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Grenoble

THE AMBIGUOUS CLASS GROUP AND THE GENUS GROUP
OF CERTAIN NON-NORMAL EXTENSIONS

par

Colin D, WALTER

In an article generalising work of Roquette and Zassenhaus, Connell
and Sussman [2] have demonstrated the importance of certain prime ideals
in a number field ko for estimating the 2-rank of the class group
of an extension k. These ideals have a power prime to £ which is
principal and they have prime factors in k with ramification index
divisible by &. The products of the prime divisors of these ideals
in the normal closure K of k/k0 are invariant under Gal(K/ko).
Thus certain roots in k of the ideals in ko are fixed by the Galois
group. This leads to the concept of ambiguous ideals in an extension

k/k0 which is not necessarily normal.

Of particular interest is the case when K/ké is metacyclic. Then
k/ko is almost a cyclic extension and many of the theorems of cyclic
fields have analogues which apply. Since the genus number and the
ambiguous class number are equal for a cyclic extension it is worth
comparing them in k/ko. In fact, there they are usually different and
this can be seen from the class group description of the genus fiela. A

character theoretic description can also be given for the genus group
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and this is useful for computing the genus number.

Estimates for the genus number and ambiguous class number have been
combined for dihedral extensions by several authors, including Barrucand
and Cohn [1] for pure cubic fields. This is done here for pure fields
of any odd prime degree over the rational field Q. 1Indeed, applications
to pure fields are the motivating force in this work, and much of the
inspiration comes from the class rank estimates of Frohlich [3] which

generalise those of Holzer [8].
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1. Ambiguous Classes for Frobenius Extensions

Let G be a Frobenius group with normal kernel N and a complement
F. Then G 1is a semi-direct product of N and F for which the
distinct conjugates of F intersect pairwise in the identity. Consequently,
if n and f are the orders of N and F respectively then the
conjugacy classes of N-1 under F all have order f. Hence f divides

n-1 and is coprime to n.

Suppose K/ko is a normal extension of number fields whose Galois
] N F . .
group is G. Let L =K and k = K be the fixed subfields of the
subgroups N and F. There are many similarities between k/ko and
its lifting by L to the normal extension K/L, but the structure of
the latter is generally easier to describe. In this study of the

extension k/k0 the analogy between it and the classical case of K/L

can be drawn by assuming f = 1 so that k/ko becomes normal,

Denote the (classical) class group of a field & by H,, its
class number by hg’ the n-subgroup of HQ by CQ, and the maximal
subgroup with order prime to n by CQ'. Thus HQ = CQ X;CQ'.

A class of k will be called ambiguous (over ko) if its image in
HK is fixed by N (which generates all the conjugates of k/ko),
or, equivalently, by G. The subgroups of such classes are written

G G . . . . : .
Hk , Ck , and Ck' . Likewise an ideal of k 1is called ambiguous
if its extension to K 1is fixed under N or, equivalently, under G.

A class of Hk is called strongly ambiguous if it contains an ambiguous

ideal. These terms are just the standard ones when k/ko is norma:,
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and they can easily be generalised still further.

1.1 Theorem The group of ambiguous classes for k/ko is the
direct product HkG = CkG X Ck'G. Here Ck'G is the isomorphic
image of C ' in C ' under the natural embedding given by extension

k

ko

of ideals; and under extension of ideals CkG is isomorphic to CKG,

the group of ambiguous classes in K/k0 with n-order. Thus

Proof In Theorem 5.1 of [llj it was shown that the natural maps

induced by extension of ideals provide an exact sequence

TN cK'F/cK'Gr — 1.

1 — Ck Yo Ck

(o]
Hence any class of Ck' which has its image in CK' fixed by G
comes from a class in Ck ', and vice versa.
o
Since n 1is prime to [K:k] there is a natural embedding
C, < CK which restricts to C G s CKG. This is an isomorphism

k k

because the inverse map is obtained by applying the idempotent

-1
ep = f deFg and restriction of ideals, i.e. a suitable power of

the norm.

