YASUKI ISOZAKI Shinichi Kotani

Asymptotic estimates for the first hitting time of fluctuating additive functionals of brownian motion

Séminaire de probabilités (Strasbourg), tome 34 (2000), p. 374-387 http://www.numdam.org/item?id=SPS 2000 34 374 0>

© Springer-Verlag, Berlin Heidelberg New York, 2000, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion

Y. Isozaki S. Kotani

1 Introduction

In [3], we obtained the following estimates for the first hitting time of the integrated Brownian motion: Let B(t) be the linear Brownian motion started at 0. It holds with some explicit constant k > 0

(1.1)
$$P\left[\int_0^u B(s)ds < r \text{ for all } 0 \le u \le t\right] \sim kr^{1/6}t^{-1/4} \text{ as } r^{1/6}t^{-1/4} \to 0.$$

which is a refinement of Sinai's estimates[12].

The above formula as well as the other ones follow systematically from the theorem in [3]: Let (X(t), Y(t)) be the Kolmogorov diffusion ([5]).

(1.2)
$$Y(t) = y + B(t), \qquad X(t) = x + \int_0^t Y(s) ds.$$

Let T be the first hitting time to the positive y-axis:

(1.3)
$$T = \inf\{t \ge 0; X(t) = 0, Y(t) \ge 0\}$$

Hence Y(T) is the hitting place on the positive y-axis. We denote by $E_{(x,y)}$ and $P_{(x,y)}$ the expectation and the probability measure for this diffusion respectively.

Theorem ([3]) For $\mu, \kappa \geq 0$ and $x \leq 0, y \in \mathbb{R}$ it holds

(1.4)
$$1 - E_{(\bar{\sigma}x,\bar{\sigma}^{1/3}y)} \left[\exp\left\{ -\sigma\mu T - \sqrt{\sigma}\sqrt{2\kappa}Y(T) \right\} \right] \sim \tilde{K}(x,y)\bar{\sigma}^{1/6}K(\kappa,\mu)\sigma^{1/4}$$

as $\bar{\sigma}^{1/6}\sigma^{1/4}$ tends to 0, where

$$K(\kappa,\mu) = \frac{3(\sqrt{2\kappa} + \sqrt{2\mu})\Gamma(\frac{1}{3}) \, 3^{1/3}}{\sqrt{\pi}\sqrt{\sqrt{2\kappa} + 2\sqrt{2\mu}}\Gamma(\frac{1}{6}) \, 2^{1/6}}$$

and

$$\tilde{K}(x,y) = \frac{|x|^{5/6} e^{-2(y^+)^3/9|x|}}{\Gamma(\frac{1}{3})} \int_0^\infty dt e^{-t} \left(|x|t+2|y^-|^3/9\right)^{1/6} \left(|x|t+2(y^+)^3/9\right)^{-5/6}$$

The proof depends heavily on a formula obtained by McKean[8].

We considered in [4] a generalization for this problem. We redefine (X(t), Y(t)), the odd additive functional, as

(1.5)
$$Y(t) = y + B(t), \qquad X(t) = x + \int_0^t |Y(s)|^\alpha \operatorname{sgn}(Y(s)) ds.$$

and we retain the notations T, $E_{(x,y)}$ and $P_{(x,y)}$. In [4], we were able to prove some weaker estimates:

Theorem ([4]) For $\alpha \ge 0$, $\nu := 1/(\alpha + 2)$, $x \le 0$ and y = 0, there exist positive constants $k'(\alpha)$, $k''(\alpha)$ such that

(1.6)
$$k'(\alpha)|x|^{\nu/2}t^{-1/4} < P_{(x,0)}[T>t] < k''(\alpha)|x|^{\nu/2}t^{-1/4}$$

for all small $|x|^{\nu/2}t^{-1/4}$.

The present paper proves the existence of the limit value for $|x|^{-\nu/2}t^{1/4}P_{(x,0)}[T > t]$, and more generally, we obtain similar results for some additive fuctionals that are not odd, or symmetric. We shall observe that the exponent -1/4 of time parameter in the above theorems varies between 0 and -1/2 in accordance with the skewness of additive functionals.

There are at least two approaches for our problem: the analytical one using Krein's spectral theory of strings(cf. Kotani-Watanabe[6]) and the probabilistic one based on the excursion theory, among which we mainly take the latter course.

Acknowledgement. The authors would thank M. Yor for helpful discussions.

2 The main theorem

In the remainder of this paper, almost all quantities depend on the parameter $\alpha > -1$ and $\bar{c} > 0$ without any mentioning. Let V be a function on the real line which is positive on $(0, \infty)$ and negative on $(-\infty, 0)$.

(2.7)
$$V(x) = x^{\alpha} \text{ for } x > 0; V(0) = 0; V(x) = -|x|^{\alpha}/\bar{c} \text{ for } x < 0.$$

We define a diffusion (X(t), Y(t)) on \mathbb{R}^2 in a similar way and denote it by the same symbol:

(2.8)
$$Y(t) = y + B(t), \qquad X(t) = x + \int_0^t V(Y(s)) ds$$

We denote by $E_{(x,y)}$ and $P_{(x,y)}$ the expectation and the probability measure for the diffusion started at $(x, y) \in \mathbb{R}^2$. Let T be the first hitting time to the positive y-axis as usual. Let T_0^Y be the first hitting time to x-axis:

(2.9)
$$T_0^Y = \inf\{t \ge 0; Y(t) = 0\}$$

and for $\kappa, \lambda, \mu \geq 0, x \leq 0, y \in \mathbb{R}$ define $u_0(x, y) \equiv u_0(x, y; \mu)$ by

(2.10)
$$u_0(x,y) = E_{(x,y)}[\exp(-\mu T)]$$

and more generally $u(x, y) \equiv u(x, y; \kappa, \lambda, \mu)$ by

$$(2.11) \quad u(x,y) = E_{(x,y)} \left[\exp\left\{-\mu T - \lambda X(T_0^Y \circ \theta_T) - \kappa(T_0^Y \circ \theta_T - T)\right\} \right]$$

$$(2.12) \qquad \equiv E_{(x,y)} \left[\exp\left\{-\mu T\right\} F(\lambda V + \kappa; Y(T)) \right]$$

here θ_t is the usual shift operator on the path space and the function $F(\lambda V + \kappa; z)$ is the unique bounded solution of $\frac{1}{2}F''(z) = (\lambda V(z) + \kappa)F(z)$ on $(0,\infty)$ with F(0) = 1. It is clear that $0 \le u(x,y) \le 1$, u(0,0) = 1 and $u_0(0,y) = 1$ for y > 0.

