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THE IHODELS OF A NON-MULTIDI!E ISIOWAL w-3UwABLE TIFORY

by Anand PILIAY ()

[University of Manchester ]

I give a (self-contained) account of the classification of the models of a non-
multidimensional w-stable theory. This result is the generalisation of the Béldwin—
Lachlan-horley classification of the models of an grcategorical theory, and inclules
of course the possible spectra that can occur. (Remember that the spectrum of a
theory T 1is given by the function 1(- , T) , where for # a cardinal, I(n, T)
is the number of models of T of power #“ , up to isomorphism.) The crude idea is
that, instead of a model of T being deter.iined by the cardinalfty of one indiscer-
nible set (as when T is b%—categorical), a model of T is now determined by the
cardinalities of each member of a fixed "independent" family of indiscernible sets.

I assume the basic facts about stability, forking, definability, rank, etc., which

can be found in [4] or even [5].

T will be a countable complete w-stable theory. The w-stability of T furnishes

us with several nice properties. The most important of these will be :

(i) for any subset A of amodel M of T , therec is a (real) prime model of
Th(ii , a) , a €4,

(ii) if M |=T and pE S(M) then there is a finite A < If such that p 1is
9

definable over A (thus p does not fork over A and p r A is stationary),
(iii) all types over arbitrary subsets are ranked by liorley rank.

I will also follow the usual practice of working in a large sufficiently saturated
model of T .

I. Strongly regular types.

3trongly regular types are generalisations of types of lorley rank 1 , degree 1 .
If p € 5(M) , I denote by M(p) , the model which is prime over MU {a} , where
tp(3/li) = p . This model might also be denoted by I(a) , and is unique up to M-

isomorphism.

Definition l.1. — Let p € Sl(ﬁ) , p not algebraic and ¢(x) € p (v might coun-
tain parameters from 1) . The pair (p , ¢) is said to be strongly regular if whe-

never beli(p) , béM and M(p) |=¢(b) , then +p(b/ii) =p . p is said to be
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strongly regular if there is ¢ € p such that (p , @) is strongly regular.

LEHuA 1.2, - Suppose that p and qe S(ii) , p is strongly regular and q is

realised in M(p) « Then p is realised in M(q) , (We assune g is not algebraic).

Proof. - Suppose that (p , 9) is strongly regular. Let a realise p , and
b e M(a) such that b realises q . It is clear that a and Db are note indepen-
dant over M (b€& M) ,Thus there is a formula «(x , y) over M such that
M(a) j=w(a, b), but li(a) ==«(m , B) for all m el . Note that
" 9(x) Au(x, ) " is consistent. Now HN(q) = M(b) <1i(a) , and 1let c € 1(b) such
that H(b) k= 9(c) Aw(c , b) . Then cd i, ce M(a) and H(a) |=o(c) . Thus

tp(c/i) = p , and so p is realised in M(q) .

Definition 1.3. = Let p and q be strongly regular tvpes over I such that ¢

is realised in M(p) . Then we say that p and q are equivalent, p ~q .

(By lcuma 1.2, this definition makes sense).

The next lemma shows that "enough" strongly recgular types exist.

LE:bA 1.4, - Suppose that M <N , the L(M) formula o(x) is "augmented" in

N, and a is chosen in @N - M such that tp(a/M) has least possible Morley rank.

Then tp(a/M) is strongly regular.

Proof. - (Let R(-) denote iiorley rank). Let R(tp(a/ll)) =« , and pick L(11)-
formula 4(x) such that |- y(x) —=> o(x) , N |==y(a) and R(,(x)) =« , and
degree (y(x)) =1 . Now M(a) <N , and so it is clear that (tp(a/ii) , ¥) is
strongly regular.

Definition 1.5. — Let p(x) and q(&) be tvpes over M . p and q are said
to be perpendicular (p Lq) if p(E) U q(§) deteruines a complete x * § type

over M .

Note. - If p(x) and q(?) are types over a model i, then p i+ q if, and
only if, whenever a and b realise p and q vrespectively, then a and b

T

are independent over M .

Fact 1.6, — Let a and b be independent over M ., Let A he a atomic over

M ui{aj and B atomic over M U {b} . Then A and B are independent over N .

Now the »roof of lemma 1.2 actually implies that if tp(a/M) is strongly regular
and b ed(a) - N , then tp(a/tiv {b}) is isolated. A simple consequence of this
and fact 1.6 is the following :

Obscrvation 1.7. - Let Py s Pyy 4 » 9, be all strongly regular types over N

such that P, ~ P, and a; ~a, - Then P, + 4y if, and only if, Py L, -

2

PROPOSITION 1.8. — Let p and q be strongly regular types over M , Then p

and q are perpendicular if, and only if, p and q are not equivalent.
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Proof. - It is clear that if p and q are cquivalent then they are not perpen-
dicular. Conversely, assume that p and g are not equivalcent. e wish to show
that they are perpendicular. By 1.7, we can assune that R(p) =« is minimal among
strongly regular tvpes over M equivalent to p , and siuilarly for g , with
R(q) = 8 « So we can find formulae w(x) and y(x) , both of degree 1 , and of
rank « and s respectively, such that (p , ®) and (q , §) are strongly regu-
lar. Suppose (without loss) that « <8 « Now if p and g are not perpendicular,
then there are realisations a and b of p and q respectively, such that a
and b are not independent over Il . As in the proof of 1.2, if follows that p(x)

is ”au?mented" in M(b) (i, e. qp(b) - M is nonempty). By lemma 1.4, there is
()

ce
equivalent to q , and R(tp(c/M)) €« . If R(tp(c/il)) =« , then clearly

- M , such that tp(c/ii)s is strongly regular. Clearly, tp(c/¥) is

tp(c/ﬁ) = p , which contradicts the non-equivalence of p and q . On the other
hand, if R(tp(c/M)) <« , then we contradict the mininal clioice of R(qg) . Thus

the proposition is proved.

PROPOSITION 1.9, — Let M <M' , pE€ Sl(ﬁ) and p' the nonforking extension

(or neir) of p over M' . Then p is strongly regular if, and only if, p' is

strongly regular.

Proof. - First suppose that p' is strongly regular. Then there is an L() for-
mla ¢(x) such that (p' , ¢) is strongly regular (Any L(M') formula o(x) € p!
such that degree () =1, and R(y) = R(p') will suffice. But p < p' , and
R(p) = R(p') . Thus ¢ can be chosen over M ). We show that (p , ¢) is strongly
regular. Let a realise p' . So tp(a/M) =p, and H(p) = M(a) < H‘(a) . Let
bei(a), DN and b satisfy ¢ . Now b and a are not independent over I,
Thus b £ M' . But then tp(b/M') = p' (by strong regularity of (p' , ) .) Thus
tp(b/N) =P « S0 (p , @) is strongly regular.

Conversely, suppose that @(x) €p, and (p , @) is strongly regular. Let a
realise p' . If (p', ®) is not strongly regular, then there is b in @M'(a)-M'
such that tp(b/M') # p . Now p' is definable by a schema d , over M (where a
also defines p ), and also a and b are not independent over M' . Thus there

are L-formulae y(y , z) and «(x , y, w), and ¢ and d in H' such that
mt(a) |= (2 y)(ely) A y(y , ) A —a(y)(Cc) A«la, vy, d),

where the formula w«(x y Y %) is not represented in p! (so neither in P ). But

tp(a/il') is the heir of tp(a/ll) . Thus we can find c¢' and d' in I such that
M(a) |= (2 y)(ely) Awly , ') A= a(y)(C') Aela, vy, d")) .

