SÉMINAIRE DE THÉORIE DES NOMBRES DE BORDEAUX

MICHEL OLIVIER

Répartition des valeurs de la fonction « somme des chiffres »

Séminaire de théorie des nombres de Bordeaux (1970-1971), exp. nº 14, p. 1-7 http://www.numdam.org/item?id=STNB_1970-1971—____A14_0>

© Université Bordeaux 1, 1970-1971, tous droits réservés.

L'accès aux archives du séminaire de théorie des nombres de Bordeaux implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

REPARTITION DES VALEURS DE LA FONCTION ''SOMME DES CHIFFRES''

par

Michel OLIVIER

-:-:-

§. 1. - INTRODUCTION

1.1. - Soit $g \ge 2$ un nombre entier. Ecrivons chaque entier n dans la base g:

$$n = \sum_{k=0}^{\infty} e_k(n) \cdot g^k$$
,

où $e_k(n)$ est à valeurs dans $\{0, 1, \dots, g-1\}$.

On définit la fonction "somme des chiffres" de N dans N, par :

$$s(n) = \sum_{k=0}^{\infty} e_k(n)$$
.

Il est facile de voir que si j et m sont des entiers, on a :

Card
$$\{n \le x ; s(n) \equiv j \text{ (mod m)}\} \sim \frac{x}{m}$$
.

En 1966, A. O. GEL'fond [2] a montré le :

THEOREME 1. Si &, m, &', m' sont des entiers tels que :

$$m \ge 2$$
, $m' \ge 2$ et $(m, g-1) = 1$,

on a: $\operatorname{Card} \{ n \leq x ; s(n) \equiv \ell \pmod{m} \text{ } \underline{et} \text{ } n \equiv \ell'(\operatorname{mod} m') \} \sim \frac{x}{m. m'} \text{ } .$

En 1967, M. MENDES FRANCE [3] a retrouvé ce résultat en utilisant les fonctions pseudo-aléatoires.

Enfin, en 1970, J. BESINEAU [1], par cette même méthode a montré le :

THEOREME 2. Si g et g' sont des entiers ≥ 2, ℓ et ℓ' des entiers, m et m' des entiers ≥ 2 tels que

$$(m, g-1) = (m', g'-1) = 1$$
,

on a

1. 2. - Ce dernier théorème donne la solution du problème proposé parA. O. Gel'fond dans [2].

Nous nous proposons ici de résoudre un autre problème proposé par A.O. Gel'fond; nous allons démontrer le :

THEOREME 3. Soient m, g, j des entiers tels que:

$$m \ge 2$$
, $g \ge 2$, $(m, g-1) = 1$.

Soit

$$T_1(x) = Card\{p \le x, s(p) \equiv j \pmod{m}\}$$
,

où la lettre p désigne un nombre premier. On a :

$$T_1(x) = \frac{\pi(x)}{m} + o(\frac{x}{\text{Log } x})$$
,

Π(x) étant le nombre de premiers inférieurs ou égaux à x.

Notation : dans toute la suite, p désignera un nombre premier.

Dans le paragraphe 2, nous donnerons quelques lemmes préliminaires à la preuve de ce théorème; et au paragraphe 3, nous esquisserons sa démonstration.

Signalons que, de la même manière, on peut montrer le :

THEOREME 4. La suite $(x s(p))_{p\geq 2}$ est équirépartie modulo 1 si et seulement si x est irrationnel.

1.3. - Remarquons qu'une condition du type (m, g-1) = 1 dans les hypothèses du théorème 3 ne peut être évitée.

En effet, on a $s(n) \equiv n \pmod{g-1}$, et l'égalité $s(p) \equiv 0 \pmod{g-1}$ est équivalente à

$$p \equiv 0 \pmod{g-1}$$
.

Par conséquent $T_1(x) = 0$ dès que $g \ge 3$, et le théorème 3 tombe.

§ 2. - QUELQUES LEMMES PRELIMINAIRES

Dans toute la suite, \(\lambda\) désignera la quantité:

$$\frac{1}{2\log g} \left(\text{Log g sin} \, \frac{\pi}{2m} - \text{Log sin} \, \frac{\pi}{2 \, m \, g} \right) \ .$$

Il est aisé de voir que $\frac{1}{2} < \lambda < 1$.

2.1. - LEMME 1. Soient v, m, g, q des entiers tels que:

$$m \ge 2$$
, $g \ge 2$, $(m, g-1) = 1$, $1 \le q \le m-1$, $v \ge 0$.