Theorem 1 Define positive numbers $0 < \nu < 1$, $0 < \rho < 1$ by $\nu = 1/(\alpha + 2)$ and $\bar{c}^{\nu} \sin \pi \nu (1 - \rho) = \sin \pi \nu \rho$. Then for $\kappa, \lambda, \mu \ge 0$ there exists a positive constant $C(\kappa, \lambda, \mu)$ such that it holds

(2.13)
$$1 - u(x,0;\sigma\kappa,\sigma^{1/2\nu}\lambda,\sigma\mu) \sim |x|^{\nu\rho}C(\kappa,\lambda,\mu)\sigma^{\rho/2\nu}$$

as $|x|^{\nu\rho}\sigma^{\rho/2}$ tends to 0.

Corollary 1 It holds that

(2.14)
$$1 - u_0(x,0;\mu) \sim C(0,0,1) |x|^{\nu\rho} \mu^{\rho/2}$$

as $|x|^{\nu\rho}\mu^{\rho/2}$ tends to 0, in other words,

(2.15)
$$P\left[\int_0^s V(B(u))du < |x| \text{ for all } 0 \le s \le t\right] \sim \frac{C(0,0,1)}{\Gamma(1-\rho/2)} |x|^{\nu\rho} t^{-\rho/2}$$

as
$$|x|^{\nu\rho}t^{-\rho/2}$$
 tends to 0.

We have, more generally, the following theorem.

Theorem 2 There exist a positive constant $\tilde{C}(x, y)$ such that, for $\kappa, \lambda, \mu \ge 0$, $x \le 0$ and $y \in \mathbb{R}$, it holds that

(2.16)
$$1 - u(\bar{\sigma}x, \bar{\sigma}^{1/\nu}y; \sigma\kappa, \sigma^{1/2\nu}\lambda, \sigma\mu) \sim \tilde{C}(x, y)\bar{\sigma}^{\nu\rho}C(\kappa, \lambda, \mu)\sigma^{\rho/2}$$

for positive $\sigma, \bar{\sigma}$ such that $\bar{\sigma}^{\nu\rho} \sigma^{\rho/2}$ tends to 0, where $C(\kappa, \lambda, \mu)$ is the same as in Theorem 1 and $\tilde{C}(x, y)$ is given by

$$\tilde{C}(x,y) = \frac{|x|^{1-\nu+\nu\rho} \exp\left\{-2\nu^2(y^+)^{1/\nu}/|x|\right\}}{\Gamma(\nu)} \int_0^\infty dt e^{-t} \left(|x|t + \frac{2\nu^2}{\bar{c}}|y^-|^{1/\nu}\right)^{\nu\rho} \left(|x|t + 2\nu^2(y^+)^{1/\nu}\right)^{-1+\nu-\nu\rho}.$$

Remark 1. The function u has the following scaling property: for any c > 0

$$u(x, y; \kappa, \lambda, \mu) \equiv u(c^{1/\nu}x, cy; c^{-2}\kappa, c^{-1/\nu}\lambda, c^{-2}\mu)$$

$$\equiv E_{(c^{1/\nu}x, cy)} \left[\exp\left\{ -c^{-2}\mu T \right\} F(\lambda V + \kappa; c^{-1}Y(T)) \right]$$

and the theorems are stated accordingly.

Remark 2. The distribution of Y(T) under $P_{(0,y)}$ is known explicitly by Rogers-Williams[10], see also McGill[7]: For y < 0,

(2.17)
$$P_{(0,y)}[Y(T) \in d\eta] = \frac{\sin \pi \nu \rho}{\pi \nu \bar{c}^{\nu \rho}} |y|^{\rho} \eta^{1/\nu - 1 - \rho} \frac{d\eta}{\bar{c}^{-1} |y|^{1/\nu} + \eta^{1/\nu}}, \text{ on } \{\eta > 0\}.$$

Their methods do not seem to cover, however, the cases involving the stopping time T.

Remark 3. We denote by $\tau(t)$ the inverse of the local time of Y at 0. It is well known that $\int_0^{\tau(t)} V(B_u) du$ is a stable process with index ν and it holds

(2.18)
$$P\left[\int_0^{\tau(s)} V(B_u) du < |x| \text{ for all } s \le t\right] \sim \operatorname{const} |x|^{\nu \rho} t^{-\rho}$$

as $|x|^{\nu\rho}t^{-\rho}$ tends to 0. See e.g. Bertoin[2]. This result has the same order as our Corollary 1 in the space variable |x|, but differs in the time variable t.

Remark 4. Note also that ρ is equal to the probability $P[\int_0^{\tau(t)} V(B_u) du > 0]$ independent of t, which can be proved using the result by Zolotarev[13].

3 Proof of Theorem 1

We denote by L(t) the local time at 0 of Y(T): $L_t = \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^t \mathbb{1}_{(-\epsilon,\epsilon)}(Y(u)) du$ and by τ_t or $\tau(t)$ the right continuous inverse of L_t : $\tau_t \equiv \tau(t) = \inf\{u > 0; L_u > t\}$. Let n^+ and n^- be the Itô measure for positive and negative excursions respectively, and set $n = n^+ + n^-$.

We denote a general excursion by $\varepsilon = (\varepsilon_t; t \ge 0)$, its lifetime by $\zeta = \zeta(\varepsilon)$ and define a random time for $x \le 0$,

(3.19)
$$T(\varepsilon, x) = \inf \left\{ 0 \le t \le \zeta; x + \int_0^t V(\varepsilon_s) ds \ge 0 \right\}.$$

We set $T(\varepsilon, x) = \zeta$ if there is no such t. It follows, through calculations of the Lévy measure of $X(\tau_t)$, that

$$n^{+}\left[1 - \exp\left\{-\lambda \int_{0}^{\zeta} V(\varepsilon_{s})ds\right\}\right] = \frac{\nu^{2\nu-1}2^{\nu}\Gamma(1-\nu)}{\Gamma(\nu)}\lambda^{\nu},$$
$$n^{-}\left[1 - \exp\left\{\lambda \int_{0}^{\zeta} V(\varepsilon_{s})ds\right\}\right] = \frac{\nu^{2\nu-1}2^{\nu}\Gamma(1-\nu)}{\Gamma(\nu)}(\lambda/\bar{c})^{\nu}$$

for positive λ and that

(3.20)
$$n^{+}\left[\int_{0}^{\zeta} V(\varepsilon_{s})ds > \xi\right] = \frac{\nu^{2\nu-1}2^{\nu}}{\Gamma(\nu)}\xi^{-\nu},$$

(3.21)
$$n^{-}\left[\int_{0}^{\zeta} V(\varepsilon_{s}) ds < -\xi\right] = \frac{\nu^{2\nu-1} 2^{\nu}}{\Gamma(\nu)} (\bar{c}\xi)^{-\nu}$$

for positive ξ .

