SÉminaire de probabilités (Strasbourg)

Yasuki Isozaki
 Shinichi Kotani
 Asymptotic estimates for the first hitting time of fluctuating additive functionals of brownian motion

Séminaire de probabilités (Strasbourg), tome 34 (2000), p. 374-387
http://www.numdam.org/item?id=SPS_2000__34__374_0
© Springer-Verlag, Berlin Heidelberg New York, 2000, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Article numérisé dans le cadre du programme

Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion

Y. Isozaki
S. Kotani

1 Introduction

In [3], we obtained the following estimates for the first hitting time of the integrated Brownian motion: Let $B(t)$ be the linear Brownian motion started at 0 . It holds with some explicit constant $k>0$

$$
\begin{equation*}
P\left[\int_{0}^{u} B(s) d s<r \text { for all } 0 \leq u \leq t\right] \sim k r^{1 / 6} t^{-1 / 4} \text { as } r^{1 / 6} t^{-1 / 4} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

which is a refinement of Sinai's estimates[12].
The above formula as well as the other ones follow systematically from the theorem in [3]: Let $(X(t), Y(t))$ be the Kolmogorov diffusion ([5]).

$$
\begin{equation*}
Y(t)=y+B(t), \quad X(t)=x+\int_{0}^{t} Y(s) d s \tag{1.2}
\end{equation*}
$$

Let T be the first hitting time to the positive y-axis:

$$
\begin{equation*}
T=\inf \{t \geq 0 ; X(t)=0, Y(t) \geq 0\} \tag{1.3}
\end{equation*}
$$

Hence $Y(T)$ is the hitting place on the positive y-axis. We denote by $E_{(x, y)}$ and $P_{(x, y)}$ the expectation and the probability measure for this diffusion respectively.

Theorem ([3]) For $\mu, \kappa \geq 0$ and $x \leq 0, y \in \mathbb{R}$ it holds

$$
\begin{equation*}
1-E_{\left(\bar{\sigma} x, \bar{\sigma}^{1 / 3} y\right)}[\exp \{-\sigma \mu T-\sqrt{\sigma} \sqrt{2 \kappa} Y(T)\}] \sim \tilde{K}(x, y) \bar{\sigma}^{1 / 6} K(\kappa, \mu) \sigma^{1 / 4} \tag{1.4}
\end{equation*}
$$

as $\bar{\sigma}^{1 / 6} \sigma^{1 / 4}$ tends to 0 , where

$$
K^{\prime}(\kappa, \mu)=\frac{3(\sqrt{2 \kappa}+\sqrt{2 \mu}) \Gamma\left(\frac{1}{3}\right) 3^{1 / 3}}{\sqrt{\pi} \sqrt{\sqrt{2 \kappa}+2 \sqrt{2 \mu}} \Gamma\left(\frac{1}{6}\right) 2^{1 / 6}}
$$

and

$$
\tilde{K}^{\prime}(x, y)=\frac{|x|^{5 / 6} e^{-2\left(y^{+}\right)^{3} / 9|x|}}{\Gamma\left(\frac{1}{3}\right)} \int_{0}^{\infty} d t e^{-t}\left(|x| t+2\left|y^{-}\right|^{3} / 9\right)^{1 / 6}\left(|x| t+2\left(y^{+}\right)^{3} / 9\right)^{-5 / 6} .
$$

The proof depends heavily on a formula obtained by McKean[8].
We considered in [4] a generalization for this problem. We redefine $(X(t), Y(t))$, the odd additive functional, as

$$
\begin{equation*}
Y(t)=y+B(t), \quad X(t)=x+\int_{0}^{t}|Y(s)|^{\alpha} \operatorname{sgn}(Y(s)) d s \tag{1.5}
\end{equation*}
$$

and we retain the notations $T, E_{(x, y)}$ and $P_{(x, y)}$. In [4], we were able to prove some weaker estimates:

Theorem ([4]) For $\alpha \geq 0, \nu:=1 /(\alpha+2), x \leq 0$ and $y=0$, there exist positive constants $k^{\prime}(\alpha), k^{\prime \prime}(\alpha)$ such that

$$
\begin{equation*}
k^{\prime}(\alpha)|x|^{\nu / 2} t^{-1 / 4}<P_{(x, 0)}[T>t]<k^{\prime \prime}(\alpha)|x|^{\nu / 2} t^{-1 / 4} \tag{1.6}
\end{equation*}
$$

for all small $|x|^{\nu / 2} t^{-1 / 4}$.
The present paper proves the existence of the limit value for $|x|^{-\nu / 2} t^{1 / 4} P_{(x, 0)}[T>t]$, and more generally, we obtain similar results for some additive fuctionals that are not odd, or symmetric. We shall observe that the exponent $-1 / 4$ of time parameter in the above theorems varies between 0 and $-1 / 2$ in accordance with the skewness of additive functionals.

There are at least two approaches for our problem: the analytical one using Krein's spectral theory of strings(cf. Kotani-Watanabe[6]) and the probabilistic one based on the excursion theory, among which we mainly take the latter course.

Acknowledgement. The authors would thank M. Yor for helpful discussions.

2 The main theorem

In the remainder of this paper, almost all quantities depend on the parameter $\alpha>-1$ and $\bar{c}>0$ without any mentioning. Let V be a function on the real line which is positive on $(0, \infty)$ and negative on $(-\infty, 0)$.

$$
\begin{equation*}
V(x)=x^{\alpha} \text { for } x>0 ; V(0)=0 ; V(x)=-|x|^{\alpha} / \bar{c} \text { for } x<0 . \tag{2.7}
\end{equation*}
$$

We define a diffusion $(X(t), Y(t))$ on \mathbb{R}^{2} in a similar way and denote it by the same symbol:

$$
\begin{equation*}
Y(t)=y+B(t), \quad X(t)=x+\int_{0}^{t} V(Y(s)) d s \tag{2.8}
\end{equation*}
$$

We denote by $E_{(x, y)}$ and $P_{(x, y)}$ the expectation and the probability measure for the diffusion started at $(x, y) \in \mathbb{R}^{2}$. Let T be the first hitting time to the positive y-axis as usual. Let T_{0}^{Y} be the first hitting time to x-axis:

$$
\begin{equation*}
T_{0}^{Y}=\inf \{t \geq 0 ; Y(t)=0\} \tag{2.9}
\end{equation*}
$$

and for $\kappa, \lambda, \mu \geq 0, x \leq 0, y \in \mathbb{R}$ define $u_{0}(x, y) \equiv u_{0}(x, y ; \mu)$ by

$$
\begin{equation*}
u_{0}(x, y)=E_{(x, y)}[\exp (-\mu T)] \tag{2.10}
\end{equation*}
$$

and more generally $u(x, y) \equiv u(x, y ; \kappa, \lambda, \mu)$ by

$$
\begin{align*}
u(x, y) & =E_{(x, y)}\left[\exp \left\{-\mu T-\lambda X\left(T_{0}^{Y} \circ \theta_{T}\right)-\kappa\left(T_{0}^{Y} \circ \theta_{T}-T\right)\right\}\right] \tag{2.11}\\
& \equiv E_{(x, y)}[\exp \{-\mu T\} F(\lambda V+\kappa ; Y(T))] \tag{2.12}
\end{align*}
$$

here θ_{t} is the usual shift operator on the path space and the function $F(\lambda V+\kappa ; z)$ is the unique bounded solution of $\frac{1}{2} F^{\prime \prime}(z)=(\lambda V(z)+\kappa) F(z)$ on $(0, \infty)$ with $F(0)=1$. It is clear that $0 \leq u(x, y) \leq 1, u(0,0)=1$ and $u_{0}(0, y)=1$ for $y>0$.

