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PRIME MODELS OVER SUBSETS

Anand PILLAY

[Université Paris-7]

’theories stables
(B. POIZAT)
2e année, 1978/79, n° 7, 8 p.

The following is basically a rewrite of a paper of S. SHELAH entitled "On unique-ness of prime models", in which he gives a simpler (in comparison to his book)proof of the result that if M is a model of a countable stable theory T , whichis strictly prime over A, then M is the unique prime model over A. He also
gives an example to show that we cannot omit the countability assumption. SHELAH’s
paper is on a rather more general level (in terms of generalised notions of prime,etc. ) . Here we work in terms of the usual notions. The example presented here isthe same as SHELAH’s, but the "proof" that it is the desired example is rather more
simple, and due to B. POIZAT.

1. Strictly prime models.

T is a fixed complete theory, We work inside a big sufficiently saturated model
of T . A , B , C etc, will denote subsets of this model, and M , N ... elemen-

tary submodels of it.

1.1. Définitiono

(a) Let A c B . Then B is atomic 
,, 

over A , if every finite tuple of elements
of B realises a principal type over A.

(b) (a. : i  c~) is a construction over A if for every $  a is

principal over (realises a principal type over) A u i  p) . 
#

(c) Let A c B . Then B is constructible over A if we can write the elements
of B - A as a sequence (a. : i  a) which is a construction over A

(d) Let A c M . Then M is prime over A if whenever f is an elementary map
of A into N , then f can be extended to an elementary embedding of M in to

N .

(e) Let A c: M . Then M is strictly prime over A if M is constructible

over A.

Note. - If B is constructible over A , then B is atomic over A.

We will now list some known results on prime models.

~2~ If N is strictly prime over A , then M is prime over A.

Proof. - If N is any other model containing A , we use the construction of M

over A to elementarily embed M in N over A , element by element, using the
f act that a principal type over what we have so far, is realised in N.

Anand PILLAY, UER Hathematiques, Aile 45-55, Universite Paris-7, 2 place
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1. 3. Suppose that A c B and B is atomic over A . Then for any finite subset
C of B, B is atomic over A uC .

1.4. Let B be atomic over A and B - A countable. Then B is constructible
over A.

Pro0f. - By 1.3, any listing of B - A of order type ~ , will be a construction
of B over A.

1.5. Suppose that for every A , the principal 1-types are dense in Sl(A) .
Then for every A , there is a strictly prime model over A .

Proof. - Assume that for every A the principal 1-types are dense in S (A) .
It fallows that for any B , B is a model of T if and only if B realises all

principal i-types in Sl(B) . Now start with A , and realise principal 1-types ,

over what we have get so far, until we arrive at a model.

Assume that T is countable, and Then there is an atomic model

over A if and only if the principal types are dense in S n (A).
Proof. - The case in which A is countable is classically due to VAUGHT, and

J. KNIGHT extended it to the case -- ~; 1 , by expressing A as the union of a

certain chain of countable subsets.

1.7. Assume that T is countable and that A is countable. Then the following
are equivalent o

(i) M is countable and atomic over A.

(ii) M is prime over A .

(iii) M is strictly prime over A .

Proof. - The equivalence of (i) and (ii) is again classicaIly due to VAUGHT.

(iii) ~ (ii) is by 1.2, and (i) ~ (iii) is by 1.4.

1.8. Again assume that T and A are countable. Then there is at most one prime
model over A, up to isomorphism over A.

Proof. - Again by VAUGHT. Let M and N be two prime models over A . They are
both countable atomic over A, and we use 1.3 to build an isomorphism between
them.

1.9. Let T be countable and (~-stable. Then

(i) for every A , there is a strictly prime model over A ,

(ii) M is prime over A if and only if M is atomic over A and contains no

uncountable set of indiscernables over A,

(iii) for every A there is a unique prime model over A.
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Proof. " (i) iS true because for a countable ~stable theory, the hypothesis of
1.5 holds, (ii) and (iii) are by SHELAE (See next expose).

We will now prove RESSAYRE’s result that for any A there is at most one stric-

tly prime model over A . This is essentially a generalisation of 1.8.

Let AdC , C constructible over A . Let (c. : t i  c~) be a construc-

tion of C over A . For g ~ c~ let us write A = A u (c. : i  p) . For each
p  a choose a formula Q~(x , "F ) which determines the type of c over A .
b is a tuple of elements from A... Relative to the above choice of formulae,
we define a notion of closed.