We have an integral equation for u(x, 0).

Lemma 1 We extend u for positive x by u(x,0) = 1. Then it holds for x < 0

$$n\left[u\left(x+\int_{0}^{\zeta}V(\varepsilon_{s})ds,0\right)-u(x,0)\right]$$

$$(3.22) = n\left[u\left(x+\int_{0}^{\zeta}V(\varepsilon_{s})ds,0\right)\left\{1-e^{-\mu T(\varepsilon,x)}F(\lambda V+\kappa;\varepsilon(T(\varepsilon,x)))\right\}\right].$$

Proof. Let $F(z) = F(\lambda V + \kappa; z)$. Define $a \lor b = \max(a, b), a \land b = \min(a, b)$ and

$$M(t) = u(X(\tau_t \wedge T), Y(\tau_t \wedge T))e^{-\mu(\tau(t) \wedge T)}$$

then $u(x,0) = E_{(x,0)}[M(t)]$ holds for any $t \ge 0$ and $x \le 0$.

If $T \leq \tau_{t-}$ then M(t) - M(t-) = 0.

If $\tau_{t-} < T \le \tau_t$ then τ_t is the first hitting time of 0 by Y after T, i.e., $\tau_t = T_0^Y \circ \theta_T$. In this case,

$$M(t) - M(t-) = e^{-\mu T} F(Y(T)) - e^{-\mu \tau(t-)} u(X(\tau_{t-}), 0)$$

and $T - \tau_{t-} = T(\varepsilon, X(\tau_{t-}))$, here ε denotes the excursion started at τ_{t-} and ended at $\tau_t: \varepsilon_s = Y(s + \tau_{t-}), s < \tau_t - \tau_{t-}$.

Finally if $\tau_t < T$ then

$$M(t) - M(t-) = e^{-\mu\tau(t)} u((X(\tau_t), 0) - e^{-\mu\tau(t-)} u((X(\tau_{t-}), 0))$$

and $\tau_t - \tau_{t-} = \zeta(\varepsilon)$. The master formula of excursion theory(cf. Revuz-Yor[11] page 439) tells us

$$\begin{split} E_{(x,0)}\left[M(s) - M(0)\right] &= \int_0^s dt E_{(x,0)} \left[e^{-\mu \tau(t-)} n^+ \left[e^{-\mu T(\varepsilon, X(\tau(t-)))} F(\varepsilon(T(\varepsilon, X(\tau_{t-})))) - u((X(\tau_{t-}), 0); T(\varepsilon, X(\tau_{t-})) < \zeta\right] \right. \\ &+ e^{-\mu \tau(t-)} n \left[e^{-\mu \zeta} u\left(X(\tau_{t-}) + \int_0^\zeta V(\varepsilon_s) ds, 0\right) - u(X(\tau_{t-}), 0); T(\varepsilon, X(\tau_{t-})) = \zeta\right]. \end{split}$$

Recalling $u(x,0) = E_{(x,0)}[M(s)]$, we know that the integrand of the right hand side is identically null.

Since $X(\tau_t)$ is a ν -stable Lévy process, the paths are right continuous and the transition density decays as t goes to 0 uniformly outside any neighbohood of X(0). The proof is hence complete if we show

$$n^{+} \left[e^{-\mu T(\varepsilon,x)} F(\varepsilon(T(\varepsilon,x))) - u(x,0); T(\varepsilon,x) < \zeta \right] \\ + n \left[e^{-\mu \zeta} u \left(x + \int_{0}^{\zeta} V(\varepsilon_{s}) ds, 0 \right) - u(x,0); T(\varepsilon,x) = \zeta \right],$$

which coincides with

$$n\left[u\left(x+\int_0^{\zeta}V(\varepsilon_s)ds,0\right)e^{-\mu T(\varepsilon,x)}F(\varepsilon(T(\varepsilon,x)))-u(x,0)\right],$$

is continuous on $\{x < 0\}$ and its absolute value is dominated by an integrable function plus a constant. We need the following lemma. **Lemma 2** The function u(x,0) is infinitely differentiable on $\{x < 0\}$ and $\frac{\partial u}{\partial x}$ is positive.

Moreover, if $\alpha \ge 0$, $\nu \le 1/2$ then $\frac{\partial^2 u}{\partial x^2}$ is positive, in particular $\frac{\partial u}{\partial x} = o(1/|x|)$ as $x \to -\infty$. If $-1 < \alpha < 0$, $1/2 < \nu < 1$ then $\frac{\partial u}{\partial x} = O(1/|x|)$ as $x \to -\infty$.

Remark. It can be proved for any m > 0 and n > 0, $\frac{\partial^n u}{\partial x^n} = O(|x|^{-m})$. However the statemant above is sufficient for our purpose.

