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On deformations of monomial curves

Ragnar-Olaf Buchweitz

TU Hannover

1. What is a monomial curve(-singularity) ?

1.1. Let C be a proper, reduced curve over an algebraically

closed field of characteristic zero.

Let be an unibranched point of C.

Then let B be the formal ring of C at s.

B is a subring of ke[tll and B, the normalization of B.

B can be essentially generated as an k-algebra by polynomials

z o (t),...,z m (t) ,and choosing appropriate isomorphisms one
can assume:

, kl[t]] is a discrete valuation ring, so we have a valuation-map

Let r = v(B).  is a subsemigroup of (K,+) with the properties:

a) 06r 
’

b) 3 c 61N : c The smallest such c is called the

conductor of .

These properties imply that ltl-ris finite and the number of gaps g,

g = is called the genus g - ~ B : B].

Semigroups r £ lI with the properties a) and b) are called

numerical.
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1-3. To each ring B you can consider the corresponding affine ring

(in the following we will not distinguish between B and Ba unless

it is unavoidable)

Now there is obviously a special class of such rings: all the 
a.

are monomials, 

i

Such a ring B is called monomial.

Then we have:

( i ) B = k[ r3f or a numerical semigroup .

(ii) There exists a G m -action on spec B (the affine monomial curve):

g6G (k) operates as = ai = ai ai = ai z.Gm(k) operates as 1 = g*t - g . t 9 . 
1

There is a partial converse to (ii):

If C is an affine curve over k with G m-action, then C is a

Zariski-open subcheme of spec k cri for somer. ([K.] )
(iii) B has an isolated singularity at the origin iff).

1.4. By what was said earlier we have: 

~ 

~ 

~ i~} °

Each ring BgkCEt33 with value-semigroup F has a canonical filtration

F given by .

and we have

2. What can we do with monomial curves?

We can deforme them. ""°" * ’

For this let us first look at the , the cohomologyB
groups of the cotangent-complex of B = kCFJ.
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2.1. Let generating set for r . Choose a

presentation

with = t  .
Then there is a ? -action on P compatible with p and we can give
weights ai to the Xi and speak about homogenous elements.

2.1.1. Theorem (Herzog CH3 )

I can be generated by homogenous elements

2.2. There is the exact sequence:

(i) Hom..(Q,p7 k 0 is a free B-module generated by

the partial derivatives ’ a-graded b y assigning the

weights  E ) 
I

"

et k=1 1 be a set of generators f or the

relations between the F.:
J n

The Rk can also be chosen homogenous, i.e. such that

The images ~k of ~~ modulo I generate the relations
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between the F. modulo 12 in I/-r2 as a B-module.

An element of HomB(I/I2,B) can now be identified

with a column vector

B) such that r~.f = 0 .
f is homogenous of weight a iff

f. is homogenous of weight h.+a .
J J

x is homogenous of weight -a. ,

i 

( iv ) T being homogenous of degree 0 s T B is a 2-graded

k-vectorspace, which is finite-dimensional because the

singularity of B is isolated.

Therefore: T1 can be decomposedB

1 TB = B 
. 

iThe same result is true for the higher cohomology groups T BB

2, 2,1. Theorem

Proof:

Look at The dimension of 1m’ in degree n is

cardtai: ai+n because there is the

= 0 - the "Euler-relation" . A vector f

is in HomB(I/12,B)(n) iff implies hj+n = 
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2.2.2. Corollary: 1

Monomial curve-singularities aren’t rigid, i.e.

Proof:

because

but for every

2.2.3. Corollary:

is hyperelliptic i.e.

Proof:

Easy computation using a special generating set of r.

2.2.~. An example:

these are the (2x2)-minors of the matrix:
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2-3. By similar computations we obtain:

2.3.1. Theorem

Proof:

Look at the exact sequence

Then you get the long exact cohomology-sequence:

If v(x) is great enough, multiplication with x is the

zero-map on T 1 and T 2B B 
#

This yields:

shifting of degrees by N .

Following the lines of 2.2. it is now easy to obtain the result.

2.3.2. Corollary:

Proo f :



7

3. Now let’s deforme B:

3.1. As one knows, there exists a formal, versal deformation

of B over k:

M is called the base space or the moduli-space of the formal,

versal deformation.

S is a local, complete noetherian k-algebra with:

Let be a basis of T consisting of homogenous

elements with the weights e1,...,er resp.

Then: 
,

and the s. are the corresponding duals of the t. and have
i 1

weights -e. (!).
1

3.1.1. Theorem (CM)

The versal deformation is equivariant, that means there exist

Gm-actions on M and V making the maps in (x) equivariant.

3.1.2. Proposition

dim 
’

i.e. there exists at least one unobstructed first-order defor-

mation of C~ .
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Proof:

1. If T1 (n) = 0 for then is of a very special type

and the prop. is easy to check.

2. So let’s assume 0 T1(n) ~ 0.
nUI

Then there exists 

s. t. T 1(m) ~ 0 (Corollary 2.2.2),

but by (2..2.) ~ T2~n) = 0 for all 

and the obstructions to lift a deformation in T1(m) would

lie in 

The moduli-space M has the important linear subspaces M~,M~
defined by

3.2. The importance of M+ (Zariski, Teissier):

A homogenous one-parameter deformation over M~ corresponding

to a homogenous element 9 is given by equations:

and because the weight of s is lesser than 0 (TieD) = 0 by 2.2-4)),

the weights of the Fj increase. So we have a section
l.

+ ickin ut th oi t ’·a - rr, picking out the point "all X. = O".
:1.

M+ is a good candidate for equisingularity:

Let B’ be any ring with value-semigroup r as in 1.1.

