SÉMINAIRE DE THÉORIE DES NOMBRES DE BORDEAUX

MICHEL MENDÈS FRANCE

Sur le calcul d'une moyenne de Weyl

Séminaire de théorie des nombres de Bordeaux (1969-1970), exp. nº 1, p. 1-2 http://www.numdam.org/item?id=STNB_1969-1970 A1_0>

© Université Bordeaux 1, 1969-1970, tous droits réservés.

L'accès aux archives du séminaire de théorie des nombres de Bordeaux implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SUR LE CALCUL D'UNE MOYENNE DE WEYL

par

Michel MENDES FRANCE

-:-:-

Ceci est un résumé de [2]:

Soit n≥0 un entier écrit en base 2 :

$$n = \sum_{p=0}^{\infty} e_p(n) 2^p.$$

On lui associe le nombre

$$\lambda_{n}(c) = \sum_{p=0}^{\infty} e_{p}(n) c_{p}$$

où c∈R est donné. On montre :

$$\lim_{n \to \infty} \sup_{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} \exp 2 i \pi \lambda_{k}(c) \right| = \prod_{p=0}^{\infty} \left| \cos \pi c_{p} \right|. \tag{1}$$

On en déduit les résultats suivants :

- (i) Si Σ $\frac{1}{\alpha_s^2} < \infty$, alors $B_1 = \bigcup (\alpha_s \ Z^*)$ est un ensemble normal. En particulier, soit $B \subset Z^*$. Une condition nécessaire et suffisante pour que B soit normale est que pour tout $q \in Z^*$, on ait $q B \subset B$ et $0 \notin B$ (On retrouve ainsi les résultats de [1]).
- (ii) Si β_1 , β_2 , ... sont du réels non nuls, $B_i = \bigcap_j (\mathbb{R} \beta_j Q)$ est normal, et de même $B_1 \cup B_2$.

Ces deux résultats ont été améliorés indépendamment par Rauzy [4] et Zame [5] (la condition $\sum_{s} \frac{1}{\alpha_s} < \infty$ est superflue).

Quant à la formule (1), elle sert de point de départ à de nouvelles recherches [3].

-:-:-

BIBLIOGRAPHIE

- [1] DRESS F. et MENDES FRANCE M. Caractérisation des ensembles normaux dans Z*. Acta Arithmética, 17, 1970, p. 115-120.
- [2] MENDES FRANCE M. La réunion des ensembles normaux.

 Journal of number theory, 2, 1970, 345-351.
- [3] MENDES FRANCE M. Les suites à spectre vide et la répartition (mod 1). Journal of number theory, à paraître.
- [4] RAUZY G. Caractérisation des ensembles normaux. Bull. Soc. math. France, 98, 1970, p. 401-414.
- [5] ZAME A. On normal sets of numbers. (à paraître).

-:-:-

Université de Bordeaux 1 U. E. R. de mathématiques et informatique 351, cours de la Libération 33 - TALENCE