Proof. Let $F(z) = F(\lambda V + \kappa; z)$. By the scaling property it holds that

$$\mu(x,0;\kappa,\lambda,\mu) = E_{(-1,0)}[e^{-|x|^{2\nu}\mu T}F(|x|^{\nu}Y(T))].$$

Since F(z) decays exponentially as $z \to \infty$, the differentiation inside the expectation can be justified. Hence

$$\begin{aligned} \frac{\partial u}{\partial x}(x,0;\kappa,\lambda,\mu) &= E_{(-1,0)} \left[2\nu |x|^{2\nu-1} \mu T e^{-|x|^{2\nu} \mu T} F(|x|^{\nu} Y(T)) \right. \\ &+ e^{-|x|^{2\nu} \mu T} \nu |x|^{\nu-1} Y(T) (-F'(|x|^{\nu} Y(T)) \right]. \end{aligned}$$

Here -F'(z) is a positive decreasing function. The integrand is obviously positive and if $2\nu - 1 \le 0$ it is strictly decreasing in |x|. If $\nu > 1/2$, we use again the scaling property:

$$\frac{\partial u}{\partial x}(x,0;\kappa,\lambda,\mu) = \frac{1}{|x|} E_{(x,0)} \left[2\nu\mu T e^{-\mu T} F(Y(T)) + e^{-\mu T} \nu Y(T) (-F'(Y(T))) \right].$$

The integrand is a bounded function of two variables T and Y(T). \Box

End of the proof of Lemma 1. The difference between

$$n\left[u\left\{x+\int_0^{\zeta}V(\varepsilon_s)ds,0\right\}e^{-\mu T(\varepsilon,x)}F(\varepsilon(T(\varepsilon,x)))-u(x,0)\right]$$

and $n\left[u(x+\int_0^{\zeta}V(\varepsilon_s)ds,0)-u(x,0)\right]$ is bounded since it is dominated by

$$n\left[1-e^{-\mu T(\varepsilon,x)}F(\varepsilon(T(\varepsilon,x)))\right]$$

$$\equiv n\left[1-\exp\left\{-\mu T(\varepsilon,x)-\kappa(\zeta-T(\varepsilon,x))-\lambda\int_{T(\varepsilon,x)}^{\zeta}V(\varepsilon_s)ds\right\}\right],$$

which is also bounded by

$$n\left[1 - \exp\left\{-(\mu \lor \kappa)\zeta - \lambda \int_{0}^{\zeta} V(\varepsilon_{s}) \lor 0ds\right\}\right]$$

< $n\left[1 - \exp\left\{-(\mu \lor \kappa)\zeta\right\}\right] + n\left[1 - \exp\left\{-\lambda \int_{0}^{\zeta} V(\varepsilon_{s}) \lor 0ds\right\}\right] < \infty$

We divide $n\left[u(x+\int_0^{\zeta}V(\varepsilon_s)ds,0)-u(x,0)\right]$ into two parts.

 $n\left[\left|u(x+\int_{0}^{\zeta}V(\varepsilon_{s})ds,0)-u(x,0)\right|;\left|\int_{0}^{\zeta}V(\varepsilon_{s})ds\right|>1\right] \text{ is bounded because } 0 \leq u \leq 1 \text{ and } n\left[\left|\int_{0}^{\zeta}V(\varepsilon_{s})ds\right|>1\right]<\infty \text{ by (3.20) and (3.21). Integrating by parts,}$

$$\begin{split} n\left[\left|u\left\{x+\int_{0}^{\zeta}V(\varepsilon_{s})ds,0\right\}-u(x,0)\right|;\left|\int_{0}^{\zeta}V(\varepsilon_{s})ds\right|<1\right]\\ &=\int_{0}^{1}d\xi\frac{\partial u}{\partial x}(x+\xi,0)n^{+}\left[\xi<\int_{0}^{\zeta}V(\varepsilon_{s})ds<1\right]\\ &-\int_{-1}^{0}d\xi\frac{\partial u}{\partial x}(x+\xi,0)n^{-}\left[-1<\int_{0}^{\zeta}V(\varepsilon_{s})ds<\xi\right], \end{split}$$

which is integrable, since it is a convolution of two integrable functions $\frac{\partial u}{\partial x}$ and $n^{\pm}[\xi < |\int_{0}^{\zeta} V(\varepsilon_{s}) ds|]$.

 $|\int_0^{\zeta} V(\varepsilon_s) ds|].$ The continuity also follows using the above arguments since $T(\varepsilon, x)$ and $\varepsilon(T(\varepsilon, x))$ are continuous in x. \Box

Putting the explicit value of $n^{\pm}[\xi < |\int_{0}^{\zeta} V(\varepsilon_{s})ds|]$ into the left side of Lemma 1, we have

$$n\left[u(x+\int_{0}^{\zeta}V(\varepsilon_{s})ds,0)-u(x,0)\right]$$

= $\frac{\nu^{2\nu-1}2^{\nu}}{\Gamma(\nu)}|x|^{-\nu}\left(\{1-u(x,0)\}-\nu\int_{0}^{1}|1-t|^{-\nu-1}(\{1-u(xt,0)\}-\{1-u(x,0)\})dt\right)$
 $-\nu\int_{1}^{\infty}\frac{|1-t|^{-\nu-1}}{\bar{c}^{\nu}}(\{1-u(xt,0)\}-\{1-u(x,0)\})dt\right)$

The integral transform on this right side can be inverted.

Lemma 3 For $v \in C^1((-\infty, 0))$ such that $\frac{dv}{dx}$ is integrable, define $Lv(x) \in C((-\infty, 0))$ by

$$Lv(x) = \nu \int_0^1 |1-t|^{-\nu-1} (v(xt) - v(x)) dt + \nu \int_1^\infty \frac{|1-t|^{-\nu-1}}{\bar{c}^\nu} (v(xt) - v(x)) dt.$$

If v(x) - Lv(x) = f(x) then it holds

(3.23)
$$v(x) = \int_{-\infty}^{0} \frac{dt}{|t|} f(t) G(-\frac{|t|}{|x|})$$

with a function G(b) defined by

$$\begin{aligned} G(b) &= \tilde{G}(-\log(-b)), \quad b < 0, \\ \tilde{G}(\xi) &= \lim_{A \to +\infty} \int_{-A}^{A} \frac{e^{-i\xi x}}{2\pi r(ix)} dx, \quad \xi \in \mathbb{R} \\ r(z) &= \frac{1}{\Gamma(\nu) \sin \pi \nu \rho} \Gamma(1-z) \Gamma(\nu+z) \sin \pi(\nu \rho+z), \quad z \in \mathbb{C} \end{aligned}$$

and with $\rho \in (0,1)$ defined by $\bar{c}^{\nu} = \frac{\sin \pi \nu \rho}{\sin \pi \nu (1-\rho)}$.

Moreover, if
$$\int_{-\infty}^{0} |x|^{-1-\nu\rho} |f(x)| dx < \infty \text{ then}$$

$$(3.24) \qquad \lim_{x \to -0} \frac{v(x)}{|x|^{\nu\rho}} = \frac{\Gamma(\nu) \sin \pi \nu \rho}{\pi \nu \rho \Gamma(\nu \rho) \Gamma(\nu - \nu \rho)} \int_{-\infty}^{0} |x|^{-1-\nu\rho} f(x) dx$$

Remark. The Markov process associated to L turns into a Lévy process by taking the logarithm. This property enables us to calculate $\tilde{G}(\xi)$ and r(z) explicitly. We prove this lemma at the end of this section.

