a to be such a y as given above. First note that a t/ M~ , for if

not then ’;.(x, z ) would be represented in contradicting ( c ) . Thus as
a satisfies ~p(x , a) , we must have p (by choice of p and (p(x , ~)).
But now, as a satis f ies ~ ( x , and R(~(x , bI) , ~ , 2)  r = R (p , ~ , 2),
we must have that p . This contradiction proves the lemma.

PROPOSITION III.7. - Let M  Ii’ be models of T , where T is non-multidimen-

sional, and let p eS(M’) be strongly regular. Then there is q y such

that q is strongly regular, q is equivalent of p , and q does not fork over

Proof. - Lemma III.6 gives us c in Ii’ such that is strong-

ly regular, and does not fork over M . Clearly is equivalent to p .

COROLLARY III.8. - Let T be non-multidimensional. Let 11 be a model, A a

set, and N prime over M u A . Then N is minimal over FI u A .

Proof. - If not, there is model M’ such that M u N . Lemma I11.6 gives
us c E N - such that does not fork over N . But tp(c/M) is not

isolated, and tp(c/M u A) is isolated, whereby u A) forks over M , and

so forks over 1B1 . Contradiction.

Let me now state a few obvious things. Let us assume T to be non-multidimensio-

nal, and let M0 be the prime model of T . Let i    R0} be a maximal

collection of pairwise orthogonal strongly regular types over Let N be any

model of T . So M0 is elementari ly embedded in N , and let p’ 1 for i  ,
be the heirs of the over N . Then 3 i is a maximal collection of

pairwise orthogonal strongly regular types over N . For choose strongly regular
o E s(N) . By 111.7, q is equivalent of q E S(N) , where p is strongly regular
and does not fork over . But there is i  ~ such that is equivalent
to p. and so p is equivalent to p’ , and so q is equivalent to p’ .

IV. The spectrum.

In this section T will be assumed to be non-multidimensional, and M0 will

denote the prime model of T .

First, some TI10re preliminary results. _

IV. I. - Let h be a model, a E , p(x, a) E S(a) be strongly regular,
and tp(a) isolated. Suppose that ~ e ?4 , tp(b) = and p(x, b) is equi-
valent to p(x , a) . Then dim(p(x , a) , 111) = dim(p(x , b) , M) .

Proof. - Let M be a copy of the prime model such that a ~ M0. It is easy
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to find ë e MO such that = By 111.2, p(x, b) and p(x, ë)
are equivalent. Thus p(x , ä) and p(x, ë) are equivalent. Let pi and p
be the nonforking extensions of p(x , ä) and p(x , ë) over So p. and

P2 are equivalent and strongly regular, and thus by 11.8, dim(p , M) = 
But it is clear that (M , ~) -= °°1°) , and so 

Thus by 11.11~ we have

But by I I I . 5 ,

and so we have

as desired.

LEMMA IV. 2. (which does not need non-mul tidimensionali ty ). - Let P

definable over Pi = P ~ ä , and p has an infinite basis in (thus

NO) ). Then 

Proof. - M0(p) is countable, and thus it is enough to show that NO(p) is

atomic (i. e. realises only isolated types). Let C E MO(p) be such that

tp(ë".}IO) = p and NO(p) is atomic over 1’10 u ë . It is enough to show that
MO u ë is atomic. 30 let b ~ M0 . I show that A ë) is isolated, in fact

that ë) is isolated. Let ëi’ for i  W , be a basis for p = P ~;
in hO . Then by superstability, there must be i  w such that ëi and b are

independent over a . Then clearly A b A ë.) = tp(a A b A ë) , y and

tp(a A b A Ci) is isolated, as it is realised in the prime model NO . So we fi-

nish.

Note. - An extension of the above proof shows that if p E S(r’T) and for some

ä E r.1 over which p is definable, p  a has an infinite basis in M , then for

all ä E M over which p is definable ä has an infinite basis in M .