If we let b' be such a y in H(a) , then b' &M, H(a) |= 9(b') and
tp(b'/h) # p « This contradicts the fact that (p, v) is strongly regular, and

conpletes the proof.
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Definition 1.10. - Let A be a subset (of the big model), p € Sl(A) a statio-
nary type, and @(X) ep . We call (p ’ m) strongly regular if therec is a model
M countaining A and nonforking extension p' of p over M such that (p',@)
is strongly regular. Again p will be called strongly regular if there is @(x)
such that (p ’ @) is strongly regular.

Note. - If follows immcdiately from 1.9 that for p €S l(A) » P is strongly
regular if, and only if, for all M extending A and nonforking extension p! of

p to L, p' is strongly regular.

PROPOSITION 1.1ls - Let p and q be strongly regular types over M , and let

p' and q' be their respective heirs over ' < ., Then p L q if, and only if,

p' Lq' .

Proof. — Suppose that p dans q are not werpendicular. Then there are reali-
sations a and b of p and q resoectively, such that a and b are not in~
dependent over M ., Let a' * b' realise the heir of tp(a “ b/M) over M!' ., Then
tp(at/u') = p* , tp(p'/r)
Thus p' £ q' .

I

q' , and a' and b' are not independent over M! ,

Conversely, suppose that p and q are perpendicular. We may again suppose that
P and q are chosen with minimal rank in their equivalence classes. So we have
(p, 9) strongly regular, with R(p) = R(p) =« , and (q , ¥) strongly reguler,
with R(q) = R(y) = B, and suppose « £8.+9% (p', 9) and (q', y) are
strongly regular. If p' and q' are not perpendicular, then again if follows
that @(X) is augmented in ¥'(q') . As q' is the heir of q, it is easy to
prove that ¢(x) is augmented in M(q) y but this will again contradict the mini-

mal choice of R(q) . So the proposition is proved.

By propositions 1.8 and 1.11, we have :

COROLLARY 1,12, -~ Let p and g be strongly regular types over M , and M < M! ,

and p' , q' the heirs of p and q over M' , Then p ~g if, and only if,

pl qu .

Definition 1.13. -~ Let p(g) and q(§) be in S(A) , where A is an arbitrary
subset. Then p and q are said to be orthogonal if for all B 2 A and nonfor-
king cxtensions p' and q' of p and q over B, p'(x)uy q'(}) determines a

complete type over B .

PROPOSITION 1.14. — Let p and q be strongly regular types over A . Then the

following are equivalent :

(i) p and q are orthogonal,

-

(ii) for some M > A, (M amodel), and nonforking extensions p' , q' of p,

qQ over M, p!' and q' are perpendicular.
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Proof., - By proposition 1.11.

i

Notes - It was shown in [3] that if p and q are any types over M , and p',
q' ‘their heirs over some k' > M , then p L q if, and only if, p' L q' . It
follows that proposition 1.14 holds without the hypothesis that p and q are

strongly regular. However 1.14 in its present form will suffice for our needs.

Given strongly regular types p and q over A, we will call p and q equi-

valent if they are not orthogonal. By 1.8 and 1.14, this is consistent with def. 1.3.

I complete this section with a couple of observations which will be of use later

on,

Likih 1415, = Let {pi ; 1 €I} be aset of stationary pairwise orthogonal types

over A . For each i€ I, let {53 s J < Yij be an independent set of realisa-

sions of p, over A . Then {53 ; ieI, j< rij is independent over A .

Proof. - It suffices to show that if 51 , & y 8y is independent over A ,

2 ’ LN
and tp(b/A) and tp(ai/A) are orthogonal for i =1, ... , n, then
{al , 52 y see En , b} is independent over A . This we show bv induction. So

suppose that we already have {51 y eee , & b is independent over A , where

™ ?
r <n . Thus tp(ﬁ/tal ) ees Erj uA) does not fork over A , and we know anyway
that tp(£r+l/{51 y eeo Er} u A) does not fork over A . Thus by the orthogona-
lity of tp(b/A) and tp(ar+1/A) , ar+}

a

A LJ{al y eee ar} . Thus 151 y cee

and b are independent over

e 5r+1 , b} is independent over 4 .

LEMiA 1.164 = Let M be a model, and {pi ; 1 €I} a maximal collection of

pairwise orthogonal strongly regular types over M . Let A €M be such that each

P, is definable over A , and for each i eI , let {a? s J < Yij be a maximal

independent set of realisations of P, P A in M . Then J = iag ; 1 el j<Yij

is independent over A , and moreover ! is minimal over A u J .

Proof. - By 1.14, the types P; r A are strongly regular and pairwise orthogonal.
Thus the independence of J over A follows by 1.15.

Suppose that M were not winimal over A yJ . Then there would be a model N
such that AU J SN ZM . By 1.4, we can find a € M - N such that tp(a/N) is
strongly regular. Let p = tp(a/N) , and let p' be the heir of p over M . So
p' 1is strongly regular (1.9), and by the choice of the p; 8 there is s €1
such that p' and p, are not orthogonal. But 1 does not fork over N , and
SO pg P N is strongly regular and not orthogonal to p (by prop. 1.9 and prop.
1.11). Thus Py P N and p are equivalent, and so Py r N is recalised in N(a) ,
where we can assume that N(a) <M. Let ce N(a) realise Py P N . Then, as
P, P N does not fork over A , if follows that ¢ and {a? s g < rsj are indepen-
dent over A . But this contradicts the maximal choice of the independent set

{a? s J < {Sj of realisations of Py P A in M . So the lemma is proved.
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II. Dimension.

Let . be amodel, ASM and pe S(A) . A set I of tuples from M will be
called a basis for p in M , if I is a set of realisations of p in M , inde-
pendent over A , and maximal such (Note that if P is stationary, then I is

also indiscernible over A ).

PROPOSITION II.1. - Suppose that p < S(4) , ASH and p has some infinite

basis in I . Then all bases for P EE. M have the same cardinality.

Proof. - If not, then it is clear that there arc bases I and J of p in M
with J infinite and |I| <|J| . 4s I is maximal, for each ¢ e J ,
tp(E/I U4) forks over A . So there is some finite IE ul such that
tp(B/IE u A) forks over A .

30 by the cardinality difference, there is finite I' €I and En € J for n<w,
such that tp(En/I‘ U A) forks over A , for each n < w . But then, as the c£ E}
are independent over A , we have for each n < w , tp(3n+l/{50,...,5n} ul'yA)

forks over A EJ{EO y see En} , and thus tp(I‘/tEO gy vee 4 C j uA) forks

- 0 n’ %n+1
over tco s oo cnj U A . But this contradicts superstability.

Definition II.2. - If all bases of p in ¥ have the same cardinality, then we

define dim(p , M) to be this cardinality.

Note. — We will see later on that if p e 3S(4) is strongly regular and A <M ,

then dim(p , M) is always defined.

Let I ©be an infinite indiscernible set (maybe of tuples), and B an arbitrary
set. Recall that 4v(I/B) is defined as follows : for b € B, o(x, b) € av(I/B)
if, for cofinitely many ¢ in I , we have |=@(c, ) . Then Av(I/B) is a com-
plete and consistent type over B . lioreover, suppose that p is a stationary type
over A, and I is an infinite independent set of realisations of p over A
(so I is indiscernible over A ), and B 2 A . Then AV(I/B) is precisely p'

the nonforking extension of p over B,

LEMiA IT.3.