Proof of Theorem 1. We set

$$f(x) = \frac{\Gamma(\nu)|x|^{\nu}}{\nu^{2\nu-1}2^{\nu}} n\left[u\left(x + \int_0^{\zeta} V(\varepsilon_s)ds, 0\right) \left(1 - e^{-\mu T(\varepsilon,x)}F(\varepsilon(T(\varepsilon,x)))\right) \right]$$

for x < 0. It is obvious that f(x) is positive everywhere and continuous. As we saw in the proof of Lemma 2, $n[1 - e^{-\mu T(\varepsilon,x)}F(\varepsilon(T(\varepsilon,x)))]$ is bounded, hence $f(x) = O(|x|^{\nu})$ as x tends to 0.

We have also

$$f(x) = \frac{\Gamma(\nu)|x|^{\nu}}{\nu^{2\nu-1}2^{\nu}} n \left[u \left(x + \int_0^{\zeta} V(\varepsilon_s) ds, 0 \right) - u(x, 0) \right].$$

By integration by parts, $n\left[|u(x+\int_{0}^{\zeta}V(\varepsilon_{s})ds,0)-u(x,0)|;\frac{|x|}{2}>|\int_{0}^{\zeta}V(\varepsilon_{s})ds|\right]$ is dominated by const $\int_{-|x|/2}^{|x|/2} d\xi |\xi|^{-\nu} \frac{\partial u}{\partial x}(x+\xi,0)$. It is shown in Lemma 2 that $\frac{\partial u}{\partial x} = O(1/|x|)$ as $x \to -\infty$, which implies

$$n\left[\left|u\left(x+\int_{0}^{\zeta}V(\varepsilon_{s})ds,0\right)-u(x,0)\right|;\frac{|x|}{2}>\left|\int_{0}^{\zeta}V(\varepsilon_{s})ds\right|\right]=O(|x|^{-\nu}).$$

Finally, $n \left[|u(x + \int_0^{\zeta} V(\varepsilon_s) ds, 0) - u(x, 0)|; \frac{|x|}{2} < |\int_0^{\zeta} V(\varepsilon_s) ds| \right]$ is easily dominated by $n \left[\frac{|x|}{2} < |\int_0^{\zeta} V(\varepsilon_s) ds| \right] = O(|x|^{-\nu})$ since $0 \le u(x, 0) \le 1$ for every x.

Therefore we have shown that f(x) = O(1) as $x \to -\infty$, hence the integrability of f(x) with respect to $|x|^{-1-\nu\rho}dx$ and the existence of the limit value for $(1-u(x,0))/|x|^{\nu\rho}$ as $x \to -0$.

The statement of the theorem follows from the scaling property of u: for any c > 0,

$$u(x,y;c^2\kappa,c^{1/
u}\lambda,c^2\mu)=u(c^{1/
u}x,cy;\kappa,\lambda,\mu).$$

Setting y = 0, $c = \sqrt{\sigma}$, $u(x, 0; \sigma \kappa, \sigma^{1/2\nu} \lambda, \sigma \mu)$ is equal to $u(\sigma^{1/2\nu} x, 0; \kappa, \lambda, \mu)$, which satisfies $1 - u(\sigma^{1/2\nu} x, 0; \kappa, \lambda, \mu) \sim \operatorname{const} |\sigma^{1/2\nu} x|^{\nu\rho}$ as $\sigma^{1/2\nu} |x|$ tends to 0. \Box

Proof of Lemma 3. Define the functions \tilde{v} and \tilde{f} on \mathbb{R} by $\tilde{v}(x) = v(-\exp(-x))$ and $\tilde{f}(x) = f(-\exp(-x))$. Define the integral operators \tilde{L} and \tilde{L}' by

$$(3.25) \quad \tilde{L}g(x) := \nu \int_0^\infty |1 - e^{-X}|^{-\nu - 1} e^{-X} \{g(x + X) - g(x)\} dX + \frac{\nu}{\bar{c}^{\nu}} \int_{-\infty}^0 |1 - e^{-X}|^{-\nu - 1} e^{-X} \{g(x + X) - g(x)\} dX (2.26) \quad \tilde{c}'(x) = \nu \int_{-\infty}^\infty |x - X|^{-\nu - 1} e^{-X} \{g(x + X) - g(x)\} dX$$

$$(3.26) \quad \tilde{L}'g(x) := \frac{\nu}{\bar{c}^{\nu}} \int_{0}^{0} |1 - e^{X}|^{-\nu - 1} e^{X} \{g(x + X) - g(x)\} dX + \nu \int_{-\infty}^{0} |1 - e^{X}|^{-\nu - 1} e^{X} \{g(x + X) - g(x)\} dX$$

for $g \in C^1(\mathbb{R} \to \mathbb{C})$ with integrable $\frac{dg}{dx}$. It is obvious that $\tilde{L}\tilde{v}(x) \equiv Lv(-e^{-x})$. To prove the lemma, it is sufficient to show that

(3.27)
$$\tilde{v}(x) = \int_{-\infty}^{\infty} \tilde{f}(y)\tilde{G}(y-x)dy.$$

We can show, by an standard argument, that \tilde{f}, \tilde{v} and $\tilde{L}\tilde{v}$ belong to $\mathcal{S}'(\mathbb{R})$ and for any $\phi \in \mathcal{S}(\mathbb{R})$ it holds

(3.28)
$$(\tilde{v} - L\tilde{v})(\mathcal{F}\phi) = \tilde{v}((1 - L')\mathcal{F}\phi)$$

It is elementary but tedious to verify that

(3.29)
$$1 - r(i\xi) = \frac{\nu}{\bar{c}^{\nu}} \int_{0}^{\infty} |1 - e^{X}|^{-\nu - 1} e^{X} \{ e^{-i\xi X} - 1 \} dX + \nu \int_{-\infty}^{0} |1 - e^{X}|^{-\nu - 1} e^{X} \{ e^{-i\xi X} - 1 \} dX,$$

