
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

TSUNG MING CHAO

CHING SUNG CHOU
Some remarks on the martingales satisfying the structure
equation [X ,X ]t = t +

∫ t
0 βXs− dXs

Séminaire de probabilités (Strasbourg), tome 35 (2001), p. 87-97
<http://www.numdam.org/item?id=SPS_2001__35__87_0>

© Springer-Verlag, Berlin Heidelberg New York, 2001, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_2001__35__87_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Some remarks on the martingales satisfying the structure equation

[X, X]t = t + ~t003B2Xs-dXs

Tsung-Ming CHAO and Ching-Sung CHOU
Institute of Mathematics

National Central University
Chung-Li, Taiwan, ROC

e-mail address: chou@math.ncu.edu.tw

Abstract

In this article, we investigate some local time property and the regularity of the
martingales satisfying the structure equation (see Emery [8]):

[X,X]t = t+t003B2Xs-dXs (1)

where 03B2 is a real parameter.
Moreover, using the Bouleau-Yor extension of Ito’s formula to a real function

F satisfying: F(x) - F(y) = J; f(u)du with f E L~ (~), we obtain inequalities of
Burkholder-Davis-Gundy’s type for these martingales.

0. Introduction
This paper includes three sections. In section 1, we use the occupation time

density to investigate a path property for the martingales satisfying the structure
equation (1). This property provides us with further results. First, using the change
of variable formula for solutions to structure equations, we show that if {3 > -1 and
,Q ~ 0, the jumps of X are not summable on every bounded interval of time. On the
opposite, for ~3  -1, the jumps are a.s. summable on all compacts, and the local
time of X at a is identically zero for each real a.

In section 2, we show that the Bouleau-Yor extension of Ito’s formula to a
function with derivative in L~ , which is known to apply to semimartingales with
summable jumps, is also valid for all martingales verifying (1), even those with
non-summable jumps.

Section 3 gives inequalities of Burkholder-Davis-Gundy’s type for martingales
verifying (1).

Remark 1.

(i) Emery [8] showed that the solution of equation (1) for {3  0 is unique in law
and is a strong Markov process.
(ii) Meyer [11] proved that if f is a continuous function on the real line, then for
every x E ~ the structure equation

d[X, X~t = dt + ,f (Xt-)dXt
has a solution with Xo = ~, defined on some (S~, F, P, (Ft)t’2o).
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(iii) Anticipative stochastic integrals for the case j3 E [-2, 0] have been studied by
J. Ma et al. [13].

1. Some path and local time properties

Let f be the difference of two convex functions, let f’ be its left derivative, and
let u be the signed Radon measure which is the second derivative of f. Then the
following equation holds (Meyer-Tanaka formula) :

t

f(Xt) - f(Xo) = + ~ - - 

+ 1 2~-~u(da)L
at(X),

where X is a semimartingale and Lt (X is its local time at a.
It is evident that is continuous in t. Yor ~1~~ gave the following

hypothesis which suffices to imply the existence of a jointly measurable version in
(a, t, w) for Lt (X):

Hypothesis A. A semimartingale X is said to satisfy Hypothesis A if

Y~  oo a.s., for each t > 0.

Let X be a semimartingale satisfying Hypothesis A. Then Lt (X has a càdlàg version
in a and continuous in t (see Yor [15], Protter [12]). So this hypothesis is a sufficient
condition to ensure the regularity of L: (X ).

Let M be a càdlàg martingale. The H2-norm of M is defined by

The following proposition shows that X satisfying (1) is purely discontinuous . This
property is a crucial step of the paper.

Proposition 1. Suppose that X satisfies the structure equation (1) for j3 7~ 0.

Then X is purely discontinuous.

Proof. By Emery [8], the continuous part of X is Xf = -o} dXs. Thus

= / o X]s = Xc]s = 0,

where the last equality can be found in Meyer [7]: "Un cours sur les intégrales
stochastiques" p. 366.

Corollary 1.1. For any t > 0 and j3 ~ 0, = 0 a.s. for almost all a E R.

Proof. From the occupation time density for X,

[X, X]ct = a.s.
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By Proposition l, ~X, X~t = 0 yields the result.
Some properties of (Xt, FX)t>o satisfying the structure equation (1) can be

found in Emery ~8~, where (FX ) is the completion of the natural filtration of X . In
particular, the jump of X occuring at time t is

~Xt = (2)

Proposition 2 (Change of variable formula, refer to Emery ~8~). Let g be
a C2-real function, and let X satisfy the structure equation for ~i ~ 0. Then

9( X t) = 9( X o) + t 9((1 + ~)Xs-) X - _ g(Xs-) dXs
t 9((1 +~)Xs) -g(Xs) + 
o ~2X2 s 

ds.