1.10. Definition. - Let X c: C . Then X is closed if whenever c e X , then

b03B2 ~ A U X .

T(B) denotes the true sentences (true in the big model) which have parameters in
B .

1.11. LEMMA. - Let X be a closed subset of C . Then T(A u x) is determined

J~ T(A) ~(c~ ,~) : c~ ex).

Proof. - Let us write X  03B4 to be (c. e X : i  §) for 03B4  03B1 . Each x  03B4 is

closed, and X  03B1 = X . We prove that for each 03B4  0’ the lemma is true for X re-

placed by by induction on 5 . It is trivial at the limit stage. So suppose
the lemma is true for X~s . Now (Q (x ~ )) u T(A ) determines the type of c

over A . Namely (Q.(c y b )) uT(A ) determines T(A ) . So

{Q03B4(c03B4 , b )) U T(A U X  03B4) determines T(A and so by induction hypothe-
we have the lemma for x  03B4+1 .

1~12. PROPOSITION. - Let X be a closed subset of C . Then C is atomic over

A u X .

Proof. - be closed. Let a ~ ... ~ a be be the least

closed set containing a ~ ... ~ a . Y is clearly finite. u Y is

closed.

It follows from the previous lemma that T(A u X u Y) is determined by

T(A u X) u {Q03B4(c03B4 , "b) : c e Y) . As Y is finite, it follows that the type of"~ 06 6
Y (or of a sequence that enumerates Y ) over A u X is principal. So clearly
the type of (a~.~~a) over A uX is principal. So C is atomic over

A u X .

1, 13. THEOREM. - Let M and N be strictly prime models over A . Then M and

N are isomorphic over A .

Proof. - Clearly the cardinalities of M - A and N - A are the same, let us

say K . If K is countable, then the result follows by the usual Vaught back and
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forth argument. So assume that K is uncountable. We will use Proposition 1.12 to
generalise this back and forth argument. We define strictly increasing sequences

C~ and D~ for c~K ~ such C ==M ==N ~

(M ~ A u C ) for each aK ~ and such that C is closed in MQ’ Q~ Q/
D 
cY 

is closed in N (relative to some given constructions of M and N res-

pectively over A ). C 
a+I 

will be gict by adding a countable sequence on to C 
cY 

,

and the same for D 
Q+1 

. So suppose we have C 
cz 

and D 
cY 

satisfying the conditions.
We define increasing finite sequences X 

n 
and Y 

n 
from M and N respectively

for n03C9 , such that (M , A uC ==(N , A u D uY) . Assume that 03B1 is

even or limit. Then X0 is the next element of M not in A or C , and Y is~ 0’ 0
an element in N with the same type over A U D03B1 as the type of X0 over A u C
(as / this type is principal). If n is even and bigger than 0 , let 

0 

X be the 
0’

closure of X . Then as X is finite, X - X , is also finite. By then2014l n2014l n n2014l 
°

fact that C is closed and by proposition 1.12 and 1.3~ the type of X - n is

principal . So realise this type 

augmenting Y to give us Y . For n odd, go through the same procedure , but

starting with Y . For a not limit and odd, go through the same as above starting
with Y.. and making the obvious changes. Put C = C u u X . and

u Yn . They clearly satisfy the conditions. The correspondence between
the C ’s and the D ’s gives us an isomorphism between M and N over A .

2. Shelah’s uni quene s s theo rem .

In this section we assume in addition that T is countable and stable. Stability
enables us to define a notion of " p forks over A ", where p e s(B) and A c: B y

which has certain nice properties, A) will denote the type of a (finite)
sequence ~a over A . We will only give here the properties that we need.

~. PROPOSITION (F orking f act s ) .

(A) ~f then there is a countable subset A of B such that p

does not fork over A .

does not fork over A ~ then does not fork

over A .

(c) Suppose that p e S(B) and p does not fork over A. Then if B’dB and

does not fork over A~ .

peS(B) forks over A y then there is B’ containing A and contained

2.B. ~ such that B’ - A is finite and does not fork over A .

(E) J~ A) . is principal and does not fork over A~ c: A ~ then A’)
is principal.