(3.30)
$$(1 - \tilde{L}') \mathcal{F} \phi(x) = \mathcal{F}[\phi(\xi) r(i\xi)](x), \quad \phi \in \mathcal{S}$$

and that the function $\frac{1}{r(i\xi)}$ on \mathbb{R} is infinitely differentiable and

(3.31)
$$r(-i\xi) = \overline{r(i\xi)}, \qquad \frac{1}{r(i\xi)} = \frac{\text{const}}{x^{\nu}} + O(x^{-1-\nu}) \text{ as } x \to \infty.$$

We next show for any $\chi \in \mathcal{S}(\mathbb{R})$

(3.32)
$$\mathcal{F}\left[\frac{\chi(x)}{r(ix)}\right] = \mathcal{F}\chi * \tilde{G}.$$

We start with

(3.33)
$$\mathcal{F}\left[\chi(x)\frac{\mathbf{1}_{[-A,A]}(x)}{r(ix)}\right] = \frac{1}{\sqrt{2\pi}}\mathcal{F}\chi * \mathcal{F}\left[\frac{\mathbf{1}_{[-A,A]}(x)}{r(ix)}\right], \quad A > 0.$$

It is clear that the left side of (3.33) converges to the left side of (3.32) as A tends to ∞.

The difference between $\tilde{G}(y)$ and $\frac{1}{\sqrt{2\pi}} \mathcal{F}[\frac{l_{[-A,A]}(x)}{r(ix)}](y)$ is dominated by $c_0 + c_1 |y|^{\nu-1}$. To see this, it is sufficient to estimate $\int_A^{\infty} \frac{\exp(-iyx)}{r(ix)} dx$ for positive A. By (3.31), $|\int_A^{\infty} \frac{\exp(-iyx)}{r(ix)} dx|$ is less than $c_2 \int_A^{\infty} \frac{|\exp(-iyx)|}{x^{1+\nu}} dx + c_3 |\int_A^{\infty} \frac{\exp(-iyx)}{x^{\nu}} dx|$ with some positive constants c_2, c_3 . $\int_A^{\infty} \frac{\exp(-iyx)}{x^{\nu}} dx = |y|^{\nu-1} \int_{|y|A}^{\infty} \frac{\exp(-i(\operatorname{sgn} y)x)}{x^{\nu}} dx$ is dominated by $M_{|x|}|_{r=1}^{\nu-1}$ with nated by $M|y|^{\nu-1}$ with

$$M = \sup_{\xi>0} \left| \int_{\xi}^{\infty} \frac{\exp(-ix)}{x^{\nu}} dx \right|.$$

Since $\frac{1}{\sqrt{2\pi}} \mathcal{F}[\frac{l_{[-A,A]}(x)}{r(ix)}](y)$ converges to $\tilde{G}(y)$ for fixed y > 0, the right side of (3.33) also converges to the right side of (3.32) as A tends to ∞ . Hence we have established the equation (3.32).

We now show (3.27). Set $\chi(x) = \phi(x)r(ix) \in \mathcal{S}(\mathbb{R})$. $\tilde{v}(\mathcal{F}\chi)$ is equal to $\tilde{v}((1 - i)r(ix)) \in \mathcal{S}(\mathbb{R})$. $\tilde{L}' \mathcal{F} \phi$) by (3.30), which is further equal to the left side of (3.28). Since $\tilde{v} - \tilde{L} \tilde{v} = \tilde{f}$, we have

$$ilde v(\mathcal{F}\chi)= ilde f(\mathcal{F}\phi).$$

Here $\mathcal{F}\phi$ is equal to the left side of (3.32). Hence we have

$$\begin{split} \tilde{v}(\mathcal{F}\chi) &= \tilde{f}(\mathcal{F}\chi * \tilde{G}) \\ &= \int_{-\infty}^{\infty} dy \tilde{f}(y) \int_{-\infty}^{\infty} d\xi \mathcal{F}\chi(\xi) \tilde{G}(y-\xi) \\ &= \int_{-\infty}^{\infty} d\xi \mathcal{F}\chi(\xi) \int_{-\infty}^{\infty} dy \tilde{f}(y) \tilde{G}(y-\xi). \end{split}$$

The both sides of (3.27) are continuous and bounded, and coincide in $\mathcal{S}'(\mathbb{R})$, hence they also coincide in $C_b(\mathbb{R})$.

If, moreover, f(x) is integrable with respect to $|x|^{-1-\nu\rho}dx$ on the negative half line, then $\int_{-\infty}^{0} \frac{dt}{|t|} f(t) \frac{G(-|t|/|x|)}{|x|^{\nu\rho}}$ converges to the right side of (3.24) as x tends to -0 because of the following asymptotics:

$$\begin{aligned} G(b) &\sim \frac{\Gamma(\nu)\sin\pi\nu\rho}{\pi\nu\rho\Gamma(\nu\rho)\Gamma(\nu-\nu\rho)}|b|^{-\nu\rho} \text{ as } b \to -\infty, \\ G(b) &\sim \frac{\Gamma(\nu)\sin\pi\nu\rho}{\pi\nu(1-\rho)\Gamma(\nu\rho)\Gamma(\nu-\nu\rho)}|b|^{1-\nu\rho} \text{ as } b \to -0, \\ G(b) &\sim O(|b+1|^{\nu-1}) \text{ as } b \to -1. \end{aligned}$$

4 Proof of Theorem 2.

By the scaling property of Brownian motion, we have for positive c

$$u^c(x,y):=u(c^{1/
u}x,cy;\kappa,\lambda,\mu)=u(x,y;c^2\kappa,c^{1/
u}\lambda,c^2\mu).$$

In the previous section it is established with some constant C > 0

(4.34)
$$1 - u^{c}(x,0) \sim Cc^{\rho} |x|^{\nu \rho} \text{ as } c \to +0$$

while in this section we prove

(4.35)
$$1 - u^{c}(x, y) \sim Cc^{\rho} \tilde{C}(x, y) \text{ as } c \to +0$$

for fixed $x \leq 0, y \in \mathbb{R}$.

4.1 The case of the starting point (x, y) in the third quadrant.

Let $Y_0 = y < 0$. In this case Y_t is negative until the hitting time T_0^Y . Applying the optional sampling theorem to the martingale $F(\lambda V_-; |Y_t|) \exp\left\{\lambda \int_0^t V(Y(s)) ds\right\}$, $\lambda > 0$, we obtain

$$E_{(0,y)}[\exp\left\{\lambda X(T_0^Y)\right\}] = F(\lambda V_-; |y|),$$

where $F(\lambda V_{-}; z)$ is the unique bounded solution of $\frac{1}{2}F''(z) = \frac{\lambda}{\overline{c}}z^{\alpha}F(z)$ on $\{z > 0\}$ with F(0) = 1.