COROLLARY IV. 3. - Let ip. ; i  n (0)} be a set of pairwise orthogonal

strongly regular types over such that for each i there is äi such

that p. is definable over ,MO) is infinite. For each

i  03BA , let J. be an independent set of realisations of p. over M0 , such

that Then M0(Uin Ji) = M0 .
Proof. - It is easy, using IV.2, induction aid fact 1.6, to show that NO(JO) is

isomorphic to ~10 (let n  let l1i = general
= Then tp(c is the heir of p over Mn , and r-l n+ 1 == M0 .

So U is isomorphic to 1V10 ’ and is also easily see to be the same as
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M~(J~) ). Then it is easy to see that does not fork over 

and so we can repeat the process to get M~(J~)(J’ ) ~ M . Carry on~ and putting
M == M0 y and Nn+1 = Mn(Jn) , we see that Un Mn is isomorphic to M0 and is

the same as Ji) *
LEMMA IV.4. - Let {pi ; i  n} be pairwise orthogonal types over a model M ,

and let for each i  n , J. be a set of independent realisations of p. over

M .

Let N be prime over M Uin J.. Then for each i  n , J. is a basis for

p. in N .

Proof. - Consider J.. for example. Let us define N.  N for 1 ~ i ~ ~. y such

that M is prime over H u J. ~ and i $. 1 y is prime over 
and M. =Ui0 M. for 6 limit. Let M’ be M., . Let p10 be the heir of p..
over H. for i  n . Then it is easy to show by inductiony using the orthogona-

lity of p.. and the pj s and fact 1.6, that p.. !- pi0 for 1 i  n . Thus

J.. U is a basis for p.. U in N if~ and only 1~ is a basis for p.. u in N y

and clearly J~ is an independent set of realisations of p~ over h’ in N .

By III.8 for example, N is prime over M’ u and so J.. is easily seen to

be a basis for p.. in N . So the lemma is proved.

LEMMA IV. 5. - Let p e be strongly regular, where tp(a) is isolated, and

for some copy of M which contains ~ ~ M..) == 0 . Let A be any coun-

table set which is atomic over a ~ and let p~ be the nonforking extension of p

over A u ~ . Then p )- p’ .

Proof. - Let A be as given. Then A u a is an atomic countable set, and we can

find a copy the prime model M such that A ~ M . By isonorphism, p is not

realised in M0 . So by lemma II.11, for any c realising p y tp(c/M ) does

not fork over ~ ~ and thus tp(c/A ja) does not fork over a . So clearly p )- p~

We can now begin on the classification. First let  be the maximum number of

pairwise orthogonal strongly regular types over the prime model of T . 

call p. the number of dimensions of T ). Let p. for i   , be pairwise ortho-

gonal and strongly regular types over M0 y and a maximal such collection. Now let

N be any model. So M0  N , and (by l.l6y III.7 and remarks at the end of III)
N is prime over (in fact minimal over) U.~ I. where J. is a basis for

p. in N , and moreover (by 1.15) tp(Ui Ji/M0) is determined just by

03BBi ; o i  ) where 03BBi = )J.j . Conversely, given a sequence 03BBi ; i  ) of

cardinals~ there is a model N prime over J. where J. is an indepen-

dent set of realisations of p. y and thus by IV.4~ a basis for p. in N . So if

we are considering the models of T up to isomorphism over some fixed copy of the

prime model M (which we could do by for example adding names for the elements
of to the langage, and replacing T by in this new language) , then
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the models would correspond exactly to the possible sequences of cardinals

B’ Ai; ; i  p) . :However in the general case, one model might contain different .. -

copies of and correspond to different sequences of cardinals. So we have to

be more careful in the clloices of the p. , and use some material developed in this1.

section and section III. This we proceed to do, summing up the resul ts later on in

a theorem.