Theorem 1 Define positive numbers $0<\nu<1,0<\rho<1$ by $\nu=1 /(\alpha+2)$ and $\bar{c}^{\nu} \sin \pi \nu(1-\rho)=\sin \pi \nu \rho$. Then for $\kappa, \lambda, \mu \geq 0$ there exists a positive constant $C(\kappa, \lambda, \mu)$ such that it holds

$$
\begin{equation*}
1-u\left(x, 0 ; \sigma \kappa, \sigma^{1 / 2 \nu} \lambda, \sigma \mu\right) \sim|x|^{\nu \rho} C(\kappa, \lambda, \mu) \sigma^{\rho / 2} \tag{2.13}
\end{equation*}
$$

as $|x|^{\nu \rho} \sigma^{\rho / 2}$ tends to 0 .
Corollary 1 It holds that

$$
\begin{equation*}
1-u_{0}(x, 0 ; \mu) \sim C(0,0,1)|x|^{\nu \rho} \mu^{\rho / 2} \tag{2.14}
\end{equation*}
$$

as $|x|^{\nu \rho} \mu^{\rho / 2}$ tends to 0 , in other words,

$$
\begin{equation*}
P\left[\int_{0}^{s} V(B(u)) d u<|x| \text { for all } 0 \leq s \leq t\right] \sim \frac{C(0,0,1)}{\Gamma(1-\rho / 2)}|x|^{\nu \rho} t^{-\rho / 2} \tag{2.15}
\end{equation*}
$$

as $|x|^{\nu \rho} t^{-\rho / 2}$ tends to 0 .
We have, more generally, the following theorem.
Theorem 2 There exist a positive constant $\tilde{C}(x, y)$ such that, for $\kappa, \lambda, \mu \geq 0, x \leq 0$ and $y \in \mathbb{R}$, it holds that

$$
\begin{equation*}
1-u\left(\bar{\sigma} x, \bar{\sigma}^{1 / \nu} y ; \sigma \kappa, \sigma^{1 / 2 \nu} \lambda, \sigma \mu\right) \sim \tilde{C}(x, y) \bar{\sigma}^{\nu \rho} C(\kappa, \lambda, \mu) \sigma^{\rho / 2} \tag{2.16}
\end{equation*}
$$

for positive $\sigma, \bar{\sigma}$ such that $\bar{\sigma}^{\nu \rho} \sigma^{\rho / 2}$ tends to 0 , where $C(\kappa, \lambda, \mu)$ is the same as in Theorem 1 and $\tilde{C}(x, y)$ is given by

$$
\tilde{C}(x, y)=\frac{|x|^{1-\nu+\nu \rho} \exp \left\{-2 \nu^{2}\left(y^{+}\right)^{1 / \nu} /|x|\right\}}{\Gamma(\nu)},
$$

Remark 1. The function u has the following scaling property: for any $c>0$

$$
\begin{aligned}
u(x, y ; \kappa, \lambda, \mu) & \equiv u\left(c^{1 / \nu} x, c y ; c^{-2} \kappa, c^{-1 / \nu} \lambda, c^{-2} \mu\right) \\
& \equiv E_{\left(c^{1 / \nu} x, c y\right)}\left[\exp \left\{-c^{-2} \mu T\right\} F\left(\lambda V+\kappa ; c^{-1} Y(T)\right)\right]
\end{aligned}
$$

and the theorems are stated accordingly.

Remark 2. The distribution of $Y(T)$ under $P_{(0, y)}$ is known explicitly by RogersWilliams[10], see also McGill[7]: For $y<0$,

$$
\begin{equation*}
P_{(0, y)}[Y(T) \in d \eta]=\frac{\sin \pi \nu \rho}{\pi \nu \bar{c}^{\nu} \rho}|y|^{\rho} \eta^{1 / \nu-1-\rho} \frac{d \eta}{\bar{c}^{-1}|y|^{1 / \nu}+\eta^{1 / \nu}} \text {, on }\{\eta>0\} . \tag{2.17}
\end{equation*}
$$

Their methods do not seem to cover, however, the cases involving the stopping time T.

Remark 3. We denote by $\tau(t)$ the inverse of the local time of Y at 0 . It is well known that $\int_{0}^{\tau(t)} V\left(B_{u}\right) d u$ is a stable process with index ν and it holds

$$
\begin{equation*}
P\left[\int_{0}^{\tau(s)} V\left(B_{u}\right) d u<|x| \text { for all } s \leq t\right] \sim \text { const }|x|^{\nu \rho} t^{-\rho} \tag{2.18}
\end{equation*}
$$

as $|x|^{\nu \rho} t^{-\rho}$ tends to 0 . See e.g. Bertoin[2]. This result has the same order as our Corollary 1 in the space variable $|x|$, but differs in the time variable t.

Remark 4. Note also that ρ is equal to the probability $P\left[\int_{0}^{\tau(t)} V\left(B_{u}\right) d u>0\right]$ independent of t, which can be proved using the result by Zolotarev[13].

3 Proof of Theorem 1

We denote by $L(t)$ the local time at 0 of $Y(T): L_{t}=\lim _{\varepsilon \downarrow 0} \frac{1}{2 \varepsilon} \int_{0}^{t} 1_{(-\varepsilon, \varepsilon)}(Y(u)) d u$ and by τ_{t} or $\tau(t)$ the right continuous inverse of $L_{t}: \tau_{t} \equiv \tau(t)=\inf \left\{u>0 ; L_{u}>t\right\}$. Let n^{+}and n^{-}be the Itô measure for positive and negative excursions respectively, and set $n=n^{+}+n^{-}$.