Proof. The classical Ito’s formula for purely discontinuous martingales is:

9(Xt) = g(X°) + g’(Xs-)dXs + - 9(Xs-) - 
° 

st

And equation (2) implies that

(1 + 

Therefore,

L.~ 9(Xs) _ 9(Xs-) _ st

_ ~ 9((1 +~)Xs-) -9(Xs-) -9’(Xs-)~Xs- st

- 9((1 + ~)Xs-) - 9(Xs-) - OX 2

By Proposition l, X is purely discontinuous, and the discrete sum is equal to

9((1 + ~)Xs-) - 9(Xs-) - d X X] . (3)
o ~2X2- ~ ~ X ~s (3)

In addition, X satisfies the structure equation (1), and (3) is identical to

t 9((1 + ~)Xs-) - 9(Xs-) - dXo ~X - 
s

t 9((1 + ~)Xs) 
- 9(Xs) - d+ 

o ~2X2 s 
ds.



90

This completes the proof.

Whether X satisfies Hypothesis A or not can be deduced from the following
local time property.

Proposition 3. The local time at zero for X satisfying (1) with 0 for

,~ E [-1, oo) is not identically zero.

Proof. By the Meyer-Tanaka formula for f (~) _ we obtain

t

|Xt | = 0 sgn(Xs- )dXs + + {|Xs|-|Xs-|-sgn(Xs-)0394Xs}, (4)

1 if x > 0,where 

Since the jump of X is AXS = we have

(~+ 

It amounts to saying that:

Hence, the jump part of equation (4) is zero, then is a martingale.
If L° = 0, then is a zero-mean martingale, hence identically zero. Since

~Xt is not identically zero, the proposition is proved.

From Corollary 1.1, Proposition 3 and Yor’s regularity condition for semi-
martingales with summable jumps, the following corollary can be easily obtained.

Corollary 3.1. If X satisfies the structure equation (1) for (3 E [-1, oo) and {3 7~ 0,
then X does not satisfy Hypothesis A.

Although the martingales that satisfiy (1) for {3 ~ 0 share some common jump
properties, there are some differences between ,Q E (-oo, -1) and ~3 E ~-l, oo). The
jumps of the former are a.s. summable on all compacts, as will be seen in the next

proposition, but the latter are non-summable. It leads us to investigate properties
of the local time.

Proposition 4. Suppose X satisfies the structure equation (1) for {3 E (-oo, -1).
Then X satisfies Hypothesis A. Moreover, the local time Lt (X ) is identically zero
for all a e ?.

Proof. If we take f(x) == Ixl in the Meyer-Tanaka formula, the jump part is equal
to

IXs-1 - sgn(Xs- )OXS } (5)

By the special jump property of X for (3  -1, (5) can be rewritten as:

~ 11(1 + (i + 
0st

= L ’

’
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That is to say,

IXt = IXol + + 2(1 + ~) ~ IOXSI. °o ’~ 

It is trivial that X satisfies Hypothesis A. Hence, a -> has a version which
is right continuous with left limits. By Corollary 1.1, Lt (X ) = 0 for almost every
a E R. Suppose that for some a E R, is not identically zero. It contradicts

the right continuity of a -~ Lt (X ). Hence, Lt (X) = 0 for all a E R.

Q.E.D.

Proposition 5. If X satisfies (1) with Xo = 0 for /3 E ~-1, oo), then there exist
cp, Cp > 0 such that for any stopping time T,

cpE((XT)p)  E((L°,(X)p)) for any 0  p  l,

and
 for any p > l.

Proof. For /3 E ~-l, oo), if we take f(x) = Ixl in the Meyer-Tanaka formula, the
jump parts vanish owing to the properties of the jumps. Hence, for any stopping
time T, we have

LT(X ) = IXTI- / o T (6)

which implies that for any p > 1,

E((L0T(X))p) ~ 2p-1E(|XT|p + I s9n(XS-)dXSI p
~ CpE + LX 

~ °

The second and third inequalities follow from the famous Burkholder-Davis-Gundy’s
inequalities.

If we take the expectation on both sides of equation (6) and reduce the stochas-
tic integrals part by T A n, then we have

E(I XT ) = 

by letting n tend to oo. Hence, Lenglart’s "relation de domination" yields

 (L°,(X ))p °
for any 0  p  1.