(i) Let I be an infinite indiscernible set over 4 , and I prime over A UI .

Then I is a maximal indiscernible set over A in M .

(ii) Let I u {c} Dbe an infinite indiscernible set over A , and let M be prime
over A ul . Then tp(c/A UI) |— av(T/H) .

(iii) Let p be a stationary type over A, and I an independent set of reali-

sations of p over A . Let Il be an infinite subset of I , and ¥ be prime

over A U I1 , and let p' denote the nonforking extension of p over M . Then

I- Il is an independent (over M ) set of realisations of p' .
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Proof.

(1) If I is not maximal indiscernible over A in T, extend it by ¢ in M .
Now tp(c/A [ I) 1is isolated by a fornula «(x ,a,d) , vhere a€ A and 4<I .
In particular, M |=«w(x, a, d) —=>x #c' forall c' €I (as o ¢ I ). But
Ml=a(c,a,d), Iules is indiscernible over A and T is infinite. Thus

we can find c¢' in I such that M |=w«(e', a, d) , and this is a contradiction.

(ii) I show that if I y{cj is indiscernible over A , then tp(c/H) = Av(I/M)
(where I is prime over A y I ). So let o(x , m) € Av(I/H) , where m e M . I
will show that this formula is satisfied by c¢ . Now tp(ﬁ/A ul) is isolated by
a formila (y , a, d) where a€ A and d ST . Now as o(x , m) is satisfied
by cofinitely many members of I , there is c' € I , c! ¢ 4' such that
i |=9(c', m) . Thus H |= v v(o(y , 2, @) - olc' , 7)) . But
tp(e * E/a) tp(e *~ 4/a) . So we have |= [ ;(@(5 , a , 5) - Q(c y })) , Whereby

|= 9(c , m) , and we finish.

(1iii) Let C; sy ese, ¢ bedin I -TI . Wemust show that Ci oy see , c s
an independent set of realisations of p' over I . Let pn denote
tp(cl Y eee ® cn/A) « Then I can be considered (by partitioning it into n-tuples)
as an independent set of realisations over A of pn . But then by (ii) and the re-
narks preceding this lemua, tp(c1 Y ees ” cn/M) does not fork over A , and this

is just what we want.

LEiIA IT.4,

(i) Let p and q Dbe equivalent strongly regular types over a model M , and

let N>M . If I is a basis of p in N , then there is a hasis J of ¢ in
N with |I] <]dJ] .

(ii) Let and be equivalent strongly regular types over a set A and let
D q g D ’

N=>4.If p has an infinite basis in N , then so does q ,.and moreover

dim(p , M) = din(q , 1) .

Proof.

(i) Let I ©be a basis of p in N, and write I as iaa 3 « < #nj; , Define
models Dtl in N for « <# , and elements hz for o <~ , as follows : MO=M ’
., = i (a ), and iy =U B . Clearly tp(aa/Mq) is the heir of p over I
and so strongly regular and equivalent to &, s the heir of c¢ over &y (by 1.12).
Thus c, is realised in Ma+1 , and let ba be such a realisation. By fact 1.6,
{Rw ; « <n} 1is an independent set of realisations of q over M , and so can be

extended to a maximal such set in N .

(i) It is enough by II.1 and symmetry to show that if p has an infinite basis
I in N, then g has a basis J in N with [I| <|J| . So let I be an infi-
nite basis of p in N . Partition I as I, u I2 y where I is infinite and

1 1
]II = lIzl . Let ' be an elementary substructure of N which is prime over
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Ay Il . Let p!' be the nonforking extension of p over 1II' . Then by II.3 (iii),
12 is a basis of p! in N . But p' is strongly regular and equivalent to q' ,
the (strongly regular) nonforking extension of q over M' . So by (i) there is a
basis J!' of q' in N, with |J'| 3 |I2l = |I] . But J' is clearly an inde-
pendent sct of realisations of q in N and so can be extended to a basis J of

q in N , and clearly lII §1|J| .

Let p be a stationary type over A , and let 51 , 52 y soe o an an indepen-
dent set of realisations of p over A . Then I will denote tp(gl feee t En/A)

n
by p .

PROPOSITION II.5. - Let p and q be strongly regular types over a set A , and

- M, e
suppose that, for all n , m <w, pn(x) U q (y) determines a complete type over

A . Then p and g are orthogonal.

Proof. - So suppose that, for all n , m <w, pn(g) U q?(&) is couplete. It
follows that if I is an independent set of realisations of p over A, and J
is an independent set of realisations of q over A, then I and J are inde-
pendent over A . Now pick I and J as in the last sentence, and such that both
are infinite and |I| <|J| . Let M be prime over A UJ UI . I assert that I
is a basis for p in M . NWote first that I is indiscernible over A ;J . Now
if ¢ were a realisation of p in M such that I U {c} were independent over
A , then by our hypothesis, I LJ{c} and J would be independent over A , and
thus I ui{cj would be indiscernible over A U J , contradicting lemma II.> (i).
Thus I is a basis for p in I , and so dim(p , #) = |I] . But clearly
dim(q , ) > |J] »|1] . So by lemma II.4, p and g are not equivalent, that is,

p and q are orthogonal.

Note. - Proposition II.5 is actually true without the restriction that p and gq

be strongly regular (although we will not need this here). This fact, together with

lemmna 1.15 characterizes orthogonality for types over sets.

LENMA TI.6. -~ Let p € Sl(A) and (p, 9) strongly regular. Suppose that B=A

and that p!' and q are in Sl(B) , where p' 1is the nonforking extension of p

over B, q#p', and ¢ €q . Then p' and q are orthogonal.

gzggﬁ. - It is enough to prove this in the case where B is a model, say M, and
in this case it is enough to show that p' and q are perpendicular. So let a
and b be realizations of p' and q respectively. I show that a and b are
independent over I . Noﬁ as q # p' , there is some L(11) fornula ﬂ(x) such
that §(x) e ¢ but - ¥(x) € p . Suppose that «(x , y) is an L(M)-formula such
that |= «(b , a) . Thus |= (4 x)(o(x) A «(x, a)) . So

M(a) l: (ﬂ x)(@(x) A w(x) A u(x , a)) .
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Let ¢ e li(a) be such that l(a) |= ¢(c) A §(c) Aulc, a) . So ¢ satisfies
¢(x) but c¢ does not realise p' « Thus c € i (by strong regularity of (p' , ©))
Thus we have shown that tp(a/M U {bj) is the heir of p' , whereby a and b

are independent over WM .

If follows from lemma IL.6 that if p is strongly regular then p is regular
(,pe S(A) is said to be regular if whenever B ©® A, p' is the nonforking exten-
sion of p over B and q is a forking extension of p over B, then p' and
q are orthogonal). Now for regular types the "nonforking" notion of independence
on realisations of such types satisfies the familiar exchange principle. Namely :

let p €3(4) be regular, A <M , and let Ei , for i <n, and b realise p

in M , where {E 3 1 <ny is a basis for p in Ii . Let Em be the first
element such that tp(b/{a ; i <mj) forks over i1 . Then
{ao s ses am—l , b, a el an—l} is a basis for p in M . (This is a

simple consequence of regularity and the basis properties of forking). Thus we

have :

PROPOSITION II.7. — Let p e Sl(A) be strongly regular, and A <M ., Then all

bases for p in N have the same cardinality (and thus we can speak of dim(p , M))

PROPOSITION II.8. — Let p and q be equivalent strongly regular types over a
model M , and let N > 1 . Then dim(p , N) = dim(q , N) .