We denote a general excursion by $\varepsilon=\left(\varepsilon_{t} ; t \geq 0\right)$, its lifetime by $\zeta=\zeta(\varepsilon)$ and define a random time for $x \leq 0$,

$$
\begin{equation*}
T(\varepsilon, x)=\inf \left\{0 \leq t \leq \zeta ; x+\int_{0}^{t} V\left(\varepsilon_{s}\right) d s \geq 0\right\} \tag{3.19}
\end{equation*}
$$

We set $T(\varepsilon, x)=\zeta$ if there is no such t. It follows, through calculations of the Lévy measure of $X\left(\tau_{t}\right)$, that

$$
\begin{aligned}
n^{+}\left[1-\exp \left\{-\lambda \int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right\}\right] & =\frac{\nu^{2 \nu-1} 2^{\nu} \Gamma(1-\nu)}{\Gamma(\nu)} \lambda^{\nu} \\
n^{-}\left[1-\exp \left\{\lambda \int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right\}\right] & =\frac{\nu^{2 \nu-1} 2^{\nu} \Gamma(1-\nu)}{\Gamma(\nu)}(\lambda / \bar{c})^{\nu}
\end{aligned}
$$

for positive λ and that

$$
\begin{gather*}
n^{+}\left[\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s>\xi\right]=\frac{\nu^{2 \nu-1} 2^{\nu}}{\Gamma(\nu)} \xi^{-\nu}, \tag{3.20}\\
n^{-}\left[\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s<-\xi\right]=\frac{\nu^{2 \nu-1} 2^{\nu}}{\Gamma(\nu)}(\bar{c} \xi)^{-\nu} \tag{3.21}
\end{gather*}
$$

for positive ξ.
We have an integral equation for $u(x, 0)$.

Lemma 1 We extend u for positive x by $u(x, 0)=1$. Then it holds for $x<0$

$$
\begin{align*}
& n\left[u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right] \\
= & n\left[u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)\left\{1-e^{-\mu T(\epsilon, x)} F(\lambda V+\kappa ; \varepsilon(T(\varepsilon, x)))\right\}\right] . \tag{3.22}
\end{align*}
$$

Proof. Let $F(z)=F(\lambda V+\kappa ; z)$. Define $a \vee b=\max (a, b), a \wedge b=\min (a, b)$ and

$$
M(t)=u\left(X\left(\tau_{t} \wedge T\right), Y\left(\tau_{t} \wedge T\right)\right) e^{-\mu(\tau(t) \wedge T))}
$$

then $u(x, 0)=E_{(x, 0)}[M(t)]$ holds for any $t \geq 0$ and $x \leq 0$.
If $T \leq \tau_{t-}$ then $M(t)-M(t-)=0$.
If $\tau_{t-}<T \leq \tau_{t}$ then τ_{t} is the first hitting time of 0 by Y after T, i.e., $\tau_{t}=T_{0}^{Y} \circ \theta_{T}$. In this case,

$$
M(t)-M(t-)=e^{-\mu T} F(Y(T))-e^{-\mu \tau(t-)} u\left(X\left(\tau_{t-}\right), 0\right)
$$

and $T-\tau_{t-}=T\left(\varepsilon, X\left(\tau_{t-}\right)\right)$, here ε denotes the excursion started at τ_{t-} and ended at $\tau_{t}: \varepsilon_{s}=Y\left(s+\tau_{t-}\right), s<\tau_{t}-\tau_{t-\cdots}$.

Finally if $\tau_{t}<T$ then

$$
M(t)-M(t-)=e^{-\mu \tau(t)} u\left(\left(X\left(\tau_{t}\right), 0\right)-e^{-\mu \tau(t-)} u\left(\left(X\left(\tau_{t-}\right), 0\right)\right.\right.
$$

and $\tau_{t}-\tau_{t-}=\zeta(\varepsilon)$. The master formula of excursion theory (cf. Revuz-Yor[11] page 439) tells us

$$
\begin{aligned}
& E_{(x, 0)}[M(s)-M(0)]=\int_{0}^{3} d t E_{(x, 0)}[\\
& e^{-\mu \tau(t-)} n^{+}\left[e^{-\mu T(\varepsilon, X(\tau(t-)))} F\left(\varepsilon\left(T\left(\varepsilon, X\left(\tau_{t-}\right)\right)\right)\right)-u\left(\left(X\left(\tau_{t-}\right), 0\right) ; T\left(\varepsilon, X\left(\tau_{t-}\right)\right)<\zeta\right]\right. \\
& +e^{-\mu \tau(t-)} n\left[e^{-\mu \zeta} u\left(X\left(\tau_{t-}\right)+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u\left(X\left(\tau_{t-}\right), 0\right) ; T\left(\varepsilon, X\left(\tau_{t-}\right)\right)=\zeta\right] .
\end{aligned}
$$

Recalling $u(x, 0)=E_{(x, 0)}[M(s)]$, we know that the integrand of the right hand side is identically null.

Since $X\left(\tau_{t}\right)$ is a ν-stable Lévy process, the paths are right continuous and the transition density decays as t goes to 0 uniformly outside any neighbohood of $X(0)$. The proof is hence complete if we show

$$
\begin{aligned}
n^{+} & {\left[e^{-\mu T(\varepsilon, x)} F(\varepsilon(T(\varepsilon, x)))-u(x, 0) ; T(\varepsilon, x)<\zeta\right] } \\
& +n\left[e^{-\mu \zeta} u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0) ; T(\varepsilon, x)=\zeta\right]
\end{aligned}
$$

which coincides with

$$
n\left[u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right) e^{-\mu T(\varepsilon, x)} F(\varepsilon(T(\varepsilon, x)))-u(x, 0)\right],
$$

is continuous on $\{x<0\}$ and its absolute value is dominated by an integrable function plus a constant. We need the following lemma.

Lemma 2 The function $u(x, 0)$ is infinitely differentiable on $\{x<0\}$ and $\frac{\partial u}{\partial x}$ is positive.

Moreover, if $\alpha \geq 0, \nu \leq 1 / 2$ then $\frac{\partial^{2} u}{\partial x^{2}}$ is positive, in particular $\frac{\partial u}{\partial x}=o(1 /|x|)$ as $x \rightarrow-\infty$. If $-1<\alpha<0,1 / 2<\nu<1$ then $\frac{\partial u}{\partial x}=O(1 /|x|)$ as $x \rightarrow-\infty$.

Remark. It can be proved for any $m>0$ and $n>0, \frac{\partial^{n} u}{\partial x^{n}}=O\left(|x|^{-m}\right)$. However the statemant above is sufficient for our purpose.