The function $F(\lambda V_{-}; z)$ is expressed in terms of modified Bessel functions:

$$F(\lambda V_{-};z) = \frac{2\nu^{\nu}}{\Gamma(\nu)} (2\lambda/\bar{c})^{\nu/2} \sqrt{z} K_{\nu} (2\nu z^{1/2\nu} (2\lambda/\bar{c})^{1/2}).$$

Here $\nu = 1/(2 + \alpha)$ as usual. Using the formula (2.13.42) in Oberhettinger-Badii [9], we can invert the Laplace transform to obtain

(4.36)
$$E_{(0,y)}[X(T_0^Y) \in d\xi] = \frac{\nu^{2\nu} 2^{\nu} |y|}{\Gamma(\nu) \bar{c}^{\nu} |\xi|^{1+\nu}} \exp\left\{-\frac{2\nu^2 |y|^{1/\nu}}{\bar{c}|\xi|}\right\} d\xi \text{ on } \{\xi < 0\}$$

It is obvious that the law of $X(T_0^Y)$ under $P_{(x,y)}$ is identical to that of $x + X(T_0^Y)$ under $P_{(0,y)}$.

By the strong Markov property of (X(t), Y(t)),

$$1 - u^{c}(x, y) = 1 - E_{(x,y)}[u^{c}(X(T_{0}^{Y}), 0) \exp\left\{-c^{2}\mu T_{0}^{Y}\right\}]$$

= $E_{(x,y)}[1 - u^{c}(X(T_{0}^{Y}), 0)] + O(E[1 - \exp\left\{-c^{2}\mu T_{0}^{Y}\right\}]).$

We see from (4.35) that $\frac{1-u^c(x,0)}{c^{\rho}}$ is dominated by $C'|x|^{\nu\rho}$ with some constant C', and it is well known that $E[1 - \exp\{-c^2\mu T_0^Y\}] = 1 - \exp\{-\sqrt{2\mu}c|y|\} = O(c)$. Combining this with the integrability of $|x + X(T_0^Y)|^{\nu\rho}$ we know

$$\lim_{c \to +0} \frac{1 - u^c(x, y)}{C c^{\rho}} = E_{(0, y)} \left[|x + X(T_0^Y)|^{\nu \rho} \right].$$

Putting (4.36) into the right hand side,

$$\begin{split} \tilde{C}(x,y) &= E_{(0,y)} \left[|x + X(T_0^Y)|^{\nu \rho} \right] \\ &= \int_0^\infty d\xi \left(|x| + \xi \right)^{\nu \rho} \frac{\nu^{2\nu} 2^{\nu} |y|}{\Gamma(\nu) \bar{c}^{\nu} |\xi|^{1+\nu}} \exp\left\{ -\frac{2\nu^2 |y|^{1/\nu}}{\bar{c}|\xi|} \right\}. \end{split}$$

Replacing $\frac{2\nu^2|y|^{1/\nu}}{\bar{c}|\xi|}$ by t, we obtain

$$\tilde{C}(x,y) = \Gamma(\nu)^{-1} \int_0^\infty dt e^{-t} \left(|x|t + \frac{2\nu^2 |y|^{1/\nu}}{\bar{c}} \right)^{\nu\rho} t^{-1+\nu-\nu\rho}.$$

4.2 The case of the starting point (x, y) in the second quadrant.

The function u^c satisfies in the left half plain $\{x < 0\}$ the differential equation

$$\frac{1}{2}\frac{\partial^2 u^c}{\partial y^2} + V(y)\frac{\partial u^c}{\partial y} = c^2 \mu u^c$$

with the boundary condition on the positive y-axis:

$$u^{c}(0,y) = F(c^{1/\nu}\lambda V + c^{2}\kappa; y) \equiv F(\lambda V + \kappa; cy), \qquad y > 0, \ c > 0$$

Let $U_c(y) = \int_{-\infty}^0 dx e^{zx} u^c(x,y), \ z \ge 0$. It follows from Theorem 1

(4.37)
$$1/z - U_c(0) = Cc^{\rho} \Gamma(1 + \nu \rho) z^{-1 - \nu \rho} \text{ as } c \to 0.$$

An integration by parts shows

$$\frac{1}{2}U_c''(y) = (zy^{\alpha} + c^2\mu)U^c(y) - y^{\alpha}F(\lambda V + \kappa; cy), \qquad y > 0$$

Let $\phi_c(y)$, $\psi_c(y)$, $F_c(y)$ be the solutions of the equation $\frac{1}{2}f''(y) = (zy^{\alpha} + c^2\mu)f(y)$ on $(0,\infty)$ determined by the following conditions:

$$\begin{split} \phi_c(0) &= 1, \quad \phi'_c(0) = 0 \\ \psi_c(0) &= 0, \quad \psi'_c(0) = 1 \\ F_c(0) &= 1, \quad F_c(y) \text{ is bounded, i.e., } F_c(y) = F(zV + c^2\mu; y) \end{split}$$

Let $\phi_0(y)$, $\psi_0(y)$, $F_0(y)$ be the solutions of $\frac{1}{2}f''(y) = zy^{\alpha}f(y)$ normalized similarly. We have by the method of variation of constants that

$$U_{c}(y) = U_{c}(0)F_{c}(y) + 2F_{c}(y)\int_{0}^{y}\psi_{c}(\xi)\xi^{\alpha}F(\lambda V + \kappa; c\xi)d\xi$$
$$+2\psi_{c}(y)\int_{y}^{\infty}F_{c}(\xi)\xi^{\alpha}F(\lambda V + \kappa; c\xi)d\xi.$$