Proof. - By lemma II.4 and proposition II.8.

I recall the following :

Fact I1.9. - Let p € S(M) and @(E) € p. Then p does not fork over U qM o

LEMMA ITI.10. - Let p = Sl(A) , (p , ®) strongly regular, and A €M <N . Let

p' denote the nonforking extension of p over I . Let I1 be a basis for p in

M, and let 12 be an independent over M set of realisations of p' in N , and

finally let c€ N and tp(c/Il v I,
over Il U I2 U AL . Then tp(c/12 Ui) does not fork over A (and thus 12 U {c!

U A) is the nonforking extension of p

is an independent set of realisations of p' in N , over M .)

Proof. - It is enough to show that tp({cj ul ﬂl) does not fork over A . By
fact II1.9, it is enough to show that tp(tes u I /@ U A) does not fork over A .
Now, by hypothesis, tp(I /@ U A) does not fork over A , and thus it suffices
to prove that tp(c/I U $ U A) does not fork over I u A . But I < qy , and
we know that tp(c/I2 U I1 UA) dves not Tork over I. UA . So thls leaves us

2
having to prove that

(+) tp(c/I2 k;qy'u A) does not fork over I2 U I1 Ul .
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- U B
Let d ¢ , and d E:pl s and suppose that we already know that

tp(c/I2 Ul v d U A) does not fork over I. u I, U . Now it is cleer that

2
tp(d/12 ul, udu &) # tp(c/I2 vI v d ua) (either tp(d/A) #p, or d and

Il are dependent over A ). But d satisfiecs @(x) . S0 by strong regularity of

(p, ¢) and lemma II.6, ¢ and d are independent over 12 uI1 uduA4 . Thus
tp(c/I2 U Il ud*qdu A) does not fork over I2 LJIl UA. So (#) is proved, and

so0 also the lemma.

PROPOSITION II.11. — Let p € S(4A) be strongly regular, A €M <N , and p!

the nonforking extension of p over M . Then dim(p , N) = aim(p , 1) + dim(p! , W)

Proof. - By lemma II.10, if I1 is a basis for p in M , and I2 is a basis

for p!' in N , then Il U 12 is a basis for p in N .

IIT. Non-multidimensional theories.

Definition III.1.

(1) Let M be a model of T . Then w(M) denotes the maximum number of pair-

wise orthogonal strongly regular types over M .

(i1) T will be said to be multidiuensional if for any A there is a model N

of T with p(i) = A . Otherwise T is said to be non-multidimensional.

I now give some background on material to come. Firstly, if 1 is a type over
a finite set a , then Py can be written in the form p(i . E) (so p(E , §) is
a type over § ). lioreover, if tp(a) = tp(b) , then p(x , b) is in S(b) , and-..
for exemple, p(E , 5) is strongly regular if, and only if, p(E ’ E) is strongly

regular.

Secondly, suppose that p e S(4) , and q € S(B) ( A and B subsets of the
big model). Then, because p and q are not types over the same set it does no%
nake immediate sense to speak of, for example, p and gq being orthogonal or not
orthogonal. However we can interpret this to mean that for some C which includes
A and B, any nonforling extensions of p and q over C are orthogonal (or
not orthogonal, as the case might be). (Ve assu.e p and q to be stationary).
Then by the results in section I, p and q will be orthogonal if, and only if,
for any C 2 A U B n the nonforking extensions of p and g over C are orthogo-

nal.

Finally, we assume familiarity with the notion of strong type (denoted stp ).
The important facts are the following assuming w-stability. If p eSn(A) , then
there is E € FEn(A) (that is, E(x ’ y) 1is an equivalence relation on n-~tuples,
definable over A , and with a finite number of classes), such that if a and b
realise p *then a and b have the same strong tvpe over A(stp(E/A) = stp(B/A))

if, and only if, |= E(a , b) . Also, if I is independent over A , and all
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elements of I have the same strong tyvpe over A , then I is indiscernible over
A . Moreover, if I and J are two such sets, and the elements of I and J
have the same type over A , then tp(I/A) = tp(J/a) . (In the cases in which we
shall be interested, A will be the empty set and so will be omitted. ) (a1s0
stp(a/A) = stp(E/B) implies .tp(E/A) = tp(B/A) .)

PROPOSITION III.2. — The following are equivalent (for the theory T ).

(i) Tor a1l M , u(M) <y o

(ii) T is non-multidimensional.

(iii) Iﬁ p(x , a) € 5(a) is strongly regular, and stp(a) = stp(®) , then

p(x , a) and p(x , ) are not orthogonal (that is equivalent).

PI‘OOf. -
(1) implies (ii) is imumediate.

(ii) ==> (iii) : Suppose that p(x , a) € S(a) is strongly regular,
stp(a) = stp(b) , but p(x , a) and p(x , b) are orthogonal. First we can assume
that a and b are independent (For if not, then choose c sugh that ¢ and
a2 ~ b are independent, and stp(c) = stp(a) = stp(b) . Then p(x, 2) and
p(x ’ c) are orthogonal). Let A Dbe any cardinal, and let {%a s « <A} be an

independent set of realisations of tp(a) , such that a. =a , &, = b , and, for

all o« <A, stp(;y) = stp(a) . So {%y s «w <\ is ingiscernibie, and, for

o <3 <A, p(x ’ %2) and p(x , EB) are orthogonal, (and strongly regular). Let
M be a model containing all the a, - For each « <\ , let P, be the nonforking
extension of p(x ’ %ﬂ) over M . Then the p, are pairwise orthogonal strongly

regular types over M , Thus T is multidimensional.

(1ii) => (1) : Let M be a model, and q € S(Il) strongly regular. There is
finite a in M such that g is definable over a.% p=g r a 1is strongly
regular, and q is the unique nouforking extension of p over M . Thus it suf-
fices to show that there are at most ﬁb pairwise orthogonal strongly regular
types over finite sets. Now there are only db many possible types of finite sets.
Moreover for any a , there are at most db types in Sl(é) . Also for any a
and strongly regular p(x , a) € Sl(a) , there can be only finitely many pairwise
orthogonal types of the form p(x , B) , where tp(g) = tp(a) (by (iii) and the

paragraph preceding this proposition). Thus we finish.

PROPOSITION III.3. — Let T ©be non-multidimensional and N a model of T . Then

there is a countable M <N , and a set J SN, J independent over M such that

N is minimal over Mu J .
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Proof. — By III.2, w(N) is countable. So we can find countable M <N such that
each of some maximal collection of pairwise orthogonal strongly regular tvpes over

N , is definable over M . Now use lemma 1.16.

T will be maid to be unidimensional if, for each I |= T, () =1 .

PROPOSITION III.4. - T is unidimensional if, and only if, T is « -categorical.

{.\1

Proof. ~ Suppose that T is not unidiuensional and let M be a model and p , q
orthogonal strongly regular types over M . Assume that p and q are chosen with
least possible lorley ranks in their respective equivalence classes, say R(p)a& ’
R(q) =3, o« <8, and (p, ¢) is strongly regular, where R(p) =« . As in the

proof of 1.8, o(m) is not augmented in M(q) , and this, as is well known contra-

dicts ;&-categoricity.