Proof. Let $F(z)=F(\lambda V+\kappa ; z)$. By the scaling property it holds that

$$
u(x, 0 ; \kappa, \lambda, \mu)=E_{(-1,0)}\left[e^{-|x|^{2 \nu} \mu T} F\left(|x|^{\nu} Y(T)\right)\right] .
$$

Since $F(z)$ decays exponentially as $z \rightarrow \infty$, the differentiation inside the expectation can be justified. Hence

$$
\begin{aligned}
\frac{\partial u}{\partial x}(x, 0 ; \kappa, \lambda, \mu)= & E_{(-1,0)}\left[2 \nu|x|^{2 \nu-1} \mu T e^{-|x|^{2 \nu} \mu T} F\left(|x|^{\nu} Y(T)\right)\right. \\
& +e^{-|x|^{2 \nu} \mu T} \nu|x|^{\nu-1} Y(T)\left(-F^{\prime}\left(|x|^{\nu} Y(T)\right)\right] .
\end{aligned}
$$

Here $-F^{\prime}(z)$ is a positive decreasing function. The integrand is obviously positive and if $2 \nu-1 \leq 0$ it is strictly decreasing in $|x|$. If $\nu>1 / 2$, we use again the scaling property:

$$
\frac{\partial u}{\partial x}(x, 0 ; \kappa, \lambda, \mu)=\frac{1}{|x|} E_{(x, 0)}\left[2 \nu \mu T e^{-\mu T} F(Y(T))+e^{-\mu T} \nu Y(T)\left(-F^{\prime}(Y(T))\right] .\right.
$$

The integrand is a bounded function of two variables T and $Y(T)$.
End of the proof of Lemma 1. The difference between

$$
n\left[u\left\{x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right\} e^{-\mu T(\varepsilon, x)} F(\varepsilon(T(\varepsilon, x)))-u(x, 0)\right]
$$

and $n\left[u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right]$ is bounded since it is dominated by

$$
\begin{aligned}
& n\left[1-e^{-\mu T(\varepsilon, x)} F(\varepsilon(T(\varepsilon, x)))\right] \\
\equiv & n\left[1-\exp \left\{-\mu T^{\prime}(\varepsilon, x)-\kappa(\zeta-T(\varepsilon, x))-\lambda \int_{T(\varepsilon, x)}^{\zeta} V\left(\varepsilon_{s}\right) d s\right\}\right],
\end{aligned}
$$

which is also bounded by

$$
\begin{aligned}
& n\left[1-\exp \left\{-(\mu \vee \kappa) \zeta-\lambda \int_{0}^{\zeta} V\left(\varepsilon_{s}\right) \vee 0 d s\right\}\right] \\
< & n[1-\exp \{-(\mu \vee \kappa) \zeta\}]+n\left[1-\exp \left\{-\lambda \int_{0}^{\zeta} V\left(\varepsilon_{s}\right) \vee 0 d s\right\}\right]<\infty
\end{aligned}
$$

We divide $n\left[u\left(x+\int_{0}^{\varsigma} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right]$ into two parts.
$n\left[\left|u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right| ;\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|>1\right]$ is bounded because $0 \leq u \leq$ 1 and $n\left[\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|>1\right]<\infty$ by (3.20) and (3.21). Integrating by parts,

$$
\begin{aligned}
& n\left[\left|u\left\{x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right\}-u(x, 0)\right| ;\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|<1\right] \\
= & \int_{0}^{1} d \xi \frac{\partial u}{\partial x}(x+\xi, 0) n^{+}\left[\xi<\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s<1\right] \\
& -\int_{-1}^{0} d \xi \frac{\partial u}{\partial x}(x+\xi, 0) n^{-}\left[-1<\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s<\xi\right]
\end{aligned}
$$

which is integrable, since it is a convolution of two integrable functions $\frac{\partial u}{\partial x}$ and $n^{ \pm}[\xi<$ $\left.\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|\right]$.

The continuity also follows using the above arguments since $T(\varepsilon, x)$ and $\varepsilon(T(\varepsilon, x))$ are continuous in x.

Putting the explicit value of $n^{ \pm}\left[\xi<\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|\right]$ into the left side of Lemma 1 , we have

$$
\begin{aligned}
& n\left[u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right] \\
= & \frac{\nu^{2 \nu-1} 2^{\nu}}{\Gamma(\nu)}|x|^{-\nu}\left(\{1-u(x, 0)\}-\nu \int_{0}^{1}|1-t|^{-\nu-1}(\{1-u(x t, 0)\}-\{1-u(x, 0)\}) d t\right. \\
& \left.-\nu \int_{1}^{\infty} \frac{|1-t|^{-\nu-1}}{\bar{c}^{\nu}}(\{1-u(x t, 0)\}-\{1-u(x, 0)\}) d t\right)
\end{aligned}
$$

The integral transform on this right side can be inverted.
Lemma 3 For $v \in \mathrm{C}^{1}((-\infty, 0))$ such that $\frac{d v}{d x}$ is integrable, define $L v(x) \in \mathrm{C}((-\infty, 0))$ by

$$
L v(x)=\nu \int_{0}^{1}|1-t|^{-\nu-1}(v(x t)-v(x)) d t+\nu \int_{1}^{\infty} \frac{|1-t|^{-\nu-1}}{\bar{c}^{\nu}}(v(x t)-v(x)) d t
$$

If $v(x)-L v(x)=f(x)$ then it holds

$$
\begin{equation*}
v(x)=\int_{-\infty}^{0} \frac{d t}{|t|} f(t) G\left(-\frac{|t|}{|x|}\right) \tag{3.23}
\end{equation*}
$$

with a function $G(b)$ defined by

$$
\begin{aligned}
G(b) & =\tilde{G}(-\log (-b)), \quad b<0 \\
\tilde{G}(\xi) & =\lim _{A \rightarrow+\infty} \int_{-A}^{A} \frac{e^{-i \xi x}}{2 \pi r(i x)} d x, \quad \xi \in \mathbb{R} \\
r(z) & =\frac{1}{\Gamma(\nu) \sin \pi \nu \rho} \Gamma(1-z) \Gamma(\nu+z) \sin \pi(\nu \rho+z), \quad z \in \mathbb{C}
\end{aligned}
$$

and with $\rho \in(0,1)$ defined by $\bar{c}^{\nu}=\frac{\sin \pi \nu \rho}{\sin \pi \nu(1-\rho)}$.

Moreover, if $\int_{-\infty}^{0}|x|^{-1-\nu \rho}|f(x)| d x<\infty$ then

$$
\begin{equation*}
\lim _{x \rightarrow-0} \frac{v(x)}{|x|^{\nu \rho}}=\frac{\Gamma(\nu) \sin \pi \nu \rho}{\pi \nu \rho \Gamma(\nu \rho) \Gamma(\nu-\nu \rho)} \int_{-\infty}^{0}|x|^{-1-\nu \rho} f(x) d x \tag{3.24}
\end{equation*}
$$

Remark. The Markov process associated to L turns into a Lévy process by taking the logarithm. This property enables us to calculate $\tilde{G}(\xi)$ and $r(z)$ explicitly. We prove this lemma at the end of this section.