Then there exists a one-parameter deformation with general fiber

B’ and special fiber B and this deformation is induced over H.

(If B is a complete intersection, Teissier has shown that M +

is the space parametrizing the curve-singularities with semigroup r .)
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3.3. The importance of M- (Pinkham):

One can projectivize the fibers over M-:

A homogenous one-parameter deformation over M- is given by:

and the weight of s is ositive, so the weights of the Fj
decrease. Fill in a homogenizing variable Z of weight 1:

and look at Proj 

Now there is also a section: Z = 0 , picking out the point

at infinity!

3.3.I. Definition:

Let C be a smooth projective curve (compact Riemann surface)

over k of genus g, x6C(k). Then

’ 

x = fn6M}there exists a meromorphic function f on C ,

holomorphic outside x, the degree of f at x

being exactly n)
.c 

1 
.

is a numerial semigroup.

The Weierstrass-gap-theorem = g.

x is called a V’deierstrass-point of C with semigroup ~’x.

3-3.2. Examples

1. A point with semigroup

- r = {O, g + 1, g + 2,...} is called ordinar

- r = {O, g, g + 2, g + 3, ...~ is called normal

- r generated by 2 and 2g + 1 is called hyperelliptic.

2. The semigroup of example (2.4.) is normal of genus 3.
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3.3.3. Let at 
g,1 ~ 

be the coarse moduli space of smooth

projective curves of genus g with a section, or equivalently

of pointed compact Riemann surfaces of genus g.

Set W = ~X,x) 6 ~’I. g,1 ~ rx = r .
Denoting by M- the open subset of 14~ given by the points

s

with smooth fibers we have:

Theorem (Pinkham .

This theorem can be generalized:

let M-,m denote the linear subspace of M- defined

there exists h 6 Aut ((X,x)) with

ord h = ni -
Then we have

3.3.4. Theorem

Idea of proof:

Any point xf.M has stabilizer acting as group ofs n m

non-trivial automorphisms on V x

3.3.5. Corollaries:

1. ~’ = ~ 2,2g+1 ~ : Any hyperelliptic Riemann surface has an

autmorphism of order 2 - "the interchanging of sheets" 
_

Proof:
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2. An automorphism of a pointed Riemann surface of genus g ~ 2

has order at most 4g+2.

Proof:

2.2.3.

3*3*6* Exam le

Let r be the semigroup of 2.2.4.

The fiber over M-,7 is given by the (2x2)-minors of the matrix

This curve is smooth for every t / 0, and so has an automorphism

of order 7.

This can also be seen in the following way:

There is a canonical morphism to [P1:

Eliminating X 1 and X2 and homogenizing we have the plane

algebraic curve

This is the famous quartic of F. Klein with 168 automorphisms,

so especially it has an automorphism of order 7.

4. Concerning the structure of the formal, versal deformation

there are the following questions:

~+.1. What is the dimension of the moduli-space M of the

formal, versal deformation? 
’
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From (3*1.2.) we know dim 
’

If there are smooth deformations then one knows more:

~..1.1. Theorem:

Let B be a monomial ring.

Let E be a non-empty component of M, s.t. the fiber over

a generic point of E is smooth. Then

dim E = 2g - 1 + r

with r = di "type of mk B
This theorem is a consequence of a result due to Deligne

4.1.2. Remark:

If B is monomial with semigroup r and if

then r = card(m-l (r ) - r ).

.1.,~, Corollary:

where m(B) denotes the multiplicity of B.

The equality sign holds in

(1) iff B is Gorenstein and in

(2) iff B is stable, i.e. m(B) = edim (B), the embedding 14~

dimension of B.

The next question follows almost immediatly from 4*1*1*:
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4.2. Are there smooth deformations for monomial curves?

The conjecture is that the answer is affirmative in general,

but this is known only for very few cases:

4.2.1. (Schlessinger)

B is a complete intersections

4.2.2. (Schlessinger, Schaps)

edim B = 3

4.2.1. and 4.2.2. are true without assuming B monomial.

4.2.3. edim B = 4 and the singularity of B

is Gorenstein. (This is a consequence of [B-E] .)

In all the three foregoing cases T B= 0 , i.e. there are no
obstruction.

4.2.4. B is an Arf-ring

(that means: B is stable (~..1.3.), and the same is true for

every infinitesimally-near overring)

In this case obstructions can occur:

Take for example r to be ordinary of genus g &#x3E;, 3 (3-3.2.).

Then dim = g2+g-1 , but 
,

dim E = 3g-1 , so there have to be obstructions.

So the question arises:

4*3* What are the possible singularities of the moduli-space?

Very little is known about this question and we will only give

an example to see’what can happen.
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4.3.1. Let r be generated by 12, 16, 20, 33f 37, 41 and 44 + Up

be the presentation of B = B~ (2.1.).

Then 
’

and these are the only non-vanishing eigenspaces of T for
B

positive eigenvalues.

Let l and t 2 be the non-trivial vectors of T- which
1 2 B

correspond to the elements

in Hom respectively.

Denoting by s 1 and s 2 the corresponding moduli of weight -1,

we get after a tedious computation:

, I .

where W is smooth. 
’ ’

M+ is obviously not reduced.

~+.3.2s Let r’ be the semigroup generated by r and one

element of (35,39, 431 -
Then T2(+3) = 0 so the obstruction of weight -3 can~els

and we get:

with W smooth, 

M+ is reduced, but singular.

4*3*3* Let ril be the semigroup generated by r I and one

element of J34, 38 42) , then also T~(+2) = 0 so that

there are no obstructions at all in the positive and in consequence

H is smooth.
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