Conversely, suppose that T is unidir.ensional. Let MO be the prime model of T .
Then there is a strongly regular type p over MO . If N is any model of T,
then MO is elementarily embedded in N , and p' the heir of p over N , is

strongly regular, and so is essentially the only strongly regular type over N . So

N is prime over M. and a basis for p' in N . Such a basis is just a lMorley

0
sequence of p over M , and its type is determined. Thus if |Nli = |N2| = A> Ub ’
then Nl is prime over MO ul and N2 is prime over MO U J, where I and J
mist both have cardinality A , and have the same type over MO . S0 lef N2 .

PROPOSITION III.5. - Let T Dbe non-multidimensional, and p(x ; 5) a strongly

regular type in S(E) . Suppose that stp(%) = Stp(a) and M contains a and b.
Then dim(p(x , a) , M) = dim(p(x , ®) , M) .

Proof. - Suppose first that 2 and Db are independent (over ¢ ). Let Ml <M
be prime over 2 *D , and let Py s 9y be the nonforking extensions of p(x , a)
and p(x , b) over Ml . Now tp(a * ) = tp(b * a) , and thus
(Ml ’ a, E)iﬁ (Ml , b, 5) , whereby dim(p(x , a) , Ml) = dim(p(x , b) , Ml) . By
III.2, p, eand q; are equivalent, and thus dim(pl , M) = dim(ql , 1) . Thus by
II.11, aim(p(x ,a) , M) = dim(p(x , ®) , M) .

Now in the gen3ral case, let c be such that stp(c) = stp(a) = stp(b) , and ©
and a * b are independent (over ¢ ). Let H! = M(E) , and p' , q' the non-
forking extensions of p(x , a) and p(x y b) over M . Then
dim(p' , M') = dim(q' , N') (as p' and q' are steongly regular and equivalent),
and both these dimensions are finite (otherwise M' - M contains an infinite inde-
pendent set over M , each element of which is dependent on ¢ over M ; which

contradicts sunerstability). But by the first part of the proof,

dgin(p(x , ¢) , M') = dim(p(x , a) , U') = dim(p(x , b) , M),

and we know that



10-13
dim(p(x , a) , N') = dim(p(x , a) , M) + dim(p* , M')

and

din(p(x , ®) , ') = dim(p(x , B) , M) + dim(q' , ') (11.11) .

Thus dim(p(x , a) , M) = dim(p(x , ®) , M) , and we finish.

I now proceed to show that in the non-multidimensional case, all strongly regular
types can be taken as being definable over the prime model of T (and thus in pro—

position III.3, M can be taken to be MO the prime model of T ).

LEaMA III.6. - Let T Dbe non-multidimensional. Let M < M"%'N be models. Then
there is ¢ €N - M! , such that tp(c/M') is strongly regular, and tp(e/m)

does not fork over M .

Proof. - Choose c €N - H' such that tp(c/M) is of least possible korley rank.
Thus clearly there is a €M and o(x , a) € tp(c/li) , and for all
d € (g(x, a))N - ', tp(a/M) = tp(c/M) . Let us denote tp(c/i) by p . Now if
tp(c/M') does not fork over M (and so is the nonforking extension of p ), then
it is clear that (tp(c/M') , @) is strongly regular, and we finish. 3o let us

assuue that tp(c/M') forks over M , and we seek a contradiction. Now, as tp(c/M‘)

forks over 1i (by our assumption), R(tp(c/ii')) <R(p) . We can clearly assume
that c¢ has been chosen also to satisfy R(tp(c/M!')) being as small as possible
(among those x din N - M' for which tp(x/M) = p). So tp(c/ﬂ') is strongly re-
gular (I.4). Now let BO be chosen in M' such that tp(c/M‘) is definable over
BO , and let q(x , EO) denote tp(c/BO) . Thus q(x , %O) is strongly regular.

Now let b, be such that tp(Bl/M) = tp(BO/M) and BO and b

1 are independent

1
over M .

Thus stp(BO) = stp(%l) (this is easy), and so by III.2, q(x , D and

o)
a(x ’ Bl) are equivalent. Let g and 4, be the nonforking extensions

£, qlx, BO) and q(x , 51) respectively over M u {%0 ’ 51} . (So in particular
g P i L}BO = tp(e/M U BO) .) So q, and g, are strongly regular types over the
same set which are not orthogonal. Thus by II.5, there are n , m <w such that
qg(g) LJqT(§) is not a complete type over M u {B ’ Sl} . Thus (as 4 and 4
are stationary), there are Cig wee s Cp indenendent realisations of 4y over
My {b, , Elj , and A, e, d ~ independent realisations of g, over NU{BO,Bl}
such that {cl y eee cn} and {dl g eee dmj are not independent over

M u b, , El} . By minimalising m , we can assume that {cl , ees Cn} and

{dl y ees dm—l} are independent over M u {b
(;r‘zl y ees s cn) by ¢ and {d

o * Bl} . Let us denote

L oeer s 4 ) by d . 4 assert that

(#) 50 ~ ¢ and Bl ~ d are independent over 1 .
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First note that tp(d/% U b U M) does not fork over bl U i, and that
tp(% /b u M) does not fork over M . Thus tp( ~ d/% U M) does not fork over

M , and so
(1) tp(%o/Bl ~d uM) does not fork over U .

Also tp(E'/BO U Bl A du M) does not fork over M U BO . This together with (i)
yields tp(go - 6'/51 ~d uM) does not fork over M , which means (*)

Noﬁf alsg Fhat tp(cn/tcl gy see o cn—lj ud u bO k;bl lJM) does not fork over
M L,{bo y bl} , but that

(+%) tp(cn/tcl yoeee y e budtd udby ub, uM) does not fork over M u iby,b

Now tp(on/N L)BO) = tp(c/M U BO) . S50 we can assume that c,=2¢ (Leave BO
fixed oub shift around the other ¢ 's , the di 's and Bl so as to preserve

the type of everything over M ), let us denote dnl bv d . So
tp(d * Bl/M) = tp(e * EO/M) , whereby tp(d/M) =p , and tp(a/it u Bl) forks

over M , and so there is finite 4 < L such that

(uwag R(tp(d/M Bl) y O, 2) < R(p y Oy 2) =1 .

Let us now sum up the information obtained ; denoting now (cl y ese 4 C —l> by

¢ , and as before Cdy sy ooy dm-1> by d .

(a) ¢ and ¢ are indenendent over M u b. .

0
(b) BO “c*c and Bl ~ d are indevendent over 1I (by (#)).
(c) There is a formula ¥(x , z) and e &M such that |= x(c,d“a“g“go“ﬁl‘g) ,

but x(x ’ E) is not in bound (tp(c/Bo)) (and S0 A(x y E) is not represented

in tp(e/ui') ) (vy (*7)).

() Phere is an L(M) formula ¢(x , w) such that d satisfies ¢(x ,
RG,(x, b)), w, 2) <2 (b (m65)),

bl) and

@emember for any type q and finite o <L , there is finite subtype of gq ,
say q' such that R(q y O, 2) = R(q' , A, 2) )

Remember that d also satisfies the formula @(x , a) . Thus by (c) and (a), we

have

|= (2 ¥)(oly , a) A x(c, y°a"c"By* b ") A y(y , b)) "R(y(x, b)) , 6, 2) <r") .

l 1

By (b) we can find Bi and d' in H such that

'), o, 2) <zr"),

= (ﬁ y)(@(y , 5) A x(c ’ y“a"E“EO“Bi“E) A w(y y Ei) A "R(w(x » bg

Now by (a) and the fact that tp(c/M') 4is definable over N y BO , we can find

c!'® ' such that
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N |= (ay)(¢ly , ) Aflc, ¥ a"E“BO“Bl‘E) A y(y Bi) A "R(y(x , Ei) , L, 2) <zr").