First let Ki ’ for i  p , be the equivalence classes (or non-rothogonality
classes) of strongly regular types over 1&#x3E;10 . iie choose, for each i  jJ" Pi EKi
and ä. E such that p. is definable over ä. , and also satisfying thel 1 1

following two conditions9 where a.(x, ä.) denotes p aj (so q. (x , .) is
J.. 1 1. 1. 1. 1.

over Ø) :

(i) dim(q.(x, a. ) , ,M0) is 0 or infinite (i. e. I( ) , for all i  p , and
i 1. V .0

(ii) j_f i : j   , then either tp(ä.) = tp(ä.) and q. (x , .) = q.(x , .) ,
~ l J 1. 1. 

_ 
1 J

or for no p E K. iS there ä e Mo such that p iS d,efinable over ä,- - J
tp(ä) = tp(ä.) and p ) ä = q. (x , ä) .

1. 1.

(note .that if the second disjunct of (ii) holds, then we also have that for E2.
p E K. is there ä E such that p is definable over a , tp(ä) = tp(ä.) and

p h ä 
1. 

= q. (x , ä) .) 
J

J

This is achieved quite easily. To get (i) for example, suppose p. 1. has been

chosen in 
_ 

K. , , and, for some ä E p. is definable over ä and

a , No) :;:: n  w . Let c 1 ’ ..., cn be a basi-s for Pi t a in MO ’
and ä. 1. = ä Â ’’-cl ’ ° ’ c ) . n ° Then clearly ä. , ~ rIa) = 0 . can

easily be obtained by defining the pi and äi inductively.

This having been done, l)ick: some particular i   , and let us put
P :;:: Pi’ a:;:: ai ’ and q(x, ) = qi(x , yi) . For how many j  p , do we have
tp(1.) = tp(ä) and q.(x , .) = q(x, ) (and thus p. aj = q(x, ä.))? IJ J J J J J
assert that there can be only finitely -many such j . For if not, then there is in-

finite J « w , such that the types [q(x, a.); j E J j are pairwise orthogonal,
and tp(ä.) = tp(ä) for all j E J . Thus (see background at the beginning of sec-

is j2 in J such that ° But by 
this co:ntradicts the orthogonality of q(x, aj ) and. q(x , a. ) . (Remember
q(x , a) is strongly regular). Thus there are only finitely many such j .

’Thus by renumbering the q. and renaming the p. and ä. , we have:
1. 1. 1.

LEMMA IV.6. - There is i-1’ R0 , and for each i  t-1’ , some finite n. , and
u .1.----

q(x , .) ø , and for each i  p’ and j  n. , types pi over Mo and

tuples Xl in M0 such that 

- 1. ].--

(i) [p/ ; i  ’ , j  n, j is a maximal collection of pairwise orthogonal1 1

strongly regular types over t&#x3E;io .
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(ii) pi is definable over aX ,1 1

Proof. - Suppose that there are a and a in N as described, and we get a

contradiction. Let M0 be some copy of the prime model in N . Now both r. and

ri are isolated types, and so it is easy to find a’1 and a’ in M0 such that
= and = Thus by III.2, qi (x , a’1) is 

lent to q. 3-~ (x ~ ä1) , y and q. 3./-~ (x ~ a’) ~- 
~~ 

is equivalent to q. 0 (x y ~2) . But then
q. 1 (X , is equivalent to q. 

’ 
which contradicts lemma IV.6 (v).

Now we go through the cases depending on the number of dimensions.

Case is finite. So also ~’ is finite. Let A = i  ~ ~ j  n.~

and let q. be the nonforling extension of q.(x y ai) over A. Let A, for

i  y1’ and j  n. be cardinals chosen arbitrarily subject to the proviso that

’I ’ °b if aji) , M0) = kt . Let A(03BBji ; i  ’ , j  denote

the model prime over A i  ’ , j  n. ) where Ii is an independent
set of realisations of q? over A of cardinality 03BBji . Note that A(X) (where
- A. = i  ’, j  ni» is well defined by 1. 15 and uniqueness of prime mo-
dels.

Observation IV.8.

Proof.