Thus the basic observation that provides information about the

ambiguous class group of k/k0 is this:
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1.2 Lemma CkG is isomorphic to the direct summand of the

ambiguous n-class group CK N of K/L given by the projection

viz, C G.

€p K

1.3 Lemma If 1 is an ambiguous ideal of k/kO then the extension

. n
of Nk/kga is equal to ([,

Proof The extension of Nk/k(l to K 1is just the product of the
o

conjugates of the extension of (< wunder N. However, the extension of
U is fixed under the action of N and so the product of
conjugates is just the nth power. The same equality holds on restriction

to k.

Let IQ be the multiplicative group of non-zero fractional ideals

of a field (, extended to K wherever necessary; PQ the subgroup

T
of principal ideals; IQ the subgroup of ideals which are fixed by a

I'x
subgroup T of G when extended to K; and IQ the subgroup of

ideals which lie in a class of K fixed by [I'. With this notation

the isomorphic groups CkG and CKG are the n-subgroups of

* *
I G / P and I,G / P

Kk K K respectively. The most accessible parts

K

G G
of these groups are the subgroups Ik Pk/Pk and ,IK PK/PK of strongly
ambiguous classes, and in many cases they give the whole group (vid.

Corollary 1.9).

Let p Dbe a prime ideal of k0 with prime divisors (Tj in k

and below the prime g} of K. Suppose e,e’,ej, and e3 are the
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ramification indices for these primes in K/L, L/ko, k/ko, and K/k

respectively. The equality e_e.' = ee' gives P moo
ee'/e."’ JJ

Nk/k P
j (o}

. (N . . Hence any common factor between the e'/e,' divides
;¢ k/ko"h) y /e,

e'/ej

both n and f and so equals 1. Thus c[’=‘TTsz has

no roots in k. Any divisor of *3 in k which is fixed by G
must decompose in K as a power of Ll = TT. 1}g where
geH\G
d is the decomposition group of q} over k . Therefore such a
el
divisor is a power of ot = ql and the generators above

p of IKG and IkG are Cz and g respectively. Since the

- 1
extensions of p are equal to (%e for k and (ﬂ?e for K the powers

of (Qy and (| cannot generate ideal classes with n-order in H or

Hk other than those of the powers of the extensions of .p unless e > 1,

i.e. the prime ideal p ramifies in K/L. Hence 1 G and I G are

K k

generated (the former up to an index prime to =n) by IL and Ik
o

respectively, together with the ideals and respectively which
y

divide the prime ideals By eIk which are ramified in K/L.
(o}

Put e for the ramification index in K/L of a prime ideal

P
p eIk . Then,
o
1.4 Lemma (1% 1=TT e.
= k k Pe
o
1.5 Remark There are potentially more classes in k to be found

from the decomposition of ramified primes: each divisor Llj of *) in

k yields some class, but the ideal ({ may only generate certain products

of these classes.
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From here on suppose N is eyclic, with generator o. Then F

is also cyclic, with generator ¢ say, because it is a subgroup of the

cyclic automorphism group of each subgroup of N with prime order.

Thus G 1is metacyclic and, because £ > 1, n is odd. Write S for the

sum in the integral group ring Z{G] of the elements in a subset S of

-1

G. Define %Y e ZG] by (1-0)% = F(1-0) and e, = £ '%. Then %
is determined uniquely up to a multiple of ﬁ, so that e 5 is really

an idempotent of Z{G]/Q{G]ﬁ which is conjugate to en- We have

= ¢ 15 = -
e, = £ F and (1-0)e, = e (1-0).