Pick a €N to be such a y as given above. First note that a¢ MN! , for if
not then (x , z) would be represented in tp(c/ﬂ') , contradicting (c). Thus as
a satisfies @(x , a) , we must have tp(aﬁi) =p (by choice of P and ¢(X , 5)).
But now, as a satisfies y(x , Ei) and R(y(x , Bi) y 0,2 <r=R(p, a, 2),

we must have that +tp(a/M) # p . This contradiction proves the lemma.

PROPOSITION III.7. - Let M <If* be models of T , where T is non-multidimen-

sional, and let p € S(M') be strongly regular. Then there is ¢ GES(M‘) , such

that q is strongly regular, q is equivalent of p, and q does not fork over
M.

Proof. — Lemma III.6 gives us c¢ in H'(p) - }' such that tp(c/M') is strong-

ly regular, and does not fork over M . Clearly tp(ec M') is equivalent to P o

COROLLARY III.8. — Let T be non-multidimensional. Let I be a model, A a

set, and N prime over Mu A . Then N is minimal over M U A .

Proof. - If not, there is model k' such that M u A €' A N . Lemma III.6 gives
us c € N - M' such that +tp(c/li') does not fork over M . But tp(c/M) is not
isolated, and tp(c/M U A) is isolated, whereby tp(e/M U A) forks over M , and

so tp(e/M') forks over M . Contradiction.

Let me now state a few obvious things. Let us assuwe T to be non-multidimensio-

0
collection of pairwise orthogonal strongly regular tpes over M

nal, and let M, be the prime model of T . Let {pi s 1 <ug Rb} be a maximal
o ° Let N be any
model of T . So MO is elementarily embedded in N , and let pi for i <y,

be the heirs of the p, over N . Then {p{ ; 1 <uf 1is a maximal collection of
pairwise orthogonal strongly regular types over N . For choose strongly regular

c €5(N) . By IITI.7, q is equivalent of q € S(N) , where p is strongly regular
and does not fork over MO « But there is i < such that p r‘MO is equivalent
to 1 and so p is equivalent to p{ y, and so q is equivalant to p{ .

IV, The spec trum.

In this section T will be assumed to be non-multidimensional, and . will

0
denote the prime model of T .
First, some more preliminary results.
LBiiA IV.l. - Let 14+ be a model, ael , p(x, a) e 3(a) be strongly regular,

and tp(a) isolated. Suppose that b el , tp(b) = tp(a) and p(x , b) is equi-
valent to p(x , a) . Then dim(p(x , a) , M) = dim(p(x , B) , M) .

Proof. — Let M, < be a copy of the prime model such that a € I

0 « It is easy

0
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to find G e M, such that stp(c) = stp(b) . By III.2, p(x, b) and p(x, <)
are equivalent. Thus p(x , a) and p(x , C) are equivalent. Let Py and P,

be the nonforking extensions of p(x . E) and p(x , c) over MO « S0 10 and
p, are equivalent and strongly regular, and thus by II1.8, dim(pl , M) = dim(pZ,M).
But it is clear that (M, , a) = (1, , ¢) , and so dim(p(x,E),MO)=dﬂm(p(x,3),MO).

Thus by II.11, we have

dim(p(x , a) , 1) = dim(p(x , ¢) , M) .

1

But by III.S5,

dim(p(x , ¢) , M) = dim(p(x , b) , M) ,

and so we have

dim(p(x , 5) , M) dim(p(x , B) ’ M) ’

Il

as desired.

LEH#MA IV.2. {which does not need non-mul tidimensionality). - Let p € S(MO) sy P
(thus

definable over a € My, P, =D Ma, and p, has an infinite basis in K
d.lm(pl , MO) = {.% ). Then Mo(p) = N

0
O .

Proof. - Mo(p) is countable, and thus it is enough to show that Mo(p) is
atomic (i. e. realises only isolated tvpes). Let c e Mo(p) be such that

tp(E/MO) = p and Mo(p) is atomic over M, c . It is enough to show that

0
M, Uuc is atomic. 30 let b €M, . I show that tp(b * ¢) is isolated, in fact

tgat tp(a b ~¢c) is isolated? Let Ei » for i <w, be a basis for p, =p Ma
in ho . Then by superstability, there must be i < w such that s and b are
independent over a . Then clearly tp(a *~ b Ei) =tp(a*b"¢c), and
tp(a ~ b 4 Ei) is isolated, as it is realised in the prime model NO . 30 we fi-
nish.

Notes — An extension of the above proof shows that if p € S(M) and for some
a ¢M over which p is definable, p P‘E has an infinite basis in & , then for

all a €M over which p 1is definable »p P a has an infinite basis in M .

COROLLARY IV. 3. - Let {pi ; i <n (g Nb)} be a set of pairwise orthogonal

strongly regular types over MO , such that for each i there is Ei € MO such

that p, 1is definable over Ei , and dim(pi p Ei , MO) is infinite. For each

s such

i<u, let Ji be an independent set of realisations of Py over M

that lJil.s w . Then MO(\Ji<M Ji).: My .

0

Proof. = It is easy, using IV.2, induction a:d fact 1.6, to show that MO(JC) is
isomorphic to MO (1et Jb = {cn ; n <Af, let Hl = MO(CO) , and in general
‘ = N . T 1 i i £ er 1 1 =M .
Mn+l Hn(cn) Then tp(cn/hn) is the heir o Py over Mn , and Mn+1 PO

So LJn<f Mn is isomorphic to Mo , and is also easily see to be the same as
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MO(JO) )o Then it is easy to see that tp(Jl/MO(JO)) does not fork over M, ,
and so we can repeat the process to get MO(Jb)(Jl) ESMO . Carry on, and putting
-0 , n+1
b = MO y and M

the same as MO(U‘ch Ji) .

el Mmoo . . .
=M (Jn) , we see that LL<A M™ is isomorphic to M. and is

0

LEMIA IV.4. - Let {pi ; i <#} be pairwise orthogonal tvpes over a model N ,
and let for each i <n , Ji be a set of independent realisations of p; over
M.

Let N Dbe prime over M Ui<% Ji « Then for each i <n , Ji is a basis for
pi in N .

Proof. - Consider Jb for example. Let us define Mi <N for 1giLh, such
that Ml igs prime over M u Jl , and for i 21, Mi+1 ?s prime over MiuJi+l
and M6 =Ui<o Mi for 6 1limit. Let M' be M . Let pé be the heir of Py
over Mi for i £ #n . Then it is easy to show by induc?ion, using the orthogona-
lity of Pq and the np{ s and fact 1.6, that Pg |— pé for 1 £1i #n . Thus
JO is a basis for Py in N if, and only i, JO is a baiis for Py in N,
and clearly JO is an independent set of realisations of p, over MY in N .

N (Un)

0
be a basis for pg in N . So the lemma is proved.

By III.8 for example, is prime over Ii! , and so Jb is easily seen to

LEMMA IV.5. — Let p € S(a) 7ve strongly regular, where tp(a) is isolated, and

for some copy of M. which contains a , dim(p ’ MO) =0 ., Let A be any coun-

0
table set which is atomic over a , and let p'

be the nonforking extension of p

over A Ua . Then p l- p! .