Proof of Theorem 1. We set

$$
f(x)=\frac{\Gamma(\nu)|x|^{\nu}}{\nu^{2 \nu-1} 2^{\nu}} n\left[u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)\left(1-e^{-\mu T(\varepsilon, x)} F(\varepsilon(T(\varepsilon, x)))\right)\right]
$$

for $x<0$. It is obvious that $f(x)$ is positive everywhere and continuous. As we saw in the proof of Lemma 2, $n\left[1-e^{-\mu T(\varepsilon, x)} F(\varepsilon(T(\varepsilon, x)))\right]$ is bounded, hence $f(x)=O\left(|x|^{\nu}\right)$ as x tends to 0 .

We have also

$$
f(x)=\frac{\Gamma(\nu)|x|^{\nu}}{\nu^{2 \nu-1} 2^{\nu}} n\left[u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right] .
$$

By integration by parts, $n\left[\left|u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right| ; \frac{|x|}{2}>\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|\right]$ is dominated by const $\int_{-|x| / 2}^{|x| / 2} d \xi|\xi|^{-\nu} \frac{\partial u}{\partial x}(x+\xi, 0)$. It is shown in Lemma 2 that $\frac{\partial u}{\partial x}=O(1 /|x|)$ as $x \rightarrow-\infty$, which implies

$$
n\left[\left|u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right| ; \frac{|x|}{2}>\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|\right]=O\left(|x|^{-\nu}\right) .
$$

Finally, $n\left[\left|u\left(x+\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s, 0\right)-u(x, 0)\right| ; \frac{|x|}{2}<\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|\right]$ is easily dominated by $n\left[\frac{|x|}{2}<\left|\int_{0}^{\zeta} V\left(\varepsilon_{s}\right) d s\right|\right]=O\left(|x|^{-\nu}\right)$ since $0 \leq u(x, 0) \leq 1$ for every x.

Therefore we have shown that $f(x)=O(1)$ as $x \rightarrow-\infty$, hence the integrability of $f(x)$ with respect to $|x|^{-1-\nu \rho} d x$ and the existence of the limit value for $(1-u(x, 0)) /|x|^{\nu \rho}$ as $x \rightarrow-0$.

The statement of the theorem follows from the scaling property of u : for any $c>0$,

$$
u\left(x, y ; c^{2} \kappa, c^{1 / \nu} \lambda, c^{2} \mu\right)=u\left(c^{1 / \nu} x, c y ; \kappa, \lambda, \mu\right) .
$$

Setting $y=0, c=\sqrt{\sigma}, u\left(x, 0 ; \sigma \kappa, \sigma^{1 / 2 \nu} \lambda, \sigma \mu\right)$ is equal to $u\left(\sigma^{1 / 2 \nu} x, 0 ; \kappa, \lambda, \mu\right)$, which satisfies $1-u\left(\sigma^{1 / 2 \nu} x, 0 ; \kappa, \lambda, \mu\right) \sim$ const $\left|\sigma^{1 / 2 \nu} x\right|^{\nu \rho}$ as $\sigma^{1 / 2 \nu}|x|$ tends to 0 .

Proof of Lemma 3. Define the functions \tilde{v} and \tilde{f} on \mathbb{R} by $\tilde{v}(x)=v(-\exp (-x))$ and $\tilde{f}(x)=f(-\exp (-x))$. Define the integral operators \tilde{L} and \tilde{L}^{\prime} by

$$
\begin{align*}
& \tilde{L} g(x):= \nu \int_{0}^{\infty}\left|1-e^{-X}\right|^{-\nu-1} e^{-X}\{g(x+X)-g(x)\} d X \tag{3.25}\\
& \quad+\frac{\nu}{\bar{c}^{\nu}} \int_{-\infty}^{0}\left|1-e^{-X}\right|^{-\nu-1} e^{-X}\{g(x+X)-g(x)\} d X \\
& \tilde{L}^{\prime} g(x):=\frac{\nu}{\bar{c}^{\nu}} \int_{0}^{\infty}\left|1-e^{X}\right|^{-\nu-1} e^{X}\{g(x+X)-g(x)\} d X \tag{3.26}\\
& \quad+\nu \int_{-\infty}^{0}\left|1-e^{X}\right|^{-\nu-1} e^{X}\{g(x+X)-g(x)\} d X
\end{align*}
$$

for $g \in \mathrm{C}^{1}(\mathbb{R} \rightarrow \mathbb{C})$ with integrable $\frac{d g}{d x}$. It is obvious that $\tilde{L} \tilde{v}(x) \equiv L v\left(-e^{-x}\right)$.
To prove the lemma, it is sufficient to show that

$$
\begin{equation*}
\tilde{v}(x)=\int_{-\infty}^{\infty} \tilde{f}(y) \tilde{G}(y-x) d y . \tag{3.27}
\end{equation*}
$$

We can show, by an standard argument, that \tilde{f}, \tilde{v} and $\tilde{L} \tilde{v}$ belong to $\mathcal{S}^{\prime}(\mathbb{R})$ and for any $\phi \in \mathcal{S}(\mathbb{R})$ it holds

$$
\begin{equation*}
(\tilde{v}-\tilde{L} \tilde{v})(\mathcal{F} \phi)=\tilde{v}\left(\left(1-\tilde{L}^{\prime}\right) \mathcal{F} \phi\right) \tag{3.28}
\end{equation*}
$$

It is elementary but tedious to verify that

$$
\begin{align*}
1-r(i \xi)= & \frac{\nu}{\bar{c}^{\nu}} \int_{0}^{\infty}\left|1-e^{X}\right|^{-\nu-1} e^{X}\left\{e^{-i \xi X}-1\right\} d X \tag{3.29}\\
& +\nu \int_{-\infty}^{0}\left|1-e^{X}\right|^{-\nu-1} e^{X}\left\{e^{-i \xi X}-1\right\} d X, \\
\left(1-\tilde{L}^{\prime}\right) \mathcal{F} \phi(x)= & \mathcal{F}[\phi(\xi) r(i \xi)](x), \quad \phi \in \mathcal{S} \tag{3.30}
\end{align*}
$$

and that the function $\frac{1}{r(i \xi)}$ on \mathbb{R} is infinitely diffenrentiable and

$$
\begin{equation*}
r(-i \xi)=\overline{r(i \xi)}, \quad \frac{1}{r(i \xi)}=\frac{\text { const }}{x^{\nu}}+O\left(x^{-1-\nu}\right) \text { as } x \rightarrow \infty . \tag{3.31}
\end{equation*}
$$

We next show for any $\chi \in \mathcal{S}(\mathbb{R})$

$$
\begin{equation*}
\mathcal{F}\left[\frac{\chi(x)}{r(i x)}\right]=\mathcal{F} \chi * \tilde{G} \tag{3.32}
\end{equation*}
$$

We start with

$$
\begin{equation*}
\mathcal{F}\left[\chi(x) \frac{1_{[-A, A]}(x)}{r(i x)}\right]=\frac{1}{\sqrt{2 \pi}} \mathcal{F} \chi * \mathcal{F}\left[\frac{1_{[-A, A]}(x)}{r(i x)}\right], \quad A>0 \tag{3.33}
\end{equation*}
$$

It is clear that the left side of (3.33) converges to the left side of (3.32) as A tends to ∞.