Finally, let En denote the unit group of a field {, r(Q) the

Q-dimension of @ ®ZEQ and W the torsion subgroup of EK' From
[11] 53.1, it is known that WcL and W e k-
1.6 Theorem The number of strongly ambiguous classes for k/ko is

hk HP P

o
e
1
HO(N,Ep)
where the product is over (finite) prime ideals w of ko'
G ~ G G - G G

Proof Ik Pk/Pk = Ik /(Ik N Pk) = (Ik /Pko)/(Pk /Pko). The

G .
numerator has order [Ik :Ik‘][lk :Pk ] =nh Te by 1.4. Since by
[e) o] [o] o]

1.3 its exponent divides n, the denominator is PkG/pk =

(o]
er

1R

N
(Py /P1)

1-0 x ©F 1-¢ l-ces 1
({aeK|a €EGI/LED" = ((K aE/ES )= H™(N,E,)

€.,
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1.7 Corollary

The number of strongly ambiguous classes in k/ko

is a multiple of

1-0 1-0
(b, T8 [k AE :E A K]
0o

P k'K
i)
n[EL:NK/LEK]
3 hk Hpe
ii) o
nr(L)+l[W:WGWn]
I
o B U6
iii) 0

Proof  Define B8 ¢ ZG] /Z[G]N by B, = (1-0) " (1-0)*. Then

from [11]51.7, there is a direct sum decomposition Z{G]/Z{G]ﬁ

® OSi<fz[G]Bi which yields

1 _ By
HONED = B .

1
i fH (N’EK)

Here BO and 81 can be replaced by ep and- e3 respectively so

that

1 e o 1 -
HO(N,Ep) ¥ | divides |H (N,EK)|1H1(N,EK)F| 1 The second

factor is just [Kl—oszk:E 1-0

K n k]

whilst the first can be translated
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-1
using the value Q(EK) =n for the Herbrand quotient given, for example,

in [13]. Thus |H'(N,Ep)| = n|H (N, 7, )

= n[EL:N This gives

K/LEK]'

(i) from Theorem 1.6.

For (ii) the part of the denominator of 1.6 due to torsion

- 1-
in E_, must be extracted. It is [kl S Aw:E %A W]. The non-torsion

K k

o 1 _ . . . -
part dividegs H (N,EK/W) n[EL/W.NK/LEK/W] which itself divides
1-0

+1 -
"' ko L e k179A W choose « € k such that £ = ol”°, Then

n N (1-6)N
= o

I =z = 1 because W‘:KN. Clearly ko(E,OL)/k0 is normal.

But G has no normal subgroups other than those containing or contained

by N. Thus o ¢ ko implies L = ko(C). Also ¢ € ko implies a0 € ko

1-¢ 1-0
and hence 7 = 1., So (k " W)/(Ek nW) is trivial unless possibly

when L<:ko(nVl), and then its order divides [ﬁ:WGWn]. In particular,
n
if k = ko( /a) and a prime not dividing n is ramified in k/k0 then

- -3
o cannot be a unit and [kl Gﬂ Wt Ek1 n W] = n.

For the other parts consider the denominatior of 1.6 again. It

G ~ l-0 X ~ 1l-0 1-0
comes from P, /Pko = {ae k|a eEK}/k0 E, % (k7 a EK)/E§ . This has
- . 1 ~ 1-0 { -N -
the factor group (kl %n EK)/Ek ¥ k"% )" )/ (1-0)

-0
( K

-( -N
1 n E n-N

k k

W) /

~ ~

- -N
< &N, EK)/Ekn where the isomorphism is given by the class of

al_o € kl-cn EK mapping to the class of an_N. This is well-defined:

1~ %
firstly because o g determines a up to an element BG:Lxr\k =

-~ -

k x and (dB)n-N = an—N for such B; and secondly because if

o' "% =zew then N = 2M)/(-0) _  n(n=l)/2

= 0

= 1 by the oddness

of n. The map is certainly surjective., For the injectivity suppose

-~ ~

- 1- - -N
al 9 ek OAE maps to Ekn N Then (aE)n =1 for some € ¢ E_,

K : k
n-N = 1-o.n o _ aN(l_c)= 1

1~
Without loss of generality o 1l so that (a ) = (an)
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1-0 ~0
whence @ € k1 ~ W represents the trivial class. The subgroup

-0 1-0
initially quotiented out was (k1 n W)/(Ek A W) which has order
r. G. n

dividing (W:W W ], as was shown above, This completes the proof of

(iii) and gives the last part.