2. An extension of Ito’s formula
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Let F : R ~ R be a real function of the form

F(x) - F(y) = / f(u)du,
where f E L~loc(R).

Then, it is evident that C2 C C1 C {F : F(x) - F(y) f(u)du, f E 
An application of Proposition 2 can extend Ito’s formula to functions with derivative
in Llc.
Lemma 1. Suppose f E b]). Then there exists a sequence of C1-functions
~hn~ such that hn - f a.e. In addition, if f ~  M, Ihn ] can be chosen to be
bounded by M.

Proof. Let If I be bounded by M. A slight modification of a result in (Royden
[13] p. 71) shows that: Given 2n > 0, there exist a C1-function  M and a
measurable set DE with measure less than 2n such that

|f - hn |  1 2n

except on Dn, then 03A3~n=1 m(Dn)  oo, where m is the Lebesgue measure. For
almost all x E [a, b], it is true that x lies in at most finitely many of the sets Dn . 

’

For any such x, it follows that

| hn (x) - f(x) |  
1 2n

for all sufficiently large n. This completes the proof.

Theorem 1. If ’X satisfies (1) for (3 ~ 0, then

Xt F(Xt) - X5F(Xo)

= t0(1+03B2)2Xs-F((1+03B2)Xs-)-Xs-F(Xs-) 03B2dXs
+ t0 (1 + 03B2)2F((1 + 03B2)Xs)- (1 + 203B2)F(Xs)-03B2Xsf(Xs) 03B22ds,

where F(x) - F(y) = xy f(z)dz with f E 
Proof. If we choose g(x) = where - G(y) = fy h(u)du with h E
C1 (R), then g is a C2-function. By Proposition 2, we obtain that

g((1 + p)Xs-) - 9(Xs-) (1 + ~)2Xs-G((1 + - )
- 

/~ 

and,

g((l + - 9(Xs) - 

03B22X2s

__ 
(1 + + - (1 + - 03B2Xsh(Xs)

~ 

Q2 
’
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Without loss of generality, we can suppose that F(x) = J; f (x)dx and X is bounded
by K, and in H2. By Lemma 1, there exists a sequence of C1-function bounded

by M such that
a.e. on [-K,K].

By the Bounded Convergence Theorem,

= / F(x)

for all x E [-K, K].
It is not hard to show that

~.^t0(1+03B2)2Xs-Gk((1+03B2)Xs-)
-Xs-Gk(Xs-) 03B2

-

(1+03B2)2Xs-F((1+03B2)Xs-)-Xs-F(Xs-) 03B2 dXs~H2 ~ 0, as k ~ ~

by using bounded convergence theorem twice. Also,

E[|t0 (1 + 03B2)2Gk((1 + 03B2)Xs)- (1 +203B2)Gk(Xs)-03B2Xshk(Xs) 03B22

-

(1 + 03B2)2F((1 + 03B2)Xs)- (1 + 203B2)F(Xs)-03B2Xsf(Xs) 03B22ds |] ~ 0.

as k tends to oo.
The theorem is established for X bounded by K and in H2. It is not hard to

show that there exists a sequence of stopping times increasing to oo a.s.
such that X Tn E H2 and ~  n. Then for each ~3, XTn is bounded by ~~i + 1 n,
and the theorem holds for XTn instead of X. . Finally, letting n tend to oo ends the
proof.

Q.E.D.
If we choose F = 1, then we can obtain

Xt + XJ = t0(03B2 + 2)X,- dXs + t. (7)

Combining formula (1) with (7), one has

X2t - X20 = 2 t0 Xs-dXs + [X, X]t,

which is the integration by parts formula for martingales.

3. Some applications of the extension of Ito’s formula to Burkholder-
Davis-Gundy’s type inequalities

i

If X, is a random variable, define ~X~p = for any p > 0. The

famous Burkholder-Davis-Gundy’s inequalities says that if (Mt, Ft)t>o is a càdlàg
martingale, then

ap~M,M~1 2T~p ~ ~M*T~p ~ bp~M,M]1 2T~p (8)
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for any p > 1, and any Ft-stopping time T, where Mt - sUPst IMsl.
Let (Mt)t>o be a càdlàg martingale and let (M, M), which is allowed to assume

the value +00, be the dual predictable projection of ~M, M~. Lenglart et al. [10]
proved that for any Ft-stopping time T, there exist ap, bp depending only on p such
that

If (Xt, is a local martingale satisfying the structure equation (1) for ,~ E
(-oo, oo), where (FX) denotes the filtration associated with X, then we can improve
(10) and the left hand side of (8) to 0  p  oo, (9) to the case p > 1. From the
special jump property, we can also get the following nice property of for
the case Q E [-2,0], which suggests that some extensions of B-D-G type inequalities
can be expected.