Soit a un nombre réel. On a :

$$\left| \begin{array}{c|c} \frac{k-l}{l} & \frac{\sin \pi g \left(\alpha g^{V} + \frac{q}{m}\right)}{\sin \pi \left(\alpha g^{V} + \frac{q}{m}\right)} \\ \end{array} \right| < g^{\lambda k + 1} .$$

Une démonstration de ce lemme se trouve dans [2] de façon implicite. Nous ne la donnerons pas.

2.2. - LEMME 2. Soient m, g, d, q des entiers tels que:

 $m \ge 2$, $g \ge 2$, $d \ge 1$, $1 \le q \le m-1$.

Posons

 $S(n) = \sum_{\substack{0 \le j \le \frac{n}{d} \\ f(x) = \frac{k-l}{l}}} \exp(2i\pi \frac{q}{m} s(n-dj))$ $\frac{et}{\int_{v=0}^{k-l} (\sum_{l=0}^{l} \exp(2i\pi \frac{q}{m} l). x^{l} g^{v})} \frac{et}{\int_{v=0}^{l} l^{l}}$

où f est une fonction méromorphe sur $\mathbb C$ à valeurs dans $\mathbb C$, et ρ est un entier, $1 \le \rho \le d$. On a, pour tout $k \ge 0$, pour tout ρ :

$$S(g^{k}-\rho) = \frac{1}{2i\pi} \int_{|\mathbf{x}|=\frac{1}{2}} f(\mathbf{x}) d\mathbf{x}.$$

Preuve: Elle s'appuie essentiellement sur l'égalité suivante que l'on démontre terme à terme facilement:

$$\frac{k-1}{V} \frac{g-1}{(\Sigma)} \exp(2i\pi \frac{q}{m} \ell) \cdot x^{\ell} \cdot y^{v} = \sum_{n=0}^{g^{k}-1} \exp(2i\pi \frac{q}{m} s(n)) \cdot x^{n}.$$

Et on termine la démonstration en calculant le résidu de f au point 0 qui est le seul pôle de f dans le cercle $(|x| = \frac{1}{2})$.

2. 3. - LEMME 3. Avec les mêmes hypothèses qu'au lemme 2 et (m,g-1)=1, on a : $|S(n)| \le c_1 \cdot n^{\lambda} ,$

 c_{1} étant une constante ne dépendant que de m et g .

Preuve: on utilise principalement la g-additivité (au sens de Gel'fond) de la fonction s, c'est-à-dire

$$s(n_1+n_2) = s(n_1) + s(n_2)$$

si $n_1 = g^v n_3$ et $n_2 < g^v$.

Donnons le principe de la démonstration.

On établit facilement la relation de "récurrence" :

$$s(n+\epsilon g^k) = \exp(2 i \pi \frac{q}{m} \epsilon) . S(n) + S(\epsilon g^k - \rho)$$
avec $1 \le \rho \le d$, si $n < g^k$ et $\epsilon \in \{0, 1, ..., g-1\}$.

Par conséquent si on écrit l'entier n dans la base g:

$$n = \varepsilon_1^{k_1} + \ldots + \varepsilon_j^{k_j} \quad \text{avec} \quad k_1 > k_2 > \ldots > k_j \ge 0 ,$$

la majoration de |S(n)| est ramenée à la majoration de $|S(g^k-\rho)|$ avec $1 \le \rho \le d$.

Puis, à l'aide du lemme 2, on se ramène au calcul de l'intégrale $\frac{1}{2i\pi}\int_{|\mathbf{x}|=\frac{1}{8}}f(\mathbf{x})\,d\mathbf{x}\;.$

En remarquant que :

$$\lim_{R \to \infty} \frac{1}{2i\pi} \int_{|x|=R} f(x) dx = 0 ,$$

on obtient:

$$S(g^k - \rho) = -\Sigma' Res(f, exp(2i\pi \frac{t}{d}))$$

où Res(f, $\exp(2i\pi\frac{t}{d})$) désigne le résidu de la fonction f au point $\exp(2i\pi\frac{t}{d})$, et Σ' la somme étendue aux indices t tels que $(\exp(2i\pi\frac{t}{d}))$ soit pôle de f.

Il est facile de voir que :

$$\left| \operatorname{Res}(f, \exp(2i\pi \frac{t}{d})) \right| = \frac{1}{d} \frac{k-1}{v=0} \left| \frac{\sin \pi g(\frac{t}{d} g^{v} + \frac{q}{m})}{\sin \pi (\frac{t}{d} g^{v} + \frac{q}{m})} \right|.$$

Il ne reste plus qu'à utiliser le lemme 1, et la relation de récurrence pour majorer $\left|S(n)\right|$.