Remarks When »n=% is prime and h is prime to £ these estimates

k0

give lower bounds for the order of an elementary abelian %-group within
the class group of k and hence also a lower bound for the minimal
number of generators of its 4-Sylow subgroup. Part (iii) and its

-r(k )+
r(k)-r( o)+l therefore generalise Frohlich's

approximation hkoﬁweg/n
Theorem 1 in [3] and its proof. This approximation yields the result
of Connell and Sussman's Theorem 1 in [2] for k/ko when the degree
is prime; but the analogue for general n may be weaker (vid. 1.5).
However, r(L) + 1 ¢ ;(k) - r(ko) with equality possible only when
f = n-1, Therefore the estimate in (ii) is at least as good as that

from (iii) and the rank interpretation for (ii) generalises Gerth's

Proposition 3.4 in [4].

A good knowledge of the unit group of K allows one to obtain

still better estimates for the divisibility of hk:

1.8 Theorem The quotient of ambiguous ideal classes modulo strongly

ambiguous classes is isomorphic to

€1

X
((NK/LK N EL)/NK/LEK)
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e

G* G -~ N* °F N
Proof (Ik /Pk)/(Ik Pk/Pk) = (IK /IK PK
e_(1-0) (l-0)e

N N* °F N_ . 1-0 _ N * ¥ 10
= (IK ) /(IK PK) = (IK ) /PK

e., e
_ Yy, -0 o i & L,1-0

{() lNK/La € EL} y PK {a e K] ¥K/La € EL} / EKx{

e
- )
= (N K n EL) / N The first isomorphism is by Lemma 1.2. The

K/L K/LEK'
subsequent maps are precisely those used by Hasse in [7] Ia §13:
multiplication by 1-0, mapping to a generator of a principal ideal,

and applying the norm for K/L. The isomorphisms are proved by him and

are straight-forward when Hilbert's Theorem 90 is borne in mind and it

is observed that NK/L and e? commute,
1.9 Corollary Suppose L/k0 has u unramified infinite primes.

Then the quotient of ambiguous classes modulo strongly ambiguous

2
classes has order dividing nuf/ [W:WnWGj. In particular, when u=0

then the quotient is isomorphic to

e

*
(N, K AW)/(N nW)) .

K/L K/LEK

Proof Let Ci be the decomposition group of one infinite prime

divisor in K above the infinite prime i of ko. By hypothesis,
Ci has order 2 for all but u valuations i, and without loss of
generality Cic F as n 1is odd. When Ci has order 2 it is generated

£/2
by Y=¢/

which inverts elements of N. Write Ciziﬁ]N for the
subgroup of :z&ﬂ fixed on the left by Ci and on the right by N,

EL/W is torsion free and (vid,. e.g. [10] §4) is isomorphic to a right

submodule of finite index in

Moo= <sEiCiZZ[G]N)/z<:Bié).
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~

M 1is generated by the éigﬁ = géiN where geF and so the effect

of e,f is determined by the values of CiN3~.

Suppose ¢0¢—1 = cr so that r has order £ modulo n and
then set
i
f-1 r-1 . | f/2-1 i i+f/2 ..
T i ~ r+r i i+f/2
=7 SR TRIEE ) ()’ ’%
i=0 j=0 i=0 2n

It is immediately verifiable that (l-¢g)% = %(1-0) and that

£f/2-1 . . .
_1_(r1+f/2 _ r1)¢1.