Lemma 2. If X satisfies (1) for Q E [-2,0], then is a continuous increasing
process.

Proof. (Xt ) is obviously a right continuous increasing adapted process. It suffices
to show that (Xt ) is also left continuous. Define

st

By (4), we have
Xt1{0394Xt~0} = (1 + 

It means that for Q E [-2,0]. This implies that

.

This completes the proof.

With the aid of Theorem 1, we can get the following inequalities.

Theorem 2. If (Xt, is a martingale satisfying (1) for ,Q E (-oo, oo) with
Xo = 0, then there exist a~,p, depending only on p, ,Q such that

. ~~~ ~ ~~~
for any stopping time T and any p > 0.

Proof. The case ,Q = 0 is classical, one may refer to Burkholder [2]. For /3 ~ 0, if
we choose F(x) = p > 1 in Theorem 1, then f(x) = E and

we have for any stopping time T,

|XT|p+2 = T0 (|1 +03B2|p+2-1)sgn(Xs-)|Xs-|p+1 03B2dXs

+ T0ds|1 +03B2|p+2|Xs|p -(1+203B2)|Xs|p-p03B2|Xs|p 03B22
= T0(|1+03B2|p+2-1)sgn(Xs-)|Xs-|p+1 03B2dXs+|1+03B2|p+2-1-(p+2)03B2 03B22T0 ds|Xs|p.
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Let r = p + 2. If we take the expectation on the both sides of the above equality
and reduce the stocastic integrals part by T A n as in proposition 5, then Doob’s
inequality implies that:

_ / o ds|Xs|r-2)
~ Ar,03B2E((X*T)r-2T). (11)

where Ar,p is a universal constant which can be changed from place to place.
From (11) and Holder’s inequality, we get

_ (12)

Then, dividing both sides of equation (12) by and taking the square root
allow to conclude that

I r C (13)
To extend the exponent to the case 0  r  3, we choose r = 3 in (13), then
Lenglart’s "relation de domination" finishes the case.

For the left hand side inequality, if we combine the left hand side of (8) with
(9), we have for any p > 2

cp~ (X ,X~1 2T~p ~ ~X*T~p . ( 14)

By applying Lemma 2 to the case {3 E ~-2, o), (14) holds for all p > 0 by "relation
de domination". In the case when {3 E (-oo, -2) U (0, oo), the jump property of X
ensures that

X; = (Xt- + (Xt- 
~ (1 + °

Once again, "relation de domination" and (14) imply that for any p > 0 and any
F(-stopping time T,

_ 
Hence our result is trivial due to

for any p > 0.

By combining Theorem 2, Proposition 5 with "relation de domination" once
again, we can conclude the following:

Corollary 2.1. If X satisfies (1) with Xo = 0 for {3 E ~-1, oo), then there exist
A~,r, ap,p > 0 such that for any stopping time T,

 for any 0  p  1,

and
 for any p > 0.
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Remark 2.
For the Azema martingale with j3 = -.1, Chao and Chou [4] have established some
local time inequalities.

The structure equation (1) is particularly interesting in the case j3 E [-2,0]
since the chaotic representation property holds. For j3 = 0, X is Brownian motion;
for ,Q = -1, X is the Azema martingale; for ,0 = -2, X is the Poisson martingale.

The results of Theorem 2 and Corollary 2.1 are not fully satisfactory, since
the universal constants depend not only on p but also on ,~. If we restrict ,~ to
the interval ~-2, 0] in Theorem 2 and to the interval ~-1, 0] in Corollary 2.1, then
the universal constants can be shown to depend only on p . . The proof of the case
0  p  1 is direct from Lemma 2 and the proof of the case p > 0 comes easily from
the explicit expression of the constant in the proof of Theorem 2. Hence, we
have the following proposition whose proof we omit.

Proposition 6. Let (Xt, be a martingale satisfying (1) for ~3 E ~-2, 0~ with
Xo = 0, then there exist universal constants ap, Ap > 0, depending only on p > 0,
such that for any FXt-stopping time T,

ap~T1 2 ~p _ p  Ap~T1 2~p .

In addition, if X satisfies (1) for ,Q E [-1,0], then one has

for any 0  p  l,

and
 ) for any p > 0.
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