The difference between $\tilde{G}(y)$ and $\frac{1}{\sqrt{2 \pi}} \mathcal{F}\left[\frac{1-A, A \mid(x)}{r(i x)}\right](y)$ is dominated by $c_{0}+c_{1}|y|^{\nu-1}$. To see this, it is sufficient to estimate $\int_{A}^{\infty} \frac{\exp (-i y x)}{r(i x)} d x$ for positive A.
$\operatorname{By}(3.31),\left|\int_{A}^{\infty} \frac{\exp (-i y x)}{r(i x)} d x\right|$ is less than $c_{2} \int_{A}^{\infty} \frac{|\exp (-i y x)|}{x^{1++}} d x+c_{3}\left|\int_{A}^{\infty} \frac{\exp (-i y x)}{x^{y}} d x\right|$ with some positive constants c_{2}, c_{3}. $\int_{A}^{\infty} \frac{\exp (-i y x)}{x^{\nu}} d x=|y|^{\nu-1} \int_{|y| A}^{\infty} \frac{\exp (-i(\operatorname{sgn} y) x)}{x^{\nu}} d x$ is dominated by $M|y|^{\nu-1}$ with

$$
M=\sup _{\xi>0}\left|\int_{\xi}^{\infty} \frac{\exp (-i x)}{x^{\nu}} d x\right|
$$

Since $\frac{1}{\sqrt{2 \pi}} \mathcal{F}\left[\frac{1-A, A \mid(x)}{r(i x)}\right](y)$ converges to $\tilde{G}(y)$ for fixed $y>0$, the right side of (3.33) also converges to the right side of (3.32) as A tends to ∞. Hence we have established the equation (3.32).

We now show (3.27). Set $\chi(x)=\phi(x) r(i x) \in \mathcal{S}(\mathbb{R}) . \tilde{v}(\mathcal{F} \chi)$ is equal to $\tilde{v}((1-$ $\left.\tilde{L}^{\prime}\right) \mathcal{F} \phi$) by (3.30), which is further equal to the left side of (3.28). Since $\tilde{v}-\tilde{L} \tilde{v}=\tilde{f}$, we have

$$
\tilde{v}(\mathcal{F} \chi)=\tilde{f}(\mathcal{F} \phi)
$$

Here $\mathcal{F} \phi$ is equal to the left side of (3.32). Hence we have

$$
\begin{aligned}
\tilde{v}(\mathcal{F} \chi) & =\tilde{f}(\mathcal{F} \chi * \tilde{G}) \\
& =\int_{-\infty}^{\infty} d y \tilde{f}(y) \int_{-\infty}^{\infty} d \xi \mathcal{F} \chi(\xi) \tilde{G}(y-\xi) \\
& =\int_{-\infty}^{\infty} d \xi \mathcal{F} \chi(\xi) \int_{-\infty}^{\infty} d y \tilde{f}(y) \tilde{G}(y-\xi) .
\end{aligned}
$$

The both sides of (3.27) are continuous and bounded, and coincide in $\mathcal{S}^{\prime}(\mathbb{R})$, hence they also coincide in $\mathrm{C}_{b}(\mathbb{R})$.

If, moreover, $f(x)$ is integrable with respect to $|x|^{-1-\nu \rho} d x$ on the negative half line, then $\int_{-\infty}^{0} \frac{d t}{|t|} f(t) \frac{G(-|t| /|x|)}{|x|^{\nu \rho}}$ converges to the right side of (3.24) as x tends to -0 because of the following asymptotics:

$$
\begin{aligned}
G(b) & \sim \frac{\Gamma(\nu) \sin \pi \nu \rho}{\pi \nu \rho \Gamma(\nu \rho) \Gamma(\nu-\nu \rho)}|b|^{-\nu \rho} \text { as } b \rightarrow-\infty \\
G(b) & \sim \frac{\Gamma(\nu) \sin \pi \nu \rho}{\pi \nu(1-\rho) \Gamma(\nu \rho) \Gamma(\nu-\nu \rho)}|b|^{1-\nu \rho} \text { as } b \rightarrow-0 \\
G(b) & \sim O\left(|b+1|^{\nu-1}\right) \text { as } b \rightarrow-1
\end{aligned}
$$

4 Proof of Theorem 2.

By the scaling property of Brownian motion, we have for positive c

$$
u^{c}(x, y):=u\left(c^{1 / \nu} x, c y ; \kappa, \lambda, \mu\right)=u\left(x, y ; c^{2} \kappa, c^{1 / \nu} \lambda, c^{2} \mu\right) .
$$

In the previous section it is established with some constant $C>0$

$$
\begin{equation*}
1-u^{c}(x, 0) \sim C c^{\rho}|x|^{\nu \rho} \text { as } c \rightarrow+0 \tag{4.34}
\end{equation*}
$$

while in this section we prove

$$
\begin{equation*}
1-u^{c}(x, y) \sim C c^{\rho} \tilde{C}(x, y) \text { as } c \rightarrow+0 \tag{4.35}
\end{equation*}
$$

for fixed $x \leq 0, y \in \mathbb{R}$.

4.1 The case of the starting point (x, y) in the third quadrant.

Let $Y_{0}=y<0$. In this case Y_{t} is negative until the hitting time T_{0}^{Y}. Applying the optional sampling theorem to the martingale $F\left(\lambda V_{-} ;\left|Y_{t}\right|\right) \exp \left\{\lambda \int_{0}^{t} V(Y(s)) d s\right\}$, $\lambda>0$, we obtain

$$
E_{(0, y)}\left[\exp \left\{\lambda X\left(T_{0}^{Y}\right)\right\}\right]=F\left(\lambda V_{-} ;|y|\right)
$$

where $F\left(\lambda V_{-} ; z\right)$ is the unique bounded solution of $\frac{1}{2} F^{\prime \prime}(z)=\frac{\lambda}{\bar{c}} z^{\alpha} F(z)$ on $\{z>0\}$ with $F(0)=1$.