N%® = ﬁ(y—l) z Hence C.N% =0 when C. has
i i

i=0 2
order 2 and yciN'3< =-—CiN?,' for all i, Thus M% ®,8 has
dimension at most %uf over @ for this choice of % . The same is

e
W)

=
therefore true of (EL/W)%-QD;ZQ and shows that ((N LK " EL)W/N N

K/ x/LEK
nuf/2

has order dividing

e
It i t nsid the N i
remains to consider subgroup ((NK/LK AW/ ( K/LEKr\V))
of the group in 1.8 due to torsion in EK. w? is contained in the
denominator because cn = N C for Zewel, If T € WG then,

K/L

modulo elements which fix ¢ and multiples of n, we have

-1 riay f-1
=) ) ol = ¥ r' = of-/e-1 = 0. so
i=0 j=0 i=0
G ¥ n . . .
(W) < w and there is a natural surjection from
G n G . . .
W (W/\NK/LK Y/Ww to the group under consideration, given by
G °3
C/WnW — (C/(NK/LEKr\W)) . Hence the order of the group divides

[W:WnWG]. The exact sequence

l — (NK/LK n W)/(NK/LEKr\W) — (NK/LK ~ EL)/NK/LEK

— (NK/LK n EL)W/NK/LEK.W — 1
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remains exact when fixed by the idempotent e So the above bounds

.
-
P

on the outer two groups of

e

LK r\W)/(NK/LEKr\W) - ((NK/LK nEL)/N

R

e,-;,\

A )

/ k/L.Ex

e

-

- «NK/LK n EL)W/N W) — 1

K/LEK'

place the required bound on the central group and yield the required

isomorphism between the first two groups when u = O,

1.10 Corollary Suppose L/ko has no unramified infinite primes and
. o€ t
L generates Wr\NK/LK over w"NK/LEK Choose K such that
1-0
Z =N ¢ and an ideal W in K for which ) = A . Then the

K/L

class of NK/kgl generates the ambiguous classes of k/ko over the

strongly ambiguous classes.

F
Proof Under the maps of 1.8 and 1.9 the image of NK/kGL is ¢,
which generates the group of 1.9.
1.11 Lemma Suppose k/k0 is a pure field extension of a totally

real field. Then the quotient of ambiguous by strongly ambiguous classes

is isomorphic to

(NK/LK r\W)/(NK/LEKf1W).
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Proof Here L is obtained from ko by adjoining an nth root of

unity £, and so L/ko has no unramified infinite primes. Now J
-1

-1 r
generates W/Wn and assuming ¢0¢ = of gives ;¢ =z . So,
u f-1 ri-1 i
modulo elements which fix /W, F= ) o Zj_o o9¢* = f. Hence
i= =
e
i
(W/Wn) = W/Wn and e acts as an automorphism of the group in 1.9.

In fact e31 fixes the group.
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2. The Principal Genus of k/ko.

Let % denote the Hilbert class field of a field Q, 1i.e.

a
its maximal abelian unramified extension, and let Q b be its abelian

closure. The (relative) genus field of 2 over a subfield Qo is
defined to be Q*n Qﬂoab; and the associated genus group is the factor
group of the class group of {! corresponding to this extension of .
The genus group can also be written as a quotient of the group of ideals

in 2, and then the subgroup factored out is called the principal genus.

As before, suppose Kyko is a metacyclic Frobenius extension.
Then K/L 1is cyclic of odd degree n and its (relative) principal genus
. l-o .
is known to be PKIK where 0 generates Gal(XK/L) (vid. [13]).

Hasse's analogue ([7] Ia §13) of Hilbert's Theorem 90 shows that this

i i P_Ker XN is the kernel of the
is precisely the group Py er;K/L where KerliK/L

norm map IK - IL. Thus & € IK is in the principal genus if, and only
if, NK/Lfl = NK/L(a) for some aeK. This interpretation also holds

for the principal genus of k/k° by Theorem 2.2 (iii). However,
the genus number and the ambiguous class number, which coincide for

K/L need not be equal for k/ko.