Proof. — Let A be as given. Then A ua is an atomic countable set, and we can

find a copy of the prime model M., such that A © MO is not

M

W

0 + By isomorphism, p

realised in « S0 by lemma II.11, for any c¢ realising p , tp(c/MO) does

0

not fork over a , and thus tp(e/A ya) does not fork over a . So clearly p |— p'

We can now begin on the classification. First let p be the maximum number of
pairwise orthogonal strongly regular types over MO , the prime model of T . (e
call  the number of dimensions of T ). Let Py for i <u , be pairwise ortho-
gonal and strongly regular types over MO , and a maximal such collection. Now let
N M. <N, and (by 1.16, III.7 and remarks at the end of III)

0
N is prime over (in fact minimal over) My U. Ji J;

i<
P; in N , and moreover (vy 1.15) tp(bg<% Ji/MO) is deter .ined Jjust by

A i <)
cardinals, there is a model is an indepen-

in N . So if

be any model. So

where is a basis for

9

of

; . Conversely, given a sequence <Ai

M. U U, J. J.
0 i<w i i

i <u) where A, = |J.
2 3= 19

N prime over where

dent set of realisations of P; and thus
we are considering the models of T wup to
MO
to the langage, and replacing T

prine model (which we could do by for

of MO

by IV.4, a basis for Py
isomorphism over some fixed copy of the
example adding names for the elements

by Th(MO) in this new language), then
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the models would correspond exactly to the possible sequences of cardinals

(Ai ; i <w) . However in the general case, onec model might contain different - .
copies of MO and correspond to different sequences of cardinals. So we have to

be more careful in the choices of the p; » and use some material developed in this

section and section III. This we proceed to do, summning up the results later on in

a theorem.

First let Ki , for i <p, be the equivalence classes (or non-rothogonality

classes) of strongly regular types over M. . e choose, for each i <y , P; GK&

0
and a;, € MO , such that P, is definable over Ei , and also satisfying the
following two conditions, where qi(x , ai) denotes pi P ai (so qi(x ’ yi) is

over ¢ ) :
(1) dim(q, (x , a;) , M) is O or infinite (i. e. R, ), for all i <p, and

C(4i) if i < j <4p , then either tp(a,) = tp(aj) and q(x, ¥;) = qj(x , §j) ,
or for no p €K, is there a€ M, such that p is definable over a,

tp(a) = tp(ai) and p Ma= qi(x , a) .

(Note that if the second disjunct of (ii) holds, then we also have that for no
p € Ki is there a € MO such that p is definable over a , tp(a) = tp(aj) and
b Pa = q.J(X H 5’) ')

This is achieved quite easily. To get (i) for example, suppose 1 has been

chosen in Ki , and, for some a € MO » Py is definable over a and

dim(pi P f , Mg) =n <w., Let Cip nee g Cp be a hasis fir 1 P a in M_ ,
and put a; =a “<c; , ., cn> . Then clearly dlm(pi P a;
easily be obtained by defining the P; and a; inductively.

MO) =0 . (ii) can

This having been done, pick some particular i < u , and let us put

p = P, », as= Ei , and q(x s y) = qi<x ’ §i) . For how many j < , do we have
tp(aj) = tp(a) and qj(x , §j) = q(x , v) (and thus pj P Ej = q(x , Ej)) ?1I
assert that there can be only finitely many such j . For if not, then there is in-
finite J - w , such that the types {q(x , Ej) s J €J} are pairwise orthogonal,
and tp(Ej) = tp(E) for all j € J . Thus (see background at the beginning of sec-
tion III), there is j; <3, in J such that stp(ajl) = stp(§j2) . But by III.2,
this contradicts the orthogonality of q(x , Ej ) and- q(x , Ej ) . (Remember

q(x , a) is strongly regular). Thus there are only finitely man§ such J .
Thus by renumbering the ay and renauing the p; and 51 , we have :

LEMiiA IV.6. - There is p' < ﬁo » and for each i < ' , some f%nite n; , and

q(x ’ §i) over (f , and for each i <p' and j < n, types pg

-] . y
tugles ai in MO such that

over MO and

(1) {pg ; i<p', §< ni} is a maximal collection of pairwise orthogonal

strongly regular types over MO .
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(ii) p? is definable over ai ’

(iii) for any 1 <u', for jl < j2 < n; tp(a ) = tp(a 2) =r, , and, for each

i
J<n.,p{‘a ql(x,a)

1

(iv) for each i and j , dim(ai(x ’ Eg) , MO) =0 or db ’

s <5 1 : a a i 1 a =
(v) if i, <i, <up', then there are no a; , a, in HO such that tp(al) ril

and tp(a2) = ri2 , and qil(x , al) is equivalent to in(x , a2)

(Vl) u'=;.‘"b if, and only if, p,:i..io,irﬁ wt =1 if,M, =1

LEMMA IVJ7. — Let N be any model of T , and let il < i2 < p' . Then there are

no a, and a, in N such that tp(al) = ril , tp(az) = ri2 , and qil(x ’ al)

1 — 2 —
is equivalent of a4 (x , az) .

Proof. - Suppose that there are a, and a, in N as described, and we get a

1 2
contradiction. Let MO be some copy of the prime model in N . Now both =, and
r, are isolated types, and so it is easy to find al and 5'2 in MO Suéh that
stp(a ) = stp(a ) and stp(a') = stp(a ) . Thus by III. 2, 9y (x y i) is equiva-

lent to ay (x, a ) , and a; (X , a‘) is equivalent to q, L(x R a2) . But then

q (x, a’) is equlvalent to ql (x , a ) which contradlcég lemma IV.6 (v).
1

Now we go through the cases depending on the number of dimensions.

Case 1. - W is finite. So also u' is finite. Let A —ljta ; 1< u{ y 3 < ni}
and let qi be the nonforling extension of a4 (x ’ a ) over A . Let Ag for
i <u' and j <n, be cardinals chosen arbitrarily subject to the proviso that
nj 21, if dim(qi(x , 52) ,_MO) = & .+ Let A@}f 5 1<w, §< ni>) denote
the model prime over A U}J(Ig s i<wut, 3< ni) , Where Ig is an independent
set of.realisations of qg over A of cardinality gg . Note that A(R) (where
* = <A§ s i <ut, < ni>) is well defined by 1.15 and uniqueness of prime mo-

dels.
Observation IV.8.
(1) ain(q) , A(%) =1 .

(ii) dim(qi(x , Ef) , A(X)) = Ag .

Proof.

(1) Let 1 be prime over MO ulJ{Xf s i <p', J< nij where Xg is an inde-
pendent set of realisations of pJ over MO of cardinality Ag . Then
dlm(p , M) = ni y by lemma IV.4. It is easily seen that Ii is isomorphic (over
A) tq (%) , and that (by II.11 and choice of pg and ay ) that
dim(qg , 1) = x? .