Let us remark that only (A) above uses the countability of T ; J in fact 

is sufficient (for instance if T is superstable) , and the proof is still valid in
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that case.

2.2. Suppose that A c B c C and C is constructible over A . Then B

is constructible over A.

Proof. - We prove the lemma by induction on the cardinality of C - A . vie know

anyway that C is atomic over A. So if C - A is countable, then B - A is

also countable, B is atomic over A , and so B is constructible over A by

1.4.

So let A) = p &#x3E; ~ . We will construct inductively, an increasing conti-
nuous sequence (C. : i  ) of subsets of C , such that

(3) Each C . 1 is closed (relative to some given construction of C over A )

(4) For each finite tuple c in C. , B) does not fork over B n C . i
for each i  .

The idea is that Cl+1 will be constructible over A u C. , and then we will use
the induction hypothesis and (4) to get a construction of B over A .

So suppose that we already have C. defined. Let c be the next element in some

listing of C - A . For each finite tuple b in Ci u {c} , let B b be a coun-

table subset of B such that tp(b , B) does not fork over B-r (by 2.1, (A)).
to the closure of Pu 

i q a,l h closure of 1 u {c} u U 1) f or each b m Ci
add countable B+ as above , and close to get f?) continue like this to getadd countable B1 as above and close to get ci2} . Continue like this to get
Ci for and put C. 1+ 1 = Ci+ 1 clearly satisfies condi-

tions (2) , (3) and (4). We also have (5) constructible over A u C.. For
list c. 1+ 1 - u A) in the same order M the elements appear in the construction

of C say as ~y) . Then as C . and ~i+1 are closed,

Ci u a  P) is closed for So by proposition 1.12, d is

principal over AuC. u o’p)~

Note that for each i ,  ~ . Now using (5) apply the induc-
tion hypothesis conclude that

is constructible over A u C.. 1 The idea now is to piece toge-
ther these constructions to give a construction of B over A. As A and the

C . ’ s cover C we can define for each i   , ordinals y. , such that

(b : j  is a listing of B - A , and  j  is a

construct ion of A u C. 1. over A u C. 1 for each i   . Now take an

arbitrary b.. We want to show that b. is principal over A u (b : t y  j) .
J J Y

Then the b.’s will give us a construction of B over A . Let this j be bet-

ween 03B3i , y. 1 . Sa tp(b . , A u C . u (b : 03B3i  y  y. 1}) is principal.

We now show that this type does not fork Over A u (b Y i 
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Let c E C.. Then tp(c , B) does not fork over B n C. , by construction. So
by forking fact (C), tp(c , A u {b03B3 : 03B3  j}) does not fork over A u (b :yj) .
By (B) , tp(b . , A u c u(b : yj)) does not fork over A U {b03B3 : yj) .
Finally by (D), tp(b . , A u C. u {b03B3 : y  j)) does not fork over

A u (b : y  j} , as the above is true for all c in C.. But as mentioned
before this type is principal, so by (E) tp(b., A u (b : y  j)) is principal.

J Y
So we are finished.

2.3. THEOREM (Remember T is stable and countable). - If there is a strictly

prime model over A ~ then it is the unique prime model over A (up t.o isomorphism

ove r A ).

Proof. - Let M be the strictly prime model over A . Let N be another prime

model over A . So we have A C N  M . By the above lemma, N is constructible

over A, and thus also strictly prime over A . The theorem follows by theorem ,I
1.13.

3. The example.

We will describe a theory T ~ which is stable but whose language is uncountable,

such that T has a strictly prime model (over the empty set) which is not the

unique prime model of T .

L the language of T , consists of, for each a  wi ’ a binary relation symbol
E . T says that (i) each E is an equivalence relation with infinitely many

equivalence classes, each of which is infinite, and (ii) for s  t ,

xE t y 2014~ xEs y , and actually Et partitions Es into infinitely many equivalence

classes.

It is routine to show that T has elimination of quantifiers and that it is a

complete theory.

3.1. PROPOSITION. - T is stable.

Proof. - Let M be a model of T , and Put T(A) to be Th(M , 

We just count the complete i-types of T(A) . By elimination of quantifiers, any
such type p(x) is determined by its atomic and negated atomic formulae, We can

ignore the case in which p is realised by an element of A, for there are just

I many such types. By completeness p depends just on the atomic formulae it

contains, i. e. formulae of the kind xEs a for a in A For

each s , choose a 
s 

in A such that xEs as e p , if such an as exists. Then

for any a xE 
s 

if and only if T(A) = aE 
s 
a . So p depends, over

T(A) on such a choice of the a . Thus each type corresponds to a partial map

from 03C91 to A. Thus the number of types and so T is stable.