The analogue to Hilbert's Theorem 90 for k/kO is:

o : - _ l-g
2.1 Lemma i) If oaek and Nk/kg = 1 then a = NK/k(B )
for some 8eK™,
g 1=
‘3 UL = = N UL )
ii) If ® ely and Nk/koc (1) then U \K/k( )

for some 2& €IK'
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Proof Let S5 Dbe a set of representatives for the conjugacy classes
l1-0 X
of N-1 under F. 1f Nk/ka =1 then o =8 for some ReK by
o]
- l-g
Hilbert's Theorem 90. Here 31 9 is fixed by F and so o =g =
~ _1 -~ -~ -~ ~
1-g N- hgh l-g,-SF =S, (1-g)F -S.1~-0
(6" N Ineplgesheh T o (gloo,FF _ (o8, a-0) = N, (BT,

as required. The second part is analogous using Hasse's lemma (op.cit.).

2.2 Theorem i) The ambiguous class number of k/ko is

.

v1ie F F(l-0)
I "1 /1%

ii) The genus group of k/ko is isomorphic to

. F (1-0)F
Cko X CK /CK .

iii) The (relative) principal genus of k/ko is PkIK(l-G)F,
i.,e. the group of ideals (y ¢ Ik such that Nk/kél = Nk/ko(a) for

some qek.

A comparison of (i) and (ii) shows that for k/ko the ambiguous
-0 -
class number will differ from the genus number if CKF(1 ) and CK(l NF

have different orders. This is usually the case for pure fields (vid.

Section 3).

Proof The first part is just Theorem 1.1 and the exactness of

Le—s CKG_* CKF_* CKF(l-o)_> 1

The maximal abelian extension of ko unramified over k and with

degree prime to n is unramified over ko and so corresponds to the
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class group Ck ‘. The maximal abelian n-extension of ko
o

unramified over k is the maximal abelian n-extension of ko unramified
over K, It is therefore the maximal abelian n-extension of L in K*
which is fixed under F (i.e. under the action of Gal(L/ko) suitably

extended). The corresponding genus group for this field is

l1-e
F 1
CK/CK CK - because the group for the class field of k is

l-e -
cc, T oz ocf t-o

x’Cx CK and the genus group for K/L is CK/CK

Part (ii) now follows from the exactness of

l-e
l-0 F F F. 1-0
— —_— —> _—
1 (CK ) CK CK/CK CK 1.
l-e d
) N 1-
The genus group itself is therefore Hk/Ck CK( O)F where
eN = n "N. Hence the principal genus is the group of ideals with
l-e ~
. ' N, (1-g)F - . .
class belonging to Ck CK From 2.1(ii) this group is
-5)F 1-9)F
included in PkIK(l G)F. Conversely, if czeIK and Ué o)F is in
-5)F(n-N 1-0)F
a class of Ck' then ‘Uél o) F(n-N) = Ué o)Fn is in a class of
1oy (1-)F Ame o
Ck . So w is in a class of Ck , and the principal
L (1-0)F . ,
genus is indeed PkIK . The equivalence of the other formulation
in (iii) is clear using 2.1(ii).
2.3 Corollary The genus group of k/ko is isomorphic to
N I, /N P .
k
k/k° k k/ko

- 1-0)F
Proof Apply N to I /P I,( O)F which is the genus group, and

k" "k'K !

use the alternative definition of the principal genus in 2.2(iii) to

show this is a monomorphism.
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. X _ _ (n-1)/f
Now if ae ko and a = NK/LQ then a = Nk/ko(a/NK/ka ).
Hence:
2.4 Lemma ae k0 is a norm in k/ko if, and only if, it is a

norm in K/L.

For each prime ideal ;)i (1gigt) of k0 which is ramified in

X
(o]

K/L 1let . be a prime of L above and for a e k let
i TJ:l

Xi(a) = (-%égik ) be the norm residue symbol. This yields a map
i

X

X : ko > Nt defined by X(a) = (xl(a),xz(a), ...,xt(a)).