The function $F\left(\lambda V_{-} ; z\right)$ is expressed in terms of modified Bessel functions:

$$
F\left(\lambda V_{-} ; z\right)=\frac{2 \nu^{\nu}}{\Gamma(\nu)}(2 \lambda / \bar{c})^{\nu / 2} \sqrt{z} K_{\nu}\left(2 \nu z^{1 / 2 \nu}(2 \lambda / \bar{c})^{1 / 2}\right)
$$

Here $\nu=1 /(2+\alpha)$ as usual. Using the formula (2.13.42) in Oberhettinger-Badii [9], we can invert the Laplace transform to obtain

$$
\begin{equation*}
E_{(0, y)}\left[X\left(T_{0}^{Y}\right) \in d \xi\right]=\frac{\nu^{2 \nu} 2^{\nu}|y|}{\Gamma(\nu) \bar{c}^{\nu}|\xi|^{1+\nu}} \exp \left\{-\frac{2 \nu^{2}|y|^{1 / \nu}}{\bar{c}|\xi|}\right\} d \xi \text { on }\{\xi<0\} . \tag{4.36}
\end{equation*}
$$

It is obvious that the law of $X\left(T_{0}^{Y}\right)$ under $P_{(x, y)}$ is identical to that of $x+X\left(T_{0}^{Y}\right)$ under $P_{(0, y)}$.

By the strong Markov property of $(X(t), Y(t))$,

$$
\begin{aligned}
1-u^{c}(x, y) & =1-E_{(x, y)}\left[u^{c}\left(X\left(T_{0}^{Y}\right), 0\right) \exp \left\{-c^{2} \mu T_{0}^{Y}\right\}\right] \\
& =E_{(x, y)}\left[1-u^{c}\left(X\left(T_{0}^{Y}\right), 0\right)\right]+O\left(E\left[1-\exp \left\{-c^{2} \mu T_{0}^{Y}\right\}\right]\right)
\end{aligned}
$$

We see from (4.35) that $\frac{1-u^{c}(x, 0)}{c^{\rho}}$ is dominated by $C^{\prime}|x|^{\nu \rho}$ with some constant C^{\prime}, and it is well known that $E\left[1-\exp \left\{-c^{2} \mu T_{0}^{Y}\right\}\right]=1-\exp \{-\sqrt{2 \mu} c|y|\}=O(c)$.

Combining this with the integrability of $\left|x+X\left(T_{0}^{Y}\right)\right|^{\mu \rho}$ we know

$$
\lim _{c \rightarrow+0} \frac{1-u^{c}(x, y)}{C c^{\rho}}=E_{(0, y)}\left[\left|x+X\left(T_{0}^{Y}\right)\right|^{\nu \rho}\right] .
$$

Putting (4.36) into the right hand side,

$$
\begin{aligned}
\tilde{C}(x, y) & =E_{(0, y)}\left[\left|x+X\left(T_{0}^{Y}\right)\right|^{\nu \rho}\right] \\
& =\int_{0}^{\infty} d \xi(|x|+\xi)^{\nu \rho} \frac{\nu^{2 \nu} 2^{\nu}|y|}{\Gamma(\nu) \bar{c}^{\nu}|\xi|^{1+\nu}} \exp \left\{-\frac{2 \nu^{2}|y|^{1 / \nu}}{\bar{c}|\xi|}\right\} .
\end{aligned}
$$

Replacing $\frac{2 \nu^{2}|y|^{1 / \nu}}{\bar{\sigma}|\xi|}$ by t, we obtain

$$
\tilde{C}(x, y)=\Gamma(\nu)^{-1} \int_{0}^{\infty} d t e^{-t}\left(|x| t+\frac{2 \nu^{2}|y|^{1 / \nu}}{\bar{c}}\right)^{\nu \rho} t^{-1+\nu-\nu \rho} .
$$

4.2 The case of the starting point (x, y) in the second quadrant.

The function u^{c} satisfies in the left half plain $\{x<0\}$ the differential equation

$$
\frac{1}{2} \frac{\partial^{2} u^{c}}{\partial y^{2}}+V(y) \frac{\partial u^{c}}{\partial y}=c^{2} \mu u^{c}
$$

with the boundary condition on the positive y-axis:

$$
u^{c}(0, y)=F\left(c^{1 / \nu} \lambda V+c^{2} \kappa ; y\right) \equiv F(\lambda V+\kappa ; c y), \quad y>0, c>0 .
$$

Let $U_{c}(y)=\int_{-\infty}^{0} d x e^{z x} u^{c}(x, y), z \geq 0$. It follows from Theorem 1

$$
\begin{equation*}
1 / z-U_{c}(0)=C c^{\rho} \Gamma(1+\nu \rho) z^{-1-\nu \rho} \text { as } c \rightarrow 0 . \tag{4.37}
\end{equation*}
$$

An integration by parts shows

$$
\frac{1}{2} U_{c}^{\prime \prime}(y)=\left(z y^{\alpha}+c^{2} \mu\right) U^{c}(y)-y^{\alpha} F(\lambda V+\kappa ; c y), \quad y>0 .
$$

Let $\phi_{c}(y), \psi_{c}(y), F_{c}(y)$ be the solutions of the equation $\frac{1}{2} f^{\prime \prime}(y)=\left(z y^{\alpha}+c^{2} \mu\right) f(y)$ on $(0, \infty)$ determined by the following conditions:

$$
\begin{array}{ll}
\phi_{c}(0)=1, & \phi_{c}^{\prime}(0)=0 \\
\psi_{c}(0)=0, & \psi_{c}^{\prime}(0)=1 \\
F_{c}(0)=1, & F_{c}(y) \text { is bounded, i.e., } F_{c}(y)=F\left(z V+c^{2} \mu ; y\right) .
\end{array}
$$

Let $\phi_{0}(y), \psi_{0}(y), F_{0}(y)$ be the solutions of $\frac{1}{2} f^{\prime \prime}(y)=z y^{\alpha} f(y)$ normalized similarly.
We have by the method of variation of constants that

$$
\begin{aligned}
U_{c}(y)= & U_{c}(0) F_{c}(y)+2 F_{c}(y) \int_{0}^{y} \psi_{c}(\xi) \xi^{\alpha} F(\lambda V+\kappa ; c \xi) d \xi \\
& +2 \psi_{c}(y) \int_{y}^{\infty} F_{c}(\xi) \xi^{\alpha} F(\lambda V+\kappa ; c \xi) d \xi .
\end{aligned}
$$