Since $F(\lambda V + \kappa; c\xi)$ is a convex decreasing function it holds the inequality $0 < 1 - F(\lambda V + \kappa; c\xi) < \left| \frac{dF}{d\xi} (\lambda V + \kappa; 0) \right| c\xi$. Hence we have, for each fixed y > 0,

$$\int_{0}^{y} \psi_{c}(\xi)\xi^{\alpha}F(\lambda V+\kappa;c\xi)d\xi = \int_{0}^{y} \psi_{c}(\xi)\xi^{\alpha}d\xi + O(c)$$
$$\int_{y}^{\infty} F_{c}(\xi)\xi^{\alpha}F(\lambda V+\kappa;c\xi)d\xi = \int_{y}^{\infty} F_{c}(\xi)\xi^{\alpha}d\xi + O(c)$$

as c tends to 0. Noting the differential equation of ψ_c and F_c we obtain

$$2F_{c}(y)\int_{0}^{y}\psi_{c}(\xi)\xi^{\alpha}F(\lambda V+\kappa;c\xi)d\xi + 2\psi_{c}(y)\int_{y}^{\infty}F_{c}(\xi)\xi^{\alpha}F(\lambda V+\kappa;c\xi)d\xi$$

=
$$\frac{F_{c}(y)(\psi_{c}'(y)-1)-\psi_{c}(y)F_{c}'(y)}{z} + O(c) = \frac{1-F_{c}(y)}{z} + O(c).$$

We need to prove that, for each fixed y > 0, $F_c(y) - F_0(y) = O(c)$ as $c \to 0$. By the Feynmann-Kac formula, $F_c(y) \equiv F(zV+c^2\mu; y)$ is the same as $E_y[\exp(-\int_0^{T_0} (zV(B_s)+c^2\mu)ds)]$. Here T_0 is the first hitting time to 0 by a standard Brownian motion B_s . Now it is clear that $0 < F_0(y) - F_c(y) = E_y[\exp(-\int_0^{T_0} (zV(B_s)ds)(1 - \exp(-c^2\mu T_0))] < E_y[1 - \exp(-c^2\mu T_0)] = 1 - \exp(-cy\sqrt{2\mu}) = O(c)$.

Combining these with (4.37) we have

(4.38)
$$1/z - U_c(y) = Cc^{\rho}\Gamma(1+\nu\rho)F(zV;y)z^{-1-\nu\rho} + O(c) \text{ as } c \to +0.$$

We can conclude by a standard argument that

$$1-u^c(x,y)\sim Cc^
ho ilde C(x,y)$$
 as $c
ightarrow +0$

with

$$\int_0^\infty e^{-zx} dx \tilde{C}(x,y) = \Gamma(1+\nu\rho) F(zV;y) z^{-1-\nu\rho}.$$

Since $F(zV;y) = \frac{2\nu^{\nu}}{\Gamma(\nu)}(2z)^{\nu/2}\sqrt{y}K_{\nu}(2\nu y^{1/2\nu}(2z)^{1/2})$, we can invert the Laplace transform (see Oberhettinger-Badii [9] (13.45)) to obtain

$$\tilde{C}(x,y) = \frac{\Gamma(1+\nu\rho)|x|^{1/2+\nu\rho-\nu/2}}{\Gamma(\nu)2^{(1-\nu)/2}\nu^{1-\nu}y^{(1-\nu)/2\nu}} \exp\left\{-\frac{\nu^2 y^{1/\nu}}{|x|}\right\} W_{\frac{\nu}{2}-\frac{1}{2}-\nu\rho,\frac{\nu}{2}}(2\nu^2 y^{1/\nu}/|x|)$$

where $W_{\kappa,\mu}(z)$ is a Whittaker function defined by(see Abramowitz-Stegun [1] (13.1.33) and (13.2.5))

$$W_{\kappa,\mu}(z) = \frac{z^{1/2+\mu}e^{-z/2}}{\Gamma(1/2+\mu-\kappa)} \int_0^\infty dt e^{-zt} t^{-1/2+\mu-\kappa} (1+t)^{\mu+\kappa-1/2}.$$

Replacing $2\nu^2 y^{1/\nu} t/|x|$ by t, we obtain

$$\tilde{C}(x,y) = \frac{|x|^{1-\nu+2\nu\rho} \exp\left\{-2\nu^2 y^{1/\nu}/|x|\right\}}{\Gamma(\nu)} \int_0^\infty dt e^{-t} t^{\nu\rho} \left(|x|t+2\nu^2 y^{1/\nu}\right)^{-1+\nu-\nu\rho}.$$

References

- M. Abramowitz, I. A. Stegun, A Handbook of mathematical functions, Dover, New York, 1964.
- [2] J. Bertoin, Lévy processes, Cambridge Univ. Press, Cambridge, 1997.
- [3] Y. Isozaki, S. Watanabe, An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai's estimates for the integral of Brownian motion, Proc. Japan Acad., 70A, (1994), pp. 271-276.
- [4] Y. Isozaki, Asymptotic estimates for the distribution of additive functionals of Brownian motion by the Wiener-Hopf factorization method, J. Math. Kyoto Univ., 36, (1996), pp. 211-227.
- [5] A. N. Kolmogorov, Zuffälige Bewegungen, Ann. Math. II., 35 (1934), pp. 116-117.
- [6] S. Kotani, S. Watanabe, Krein's spectral theory of strings and generalized diffusion processes, Functional Analysis in Markov Porcesses, ed. M. Fukushima, Lecture Notes in Mathematics 923, pp. 235-259, Springer-Verlag, Berlin, 1982.
- [7] P. McGill, Wiener-Hopf factorization of Brownian motion, Prob. Th. Rel. Fields, 83, (1989), pp. 355-389.

- [8] H. P. McKean, Jr., A winding problem for a resonator driven by a white noise, J. Math. Kyoto Univ., 2 (1963), pp. 227-235.
- [9] F. Oberhettinger, L. Badii, Tables of Laplace Transforms, Springer-Verlag, Berlin, 1973.
- [10] L. C. G. Rogers, D. Williams, A differential equation in Wiener-Hopf theory, Stochastic analysis and applications, ed. A. Truman, D. Williams, Lecture Notes in Mathematics 1095, pp. 187-199, Springer-Verlag, Berlin, 1984.
- [11] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, Berlin, 1991.
- [12] Ya. G. Sinai, Distribution of some functionals of the integral of a random walk, Theor. Math. Phys., 90 (1992), pp. 219-241.
- [13] V. M. Zolotarev, Mellin-Stieltjes transforms in probability theory, Theor. Prob. Appl., 2 (1957), pp. 433-460.

Y. Isozaki, Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, E-mail: yasuki@math.sci.osaka-u.ac.jp

S. Kotani, Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, E-mail: kotani@math.sci.osaka-u.ac.jp