We now describe the strictly prime model of T. Let the universe of the model M
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consist of th 0153e functions f from to 03C9, which have value 0 at all but a

finite number of points. put 1:1 1.= f~ E s f 2 if and only if f 1 It is

easy to verif iy that M is a model of T .

Let us define for each s  subset X = ~f in M: f(t) = 0 for all1 s

t ~ s} .
It is clear that each X is countable and nonempty, and that M = X. S

3.2. XQ is atomic over the empty set, and each is atomic over

Xs .

Proof. - XQ consists only of the function which is zero everywhere, and its

type is determined over T by t x = X 1.

Let now fl ’ ... , f n be in want to show that the type of

(f , ... , f ) is principal over X . We may assume that the f. are pairwise
1 n s l 

.

distinct and not in X . For each i , choose g. in X such that

M F f. E g. ( g. will just be the same as f . but with f. (s) replaced by 0).
1 s 1 1 1 1

Then it is easily seen that the open type, and thus by elimination of quantifiers,
the complete type of (f , , . , , f ) over X is determined over T(X ) by the

1 n s s

following finite set of formulae.

u t whenever ij and u [-r.E lx. : o ij and fiEs+1fj}.
So the lemma is proved.

3.3. PROPOSITION. - M is strictly prime (over the empty set).

Proof. - As is countable, by lemma 3.2, constructible over

X . Putting together these constructions gives a construction of M .

Let (f. : i  W1) be a sequence of elements of M. We say that this is a

Cauchy sequence if for every s  03C91 , there is i such that j &#x3E; i implies

that M ~ f. E fi . We say that an element f is the limit point of the sequence
J S s

(f. : if for every s there is i such that j &#x3E; i implies

f .

3.4. PROPOSITION. - Every Cauchy sequence in M has a limit point in Fl 

Proof. - Let (f. : i  W1) be a Cauchy sequence in M . We can assume that

s  t implies that is  it . It is thus consistent to define a function f such

that IS for all s  w1 . We must show that f is in M , i. e. that

f is 0 except at a finite number of points. If not, then there is countable s

such that is already nonzero at an infinite number of points. But then by the

definition of f ~ fi s is nonzero at an infinite number of points, which is

impossible, y as it is in M . f is clearly a limit point of the sequence
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Let now N be the substructure of M whose universe is that of M minus the

function which is 0 everywhere. It is easily checked that N is a model of T ~

and thus by elimination of quantifiers, N is an elementary substructure of M .

So as M is a prime model of T, N must also be a prime model of T . We will

show that N is not isomorphic to M , , by showing that N does not satisfy

proposition 3.4.

Let us define elements f. of N , for i  03C91 , where f.(i) = 1 y and for

j ~ i and j  fi(j) == 0 . Then is a Cauchy sequence in

N . dowever the only possible limit point of this sequence is the function which

is 0 everywhere, but this is not in the model N . So N has a Cauchy sequence

with no limit point. So we have proved

3.5. THEOREM. - There is a stable theory, which has a strictly prime model which

is not the unique prime model.

The above example can be actually coded up to give us also a countable unstable

theory, which has a strictly prime model over a set A, which is again not the

unique prime model over A (The equivalence relations E 
s 

are now indexed by

elements s of a total ordering).

Remark to theorem 3.5. - If N’ t is an arbitrary substructure of and

(f. ; I  , ) , (g. ; I  w ) are Cauchy sequences of elements of N’ , we can

say that they are equivalent if the obvious thing holds (i. e. for each s  03C91 ,
there is i s  w 1 such that f or i , j &#x3E; i g . ~ .
Then in the model N (obtained by dropping the 0-sequence from M ) , there is

exactly one equivalence class of Cauchy sequences which have no limit point. We

can obtain other substructures of which are prime models of T , by dropping

n points for each n  uj . In this case there will be exactly n equivalence

classes of Cauchy sequences with no limit point.

In this way we actually get at least 1;~ pairwise non isomorphic prime models

of T .