(I) Let 1’1 be prime over M0 u U (X/ j i  ’ , j  n. J where X/ is an inde-
. :1. 

pendent Set Of realisations Of Pl Over Mo Of cardinality 03BBji . Then

dim(pji , h) = Ai ’ by lemma IV.4. It is easily seen that I..I is isomorphic (over
A ) lh A(A) , that (by II.11 and choice of p/ and a/ ) that
.. , i :1.

I&#x3E;I) = xi .
J. :1. 

~ 
,

(ii) %ie use (ï). First suppose that dim(qi (x , Zj) , ?.io) = 0 . Then as tP(A5£)
is isolated, we have by IV.5 that qi(x , a/ ) ) - q/ , and thus

~ J. :1.
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Secondly, suppose that dim(qi (x , äf) ,NO) iS infinite. Then so must be 
.

dim(q. (x , aji) , A(A» . But only finitely many members of a basis for q. (x , Z?)
l i . i 1

in A( A) can be made to fork by A - a£ (remember that A is finite at the mo-
ment). Thus clearly aji) , A(K)) = A(X)) = Af .

Conversely we know’ that any model N of T can be written as (I, e. is iso-

morphic to) A(03BBji ; i  ’ , j  n. » , where Ai must be infini te if
. 1. 1 1

( x , ai) , is infinite (by I . 1 6 , and remarks at the end o f sec-

tion III). It is also clear that I ArÃ) I = max({03BBji ; i  f.!. t, j  ni j u U’b}) .
When is A( A) == A(X*’) .

I (i). -  = 1 . So B.1’= 1 , and nO 
= 1 . Also A = a-00 . Let us 

äg as ä and o) as q(x ) . Now suppose that II = a( X) == a(03BB*) .
Then there is a" E]B1, = tp(ä) , and JII = a’«À.") . So dim(q(x, ä),M)=À.,

.... -’(" 

.

and dim(q(x, a") , M) = X" (by IV.8 (ii)). But as  = 1 , we must have that

q(x ""ä) and q(x , a*) are equivalent, but then bir lemma IV.1, we have that

A = 03BB* . So we have °°1°(iU) -= a(03BB*) if, and only if, A = 03BB* . Thus in this case

If dim(q(x , ä) , M~) =0 , then
(as all finite dimensions can occur),

if ä) , is infinite, then

Case I &#x3E; 1 (but still- finite).

Let p denote ji ; i  ’ , j  n. &#x3E; (no conn.ection with  , the number of

dimension). Suppose that N = A(X) == A( p1) . i Thus there is A’ in F wi th

= tp(A) , and 1I = A*( ) . Denote by ai" the copy of ai in A" . Then
.~ 

1. 1.

{qi(x , ai) ; i  ’ , j ni} is a of pairwise orthogonal strongly regular
types, and by IV.8 (ii), a-ji*) , MO) = ji . So as the I%) are

a ma.ximal collection of pairwise orthogonal strongly regular types, and by lemma

IV.7, there is cr such that for each i  ’ , a(i, -) is a permutation of n.
and q. (x , is equivalent to q. ’x , ao(i,j)i). Thus b;T lemma IV.1, 

. j(..) 1. 1 1.

= &#x3E;’1 . i 
]., J 

o Thus A( K) a A( p) implies that  = ú(Ã) , where (j i s a permuta-

tion of the sequence A (11.8 the number of dimensions is finite, there can only be

finitely many such permutations).

Case 1 (ii) (a) . - For some i  fl.’, j  n. , ä?) , = 0 . Then

all cardinals (including finite ones) are possible for Thus the number of
. 1.

sequences of cardinals  I.{, , i  ’ , j  n. &#x3E; at least one member of
cY 1. 1.