2.5 Lemma a e kox is a norm in k/ko if, and only if, a ¢ kery.

Proof a 1is a norm in k/ko <=>a 1is a norm in K/L (by 2.4)

<=> a 1is a local norm for every completion of K/L (since K/L 1is
cyclic) <=> a ig a loecal norm for each prime ideal of L. ramified in
K (since the oddness of n  ensures that no infinite valuation is

ramified) <=> ('gﬁé%k ) =1 for each conjugate 3 of each prime ideal

R, <> (%f/é) =1 for lgist (since <§§K"/L> = T‘l(.as,;'c/L T
i 1

for t e Gal(L/k)) <> y(a) = 1.

Suppose NIk is the group of ideals in k which have principal

norms in ko. If &« and N X = (a) for ae:kO then

e . I
N
k k/kO
a homomorphism 7% . NIk—q x(ko)/x(Eko) can be defined by

N(o) = y(a) mod X(E, ).
(o]
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2.6 Theoren (cf.[s] & [6]) ker( is the principal genus of L2
. . G - .
Proof Assume (@t ¢ NIk satisfies Nk/kot (a) Then by Theorem

2.2(iii) ¢t is in the principal genus if, and only if, a¢ is a norm in

k/k, for some unit ¢ of ko, i.e. if, and only if, af € kerX.

When the class number of ko is prime to n the map /4 can be

extended to the whole of Ik' Choose he Z such that hhk Z 1 mod n.
hk n o
For o1 ¢ Ik with Nk/k Q"% = (b) we must have ()" =1 and
o] hhk
therefore X/ () = /(e Oy = x(bh)modX(Ek ). This is consistent

o]
NIk as defined above. Clearly for this extended map kerA/

with Y/ on

is the group of ideals whose hk th power is in the principal genus.

o
Hence:
2.7 Theorem When hk is prime to n the n-subgroup of the genus

o
group of k/k_  is isomorphic to AU(Ik).

2.8 Corollary When hk is prime to n the genus number of k/ko
ot N —_— o
divides
hk nt
o
E‘Ek Ee Nk k]
o o

Proof AQ(Ik) is a subgroup of x(k:)/;«Ek ) and this is a subgroup
o

of Nt/X(Ek ), which has order nt/[?k :N

o o K/kg

this bounds the n-component of the genus number, and the factor prime

k/wEkl. By the theorem
o

to n is given precisely by Theorem 2.2(ii).
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Remark Putting f = 1 and using the product formula for norm residue

symbols to replace t by t-1 in 2.8 provides the familiar formula

for the genus number of K/L.
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3. Pure Fields of Prime Degree over @

Let £ be an odd rational prime, £ a primitive fth root of
unity, and m a positive Lth power free rational integer. For this
section let k =@, k = @(m), L =Q(r), and K= Q(4vm, ).

These fields satisfy the hypotheses of the earlier sections. $So the
strongly ambiguous classes are generated by the primes of k which
are totally ramified over Q. From Wegner [12] these are the prime

. s R -1 2 . .
ideals dividing (m) and, if m Z1 mod &, also the prime ideal

above (). Hence:

3.1 Theorem Let O, be an ambiguous ideal of k = Q(Q/m), Then

ot = (a) for aeQ defined by Nk/QUL = (a). Here a 1is a product

~1 2
of oth powers, primes dividing m, and, if ml Z 1 mod 27, also

the prime £. In the case that ( is principal, a is a norm.

3.2 Theorem For a rational prime p and aeQx let \)p(a)ez

denote the multiplicity of p as a factor of a. Then a 1is a norm

13 k/Q@ if, and only if,

vp(a) -vp(m)

® . , -1 /8 .

1 mod p

for all primes p dividing m with p = 1 mod %.