Since $F(\lambda V+\kappa ; c \xi)$ is a convex decreasing function it holds the inequality $0<1-$ $F(\lambda V+\kappa ; c \xi)<\left|\frac{d F}{d \xi}(\lambda V+\kappa ; 0)\right| c \xi$. Hence we have, for each fixed $y>0$,

$$
\begin{aligned}
\int_{0}^{y} \psi_{c}(\xi) \xi^{\alpha} F(\lambda V+\kappa ; c \xi) d \xi & =\int_{0}^{y} \psi_{c}(\xi) \xi^{\alpha} d \xi+O(c) \\
\int_{y}^{\infty} F_{c}(\xi) \xi^{\alpha} F(\lambda V+\kappa ; c \xi) d \xi & =\int_{y}^{\infty} F_{c}(\xi) \xi^{\alpha} d \xi+O(c)
\end{aligned}
$$

as c tends to 0 . Noting the differential equation of ψ_{c} and F_{c} we obtain

$$
\begin{aligned}
& 2 F_{c}(y) \int_{0}^{y} \psi_{c}(\xi) \xi^{\alpha} F(\lambda V+\kappa ; c \xi) d \xi+2 \psi_{c}(y) \int_{y}^{\infty} F_{c}(\xi) \xi^{\alpha} F(\lambda V+\kappa ; c \xi) d \xi \\
= & \frac{F_{c}(y)\left(\psi_{c}^{\prime}(y)-1\right)-\psi_{c}(y) F_{c}^{\prime}(y)}{z}+O(c)=\frac{1-F_{c}(y)}{z}+O(c) .
\end{aligned}
$$

We need to prove that, for each fixed $y>0, F_{c}(y)-F_{0}(y)=O(c)$ as $c \rightarrow 0$. By the Feynmann-Kac formula, $F_{c}(y) \equiv F\left(z V+c^{2} \mu ; y\right)$ is the same as $E_{y}\left[\exp \left(-\int_{0}^{T_{0}}\left(z V\left(B_{s}\right)+\right.\right.\right.$ $\left.\left.\left.c^{2} \mu\right) d s\right)\right]$. Here T_{0} is the first hitting time to 0 by a standard Brownian motion B_{s}. Now it is clear that $0<F_{0}(y)-F_{c}(y)=E_{y}\left[\exp \left(-\int_{0}^{T_{0}}\left(z V\left(B_{s}\right) d s\right)\left(1-\exp \left(-c^{2} \mu T_{0}\right)\right)\right]<\right.$ $E_{y}\left[1-\exp \left(-c^{2} \mu T_{0}\right)\right]=1-\exp (-c y \sqrt{2 \mu})=O(c)$.

Combining these with (4.37) we have

$$
\begin{equation*}
1 / z-U_{c}(y)=C c^{\rho} \Gamma(1+\nu \rho) F(z V ; y) z^{-1-\nu \rho}+O(c) \text { as } c \rightarrow+0 . \tag{4.38}
\end{equation*}
$$

We can conclude by a standard argument that

$$
1-u^{c}(x, y) \sim C c^{\rho} \tilde{C}(x, y) \text { as } c \rightarrow+0
$$

with

$$
\int_{0}^{\infty} e^{-z x} d x \tilde{C}(x, y)=\Gamma(1+\nu \rho) F(z V ; y) z^{-1-\nu \rho}
$$

Since $F(z V ; y)=\frac{2 \nu^{\nu}}{\Gamma(\nu)}(2 z)^{\nu / 2} \sqrt{y} K_{\nu}\left(2 \nu y^{1 / 2 \nu}(2 z)^{1 / 2}\right)$, we can invert the Laplace transform (see Oberhettinger-Badii [9] (13.45)) to obtain

$$
\tilde{C}(x, y)=\frac{\Gamma(1+\nu \rho)|x|^{1 / 2+\nu \rho-\nu / 2}}{\Gamma(\nu) 2^{(1-\nu) / 2} \nu^{1-\nu} y^{(1-\nu) / 2 \nu}} \exp \left\{-\frac{\nu^{2} y^{1 / \nu}}{|x|}\right\} W_{\frac{\nu}{2}-\frac{1}{2}-\nu \rho, \frac{\nu}{2}}\left(2 \nu^{2} y^{1 / \nu} /|x|\right)
$$

where $W_{\kappa, \mu}(z)$ is a Whittaker function defined by(see Abramowitz-Stegun [1] (13.1.33) and (13.2.5))

$$
W_{\kappa, \mu}(z)=\frac{z^{1 / 2+\mu} e^{-z / 2}}{\Gamma(1 / 2+\mu-\kappa)} \int_{0}^{\infty} d t e^{-z t} t^{-1 / 2+\mu-\kappa}(1+t)^{\mu+\kappa-1 / 2}
$$

Replacing $2 \nu^{2} y^{1 / \nu} t /|x|$ by t, we obtain

$$
\tilde{C}(x, y)=\frac{|x|^{1-\nu+2 \nu \rho} \exp \left\{-2 \nu^{2} y^{1 / \nu} /|x|\right\}}{\Gamma(\nu)} \int_{0}^{\infty} d t e^{-t} t^{\nu \rho}\left(|x| t+2 \nu^{2} y^{1 / \nu}\right)^{-1+\nu-\nu \rho}
$$

References

[1] M. Abramowitz, I. A. Stegun, A Handbook of mathematical functions, Dover, New York, 1964.
[2] J. Bertoin, Lévy processes, Cambridge Univ. Press, Cambridge, 1997.
[3] Y. Isozaki, S. Watanabe, An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai's estimates for the integral of Brownian motion, Proc. Japan Acad., 70A, (1994), pp. 271-276.
[4] Y. Isozaki, Asymptotic estimates for the distribution of additive functionals of Brownian motion by the Wiener-Hopf factorization method, J. Math. Kyoto Univ., 36, (1996), pp. 211-227.
[5] A. N. Kolmogorov, Zuffälige Bewegungen, Ann. Math. II., 35 (1934), pp. 116-117.
[6] S. Kotani, S. Watanabe, Krein's spectral theory of strings and generalized diffusion processes, Functional Analysis in Markov Porcesses, ed. M. Fukushima, Lecture Notes in Mathematics 923, pp. 235-259, SpringerVerlag, Berlin, 1982.
[7] P. McGill, Wiener-Hopf factorization of Brownian motion, Prob. Th. Rel. Fields, 83, (1989), pp. 355-389.
[8] H. P. McKean,Jr., A winding problem for a resonator driven by a white noise, J. Math. Kyoto Univ., 2 (1963), pp. 227-235.
[9] F. Oberhettinger, L. Badii, Tables of Laplace Transforms, Springer-Verlag, Berlin, 1973.
[10] L. C. G. Rogers, D. Williams, A differential equation in Wiener-Hopf theory, Stochastic analysis and applications, ed. A. Truman, D. Williams, Lecture Notes in Mathematics 1095, pp. 187-199, Springer-Verlag, Berlin, 1984.
[11] D. Revuz, M. Yor, Continuous martingales and Brownian motion, SpringerVerlag, Berlin, 1991.
[12] Ya. G. Sinai, Distribution of some functionals of the integral of a random walk, Theor. Math. Phys., 90 (1992), pp. 219-241.
[13] V. M. Zolotarev, Mellin-Stieltjes transforms in .probability theory, Theor. Prob. Appl., 2 (1957), pp. 433-460.
Y. Isozaki, Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, E-mail: yasuki@math.sci.osaka-u.ac.jp
S. Kotani, Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, E-mail: kotani@math.sci.osaka-u.ac.jp