which is 11 
u 

, is |03B1| + R0 . (Note that in this case IA(X)I = 11 
G 

.) But by the
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above there can be only finitely many other sequences ~ giving rise to the same

model, and thus we have

Case 1 (ii) (b). - For all i ~ , j n. , ~) , 14~) ==~ . But
then the countable models of T are just models isomorphic to A(~~ y .and thus
T is R0-categoricaly i.e. I(R0 , y T) == 1 . Now suppose :, that A(X) = A( ) as

above and thus that there is A ~ N = A(~) y with N = A (~) y and o with

qj(x , a-j*j) equivalent to qj(x , a(i,j)) . Then as T is R0-categorical, all
13- 13-.~ 
types are isolated, and thus tp(A A ) is realised in every model of T . Clearly

the fact that a-ji) is equivalent of y a-ji’), say, depends only on
" 

we let G denote the group of permutations a induced

as above, and clearly A(03BB) ~ A( ) ify and only ify there is o’ e G with

= (~) . By our case hypothesis~ only infinite values are possible for the
Let us denote by (j~ + the number of sequences of length ~ of ordi-

nals  ~ ~ at least one of which is Thus it is clear that

Case 20 - 1.1 = R0 , and so ’ is also R0 .
Let me .denote by M0(03BBji)i,j the model prime over n i  ’, j  nii

where Ii is an independent set of realisations of p. over B;!e know that
.1.- 

- 1.. .

any Ki can occur. I first want to observe that if dim(q. (x , aji) , 1-10) = 
,.

1.. . 1. 1. u

then we can assume that 03BB is alvvays 0 or uncountable.
1.

Proof. - Easy using IV.3 and IV.5.

Thus the models of T are all of the form where 03BBji can be anything,

if dim(q.(x , a?) , M0) = 0 , and is 0 or uncountable otherwise. Moreover, it

is easy to see, using 11.11 and IV.5, that d:i.m(q. (x , a’) , M0(03BB)) = 03BBji , if
djun(q.(x y aji) , MO) = 0 , and = R0 + 03BBji otherwise. It is also clear by IV.4,

that dim(pji , y MO(X)) = 03BBji . Thus, as in case 1, it follows that if

M0( ) , then there is o such that for i  ’ , and j  n. ,

a(i , j)  n. , and for all i, , j , ji = ^03C3(i,j)i . But ’ is infinite, and if
i 
1  i2  R0 , we can vary and (j 1 ’ j2 arbitrary), to get different

models. Thus it is clear that /..’ 11. , where ni = I"j + R0 ; if
dim(q.(x , a.) , MO) = 0 , and ni = |03B1| + 1 otherwise.

Thus we have proved:
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THEOREM IV .10. - Let T be non-multidimensional 03C9-stable. Let r(t{ , T) de-

note the number of models of T of power R up to isomorphism. Then there is~ « ... - m 
-.... 

,-.. , ... -....- - ~

&#x3E; g is called the number of dimensions of T , such that: 1

1° if m = 1 , then I(11 , T) = 1 for all 03B1 &#x3E; 0 ,and I("( , T) = 1 or R0 .- - o -’0 - ~o

2° If  &#x3E; 1 but finite, then either I(R , T) = I’" + wi , for all G ) 0 ,- 
-~ G 

Or I(R0 , T) = 1 and there §s G a group of permutations of  such that for

x &#x3E; 0 1( sg , T) = (I" + ( )cu + 1| )* is the umber of sequences
of length  of ordinals § a at least one of which 03B1 , and

p. ; i  yA) ’Y. ; i  1-1&#x3E; if, and only if, P (.) 
= ’i for each i  j..1 , fori i -- 

 

01 1 -

some 0 G G .

A few final comments ; It can be shown fairly easily that if T is ( unstable)
and mul tidimensional, then for a &#x3E; 0, 1(1% , T)  2|03B1| . Thus there is some
content to the multidmensional/non-multidimensional dichotomy.

SHELAE has classified in a similar manner as above the Fa -saturated models of
a superstable non-multidimensional theory. 

’ 

lg

The main result in this paper, and the main notions employed are due to S.

SIIELAH, "appearing" in [5]. The bulk of our section I parallels the development of
the material in LASCAR [3] (sections 2 and 3). The important proposition 11I.5 is
due to BOUSCAREN and LASCAR [1]. Some results on the spectrum were also obtained
by LACHLAN [2].
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