Proof By Lemma 2.5 a is a norm in k/Q if, and only if,

xi(a) = 245£E-) = 1 for 1<igt. Since there is only one prime

B3
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ideal in L above (%) the product formula for norm residue symbols
permits this prime to be ignored if it occurs. The remaining ramified
primes are the »n#¢ which divide m. Using the properties of Hasse's

norm residue and power residue symbols (vid. [7] II §11) for the prime

in L above (p) # (1) one obtains ( E%ﬁlé ) = ( E*E-)
v v (a) vo(m -y () Y 8
(B ) = (2 ). Let nm = o Py
3 Q
where f(p) is the order of p modulo ¢. Then gn(p) = NL/Qg-l. So
(%) =1 <=> xn(p) = 1 mod B <= xn<p) = 1 mod (p) for =xcQ. Thus
v_(a) -y_(m)
{ E§§LE Yy =1 <= (m P, P )n(p) = 1 mod p. This congruence is

automatically satisfied when n(p) = O mod p-1, and therefore when g
does not divide p-1. Otherwise p = 1 mod 2, which gives n(p) = (p-1)/:%.

The theorem now follows.

2
3.3 Corollary If ot is an ambiguous ideal of k with g = (a)

and a does not satisfy all the congruences of Theorem 3.2 then aq

is not principal.

Proof Combine Theorems 3.1 and 3.2.

Let {pi{lSiSt} be the set of ramified primes as described above,

and let {pillsiss} be the subset of pz1 mod £. Define
vp(a) -vp(m) (p-1)/¢
xi'(a) = (m a ) mod p for p = P and 1lgigs. Then
t ' 1 .
X (a)y = (x1 (a), Xq (a),..., XS'(a)) provides a homomorphism in

effect from QX to FZS where FQ is the finite field ¢f 1 elements.

X

By 3.2 the kernel of ¥ ~is the subgroup of ae Q which are norms

in k/Q. Composing this with the map v R M Q% given by




VIIL. 23

ot +>|a] for N _ G = (a) yields a homomorphism /¢': I —TF ~. As
k/Q k 2
in §2 the kernel of /f/' 1is the group of ideals whose rorms are norms of

principal ideals. Thus, as in 2.6 and 2.7,

3.4 Theorem kKer /' is the principal genus of k/Q and MU'(Ik)[

is the genus number.

3.5 Theorem i) The genus number of k/Q@ is ¢, i.e. /' is

surjective;

N
ii) the order of Q/'(I, ) is that of the quotient

of strongly ambiguous clagsses by the subgroup of classes representing

ideals of the principal genus;

iii) every ambiguous class is strongly ambiguous, if

and only if, ¢ NK/LEK or ¢ ¢ NK/LK'

. . 2-1 2
Remark ( P] Lemma 4) ¢z ¢ NK/LK if, and only if, p. = 1 mod g
for Ifift with Py # 2. Thus for most m every ambiguous class is

strongly ambiguous.

Proof Frohlich has already proved (i) in [3]. Alternatively,

(c.f. [1], Theorem 4.2), let q be a rational prime. Fixing the value

of Xi'(q) only forces q to belong to certain arithmetic progressions
X

modulo pi. Hence x' : Q@ *‘E&s is surjective even when restricted

to primes q = 1 mod &. But such primes have prime factors Iq and

({Q-l of degree 1 and -1 respectively in k. So v(ql) = q and
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K' = X',V 1is surjective. Note that the ideals Ull generate the 25

cosets of the principal genus in I and give rise to an elementary

k,

abelian factor group of the class group of k.

The second part comes from Theorem 3.4 and the last part from

Lemma 1.11.
t
3.6 Theorem  (c.f. Fr¥hlich [3] Theorem 3). Let 2° be the order

~f 40'(IkN), and let lt be the number of strongly ambiguous classes.

Then +t' 2 max(s',t-(2+1)/2) and the %-class number of k = Q(l/m)

is divisible by

s+t'-s'

Proof By Theorem 3.5(i) the genus group provides 2% cosets of the

principal genus and by (ii) of the same theorem the ambiguous ideals

A 1

provide & s classes in the principal genus. The lower bound on t°'

is just Corollary 1.7(ii) with Theorem 3.5(ii).

Remark s,t, and s' can be calculated very easily from m and
the definition of /4Y' and so the given lower bound for t' immediately

yields a divisor of the 2%-class number.
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