(11) We use (1) First suppose that dlm(q (X , a ) M ) =0 . Then as tp(A/a
is isolated, we have by IV.5 that ql(x , aJ) |- q , dnd thus
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gin(q, (x , 3) , A(R) = ain(e] , 4(%)) =

Secondly, suppose that dlm(q (x , a ) is infinite. Then so must be

)
O
dlm(qi(x ’ a ) A(R)) . But only flnltely many melbers of a basis for a9y (x R aJ)

39 (remember that A is flnlte at the mo-

ment). Thus clearly dim(qi(x , ai) A(K)) dlm(q , (X)) =

in A(X) can be made to fork by A - a

Conversely we know that ggz_model N of T can.be written as (i. e. is iso-
morphic to) AC<XJ s 1 <pt, J< ni>) , where Ag must be infinite if
dlm(q (x , a; ) No) is infinite (vy I. 16, III.T, and remarks at the end of sec-
tion llI). I is aléo clear that lA(X) = max({Ag s 1 <p', 3< nij L)iﬁb})
When is A(A) = A(X)

Case 1 (i)e = p=1. So p"= 1, and n, = 1. Also A = 50 . Let us write
58 as a ‘and (x , y ) as q(x , v) . Yow supnooe that Il = a(A) = a(n)

Then there is a. E-M , tp(a ) = tp(3) , and Il = a e ) So dim(q(x , a),M)=A,
and dim(q(x , a ) , M) = A (by 1Iv.8 (ii)). But as p = 1 , we must have that

- 3k
q(x ’ a) and q(x , a ) are equivalent, but then bv lemma IV.1l, we have that

i -, X %
A=A . So we have a(A) =a(A) if, and only if, A = A . Thus in this case

I(h, T) =1 if »n> R .

If dim(q(x , a) , MO)

1]

0 , then
By (as all finite dimensions can occur),

and if dim(q.x , a) , MO) is infinite, then

I

I(L% , T)

I(Bb , T) =1 .
Case 1 (ii). = p > 1 (but still finite).

Let p denote (}%?; i<p', <1ni> (no connection with w , the number of

A(E) . Thus there is A in ¥ w1th
tp(a") = tp(A) ,and N =4 (R) . Denote by af" the copy of & in A . Then

dimension). Suppose that N = A(R)

i

{ql(x , a ) s i<p', < nl} is a sct of pairwise orthogonal strongly regular
types, dnd by IV.8 (ii), dlm(q (x , a ) y My ) = g . So as the q; (x , g) are
a maximal collection of pairwise orthogowal StrOngJ regular types, and by lemma

IV.7, there is o such that for each i < p o(i , =) is a permutation of n,

and q. (X ’ aJK) is equivalent to qy 'z, al ’J ) . Thus bv lemma IV.1,
pé = Ai 1,J « Thus A(R) = A(R) dimplies that o= o(n) , where ¢ 1is a permuta-

tion of the sequence A (As the number of dimensions is finite, there can only be
q ’

finitely many such permutations).

Case 1 (ii) (a). - For some i <u', j<n , ain(q(x, ay) , Hy) =0 . Then
all cardinals (including finite ones) are possible for Ag . Thus the number of
S8y
which is ¥, , is la| + % (Note that in this case |A(R)]| = Xy .) But by the

sequences of cardinals hg s 1 <pt, J< ni> at least one member of
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above there can be only finitely many other sequences  giving rise to the same

model, and thus we have

I(};'ix , 1) = || + t, » for all « >0 .

Case 1 (ii) (b). - For a1l i <u', j<n, , din(g(x, a_;g) , M) = &g « But

then the countable models of T are just models isomorphic to A(Tb) , and thus
T is i-categorical, i. e. I(&b , T) =1 . Now suppose that A(R) = a(R) as
above and tius that there is A SN = A(x) , with N =4 (i) , and o with

9 (x , ;lw) equivalent to q, (x , _z(lyJ))

] e« Then as T is wb—categorlcal all
types are isolated, and thus tp(A Am) is realised in every model of T . Clearly
the fact that 4 (x ’ —J) is equivalent ot ql(x y a ') , say, depends only on
tp(aJ ~ ai‘) . So we let G denote the group of pcrmutatlons o of b, induced

as above, and clearly A(R) = A(L) if, and only if, there is ¢ € G with

O(A) = () . By our case hypothesis, only infinite values are possible for the

Ag . Let us denote by (Ia + 1,@)* the number of sequences of length p  of ordi-

nals <« , at least one of which is « . Thus it is clear that

I(Ra , T) = (|n+ 1|p‘)*/G , for all o >0 ;

Caga 2o = | = Eb , and so pn' is also ﬂb .

PR —

Let me denote by I (A?). 3 the model prime over Mg L)U{Ig s i<, i< ni}
where Ig is an 1ndependent gset of realisations of p; over HO . Te know that
any AJ can occur. I first want to observe that if dlm(q (x , ai) R u )

then we can assume that KJ is always O or uncountable.

LEMiA IV. 9. - Let N = I (‘AJ) ., where, for (i, j) e X,
dim(@ (x Ej) M ) = i and A % o Then N =Ii (AJ ) where Kj* = kj
1T %4 Q.. — S % 0 i,j —— i i

if (i,j)éx,and )\J =0 _1_f_ (i, 3) ex.

22292. ~ Basy using IV.3 and IV.5.

Thus the models of T are all of the form MO(X) where Kg can be anything,
if dim(q (x , aJ) ) = , and is O or uncountable otherwise. Horeover it
is easy to see, using II 11 and IV.5, that dlm(q (x , a ) (A)) , if
dnm(q (x ’ aJ) , MO) ’ and = Cb + AJ otherwise. It is also clear by IV.4,
that dlm(p » My () = . Thus, as in case 1, it follows that if
MO(A).: Mo(p) , then there is o such ?hat fo? .i <u', and Jj < n; ,
o(i, J) <m; , end for all i, j, g%: W2053) | gy uw' is infinite, and if
i, <i, <& , we can vary A; L ana Xiz (31 » 3y arbitrary), to get different
models Tnus it is clear that I(K , T)2 . i , where o= Iul + i% ; if

1<bQ
dlm(q (x ) 8 ) MO) =0, and * = |¢| + 1 otherwise.

Thus we have proved :
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THEOREH IV.10. - Let T De non-multidimensional w-stable. Let I(¥ , T) de-

note the number of models of T of power ﬁz up to isomorphism. Then there is

e sidb y where . is called the number of dimensions of T , such that

1°if p =1, then I(;.:Q,T)=1 for all « > 0 , and I%,T):l or K.

20 If u > 1 but finite, then either I(Q& , 1) = |w+ w , for all « >0,

or I(Hb » T) = 1 and there is G a group of vermutations of p such that for

@ >0 I(i& , ) = (Ja+ 1|")7 /6, where (Jo + 1|™" is the nuwber of sequences

of length u of ordinals S« at least one of which is « , and
S 1<)~ . i< i i : - i <
SR < Y, 5 1 w) if, and only if, p0<i) v, for each i <y, for

some O€ G

30 If tg.,():"&o,j_l}g_rg I(NQ,;T)=|C'+1|RO

ﬁ) or 2 .

, for all « >0 and _I(Nb , T) =1,

A few final comments ; It can be shown fairly easily that if T is ( w-stable)
and multidimensional, then for « >0, I(¥ , T) »2'“! . Thus there is some

content to the multidmensional/non-multidimensional dichotomy.

SHELAH has classified in a similar ma'mer as above, the F;E—saturated nodels of

a superstable non-multidimensional theory.

The main result in this paper, and the main notions employed are due to S.
SHELAH, "appearing" in [5]. The bulk of our section I parallels the development of
the material in LASCAR [3] (sections 2 and 3). The important proposition III.S5 is
due to BOUSCAREN and LASCAR [1]. Some results on the spectrum were also obtained
by LACHLAN [2].
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