2.4. - LEMME 4. Avec les mêmes hypothèses qu'au lemme 3, on a :

$$\left| \sum_{1 \le j \le n} \exp(2i\pi \frac{q}{m} s(dj)) \right| \le c_2 (nd)^{\lambda}.$$

Preuve : c'est immédiat en vertu du lemme 3.

Remarque : pour la suite, il est important de constater que les constantes c_2 et λ ne dépendent pas de d.

§ 3. - PRINCIPE DE LA DEMONSTRATION DU THEOREME 3

Elle découle immédiatement du théorème suivant

THEOREME 5. Soit $f: \mathbb{N} \to \mathbb{C}$ une fonction airthmétique, vérifiant:

- (i) f(n) = O(1) pour tout n;
- (ii) il existe deux constantes λ et c telles que $0 < \lambda < 1$, c > 0 et pour tout $d \ge 1$ entier,

$$\left| \sum_{1 \le j \le N} f(dj) \right| \le c(Nd)^{\lambda}.$$

Alors on a :

$$\sum_{p \le N} f(p) = o\left(\frac{N}{\text{Log } N}\right) .$$

Preuve : on raffine une méthode de I. M. Vinogradov [.7]. Nous ne donnerons pas la démonstration. Elle se trouve dans [6].

Nous sommes désormais en mesure de prouver le théorème 3.

On écrit:

$$T_l(x) = \frac{1}{m} \sum_{q=0}^{m-l} \sum_{p \le x} \exp(2i\pi \frac{q}{m} (s(p)-j))$$
,

ou encore

$$T_{l}(x) = \frac{\pi(x)}{m} + \frac{1}{m} \sum_{q=1}^{m-l} \exp(-2i\pi \frac{q}{m} j) \sum_{p \leq x} \exp(2i\pi \frac{q}{m} s(p)).$$

La fonction $n \to \exp(2i\pi \frac{q}{m} s(n))$ vérifie les hypothèses (i) et (ii) du théorème 5 grâce au lemme 4.

Nous avons donc

$$\sum_{p \le x} \exp(2i\pi \frac{q}{m} s(p)) = o(\frac{x}{\text{Log } x}),$$

ce qui termine la démonstration.

§ 4. - REMARQUE

4. l. - Signalons pour terminer que le théorème 3 est lié au problème suivant :

Existe-t-il une infinité de nombres premiers dans la suite de Fermat $2^{2^n} + 1$?

Soit s la somme des chiffres en base 2.

Dire qu'il y a une infinité de nombres de Fermat premiers, c'est dire qu il y a une infinité de premiers p tels que s(p) = 2.

Le théorème 3 dit que pour tout entier $m \ge 2$, il y a une infinité de nombres premiers P tels que $s(p) \equiv 2 \pmod{m}$.

4.2. - Enfin, répétons le dernier problème posé par Gel'fond dans [2]:

Evaluer : card $\{n \le x : s(n^2) \equiv i \pmod{m}\}$.

-:-:-:-

BIBLIOGRAPHIE

- [1] J. BESINEAU. Sur un problème de Gel'fond relatif à la fonction somme des chiffres. Comptes Rendus Acad. Sciences Paris (1971), tome 272, n° 7, p. 453-456.
- [2] A. O. GEL'FOND. Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arithmética, XIII (1968), p. 259-265.
- [3] M. MENDES FRANCE. La fonction "somme des chiffres" et autres fonctions analogues. Une caractérisation des nombres de Pisot. Séminaire Delange-Pisot-Poitou (théorie des nombres) 8e année (1966-1967), n° 8.
- [4] D. J. NEWMAN. On the numbers of binary digits in a multiple of three. Proc. of A. M. S. 21 (1969), p. 719-721.
- [5] M. OLIVIER. Sur la représentation en base g des nombres premiers. Comptes Rendus Acad. Sciences Paris (1971), tome 272, n° 14, p. 937-939.
- [6] M. OLIVIER. Un théorème sur les fonctions arithmétiques (à paraître).
- [7] I. M. VINOGRADOV. The method of trigonometrical sums in the Theory of Numbers. Interscience Publishers (1954).

-:-:-:-

M. OLIVIER

Université de Bordeaux 1 U. E. R. de Mathématiques et d'Informatique 351, cours de la Libération - 33 - TALENCE