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SIMULATED ANNEALING ALGORITHMS AND MARKOV

CHAINS WITH RARE TRANSITIONS

OLIVIER CATONI

ABSTRACT. In these notes, written for a D.E.A. course at University Paris
XI during the first term of 1995, we prove the essentials about stochastic
optimisation algorithms based on Markov chains with rare transitions, un-
der the weak assumption that the transition matrix obeys a large deviation
principle. We present a new simplified line of proofs based on the Freidlin
and Wentzell graphical approach. The case of Markov chains with a peri-
odic behaviour at null temperature is considered. We have also included
some pages about the spectral gap approach where we follow Diaconis
and Stroock [13] and Ingrassia [23] in a more conventional way, except for
the application to non reversible Metropolis algorithms (subsection 6.2.2)
where we present an original result.

ALGORITHMES DE RECUIT SIMULE ET CHAINES DE MARKOV A TRANSI-
TIONS RARES: Dans ces notes, tirees d’un cours de D.E.A. donne au pre-
mier trimestre 1995, nous etablissons les bases de la theorie des algorithmes
d’optimisation stochastiques fondes sur des chaines de Markov a transi-
tions rares, sous 1’hypothese faible selon laquelle la matrice des transitions
vérifie un principe de grandes deviations. Nous presentons un nouvel en-
semble de preuves originales fondees sur 1’approche graphique de Freidlin
et Wentzell. Le cas des chaines presentant un comportement periodique
a temperature nulle est traite. De plus nous avons aussi inclus quelques
pages sur les methodes de trou spectral, dans lesquelles nous suivons Dia-
conis et Stroock [13] et Ingrassia [23] d’une façon plus conventionnelle, si
ce n’est pour l’application aux algorithmes de Metropolis non reversibles
de la section 6.2.2, qui est originale.

INTRODUCTION

These lecture notes were written on the occasion of a course of lectures which
took place from January to April 1995. We seized the opportunity of the present
English translation to add some proofs which were left to the reader and to cor-
rect some misprints and omissions. Sections 4.1, 4.2 and 4.3 contain standard
material from [13] and [23]. The rest is more freely inspired by the existing
literature. The presentation of the cycle decomposition is new, as well as lemma
1. We chose to make weak large deviation assumptions on the transition matrix
pp at inverse temperature ,Q, and to give results which are accordingly concerned

Date: May 1995, English translation January 1997, in revised form November 1998.
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only with equivalents for the logarithm of the probability of some events of inter-
est. In the study of simulated annealing, we considered piecewise constant tem-
perature sequences, in order to avoid introducing specifically non-homogeneous
techniques. Our aim was to give tools to study a wide variety of stochastic opti-
misation algorithms with discrete time and finite state space. For related results
directed towards applications to statistical mechanics, we refer to [8].

1. EXAMPLES OF HOMOGENEOUS MARKOV CHAINS

We are going to study in this section homogeneous Markov chains related to
stochastic optimisation algorithms. ,

1.1. The Metropolis Algorithm. This algorithm can be applied to any finite
state space E on which an energy function U : .E -~ I~ is defined (U can be any
arbitrary real valued function). Its purpose can be either:

. to simulate the equilibrium distribution of a system from statistical me-
chanics with state space E and energy U interacting with a heat bath at
temperature T,

. or to find a state x E E for which U(x) is close to min U(y).
yEE

We will mainly be interested in the second application in these notes.
Description of the algorithm

Let us consider a Markov matrix q : E x E -~ [0,1] which is irreducible and
reversible with respect to its invariant measure. In other words let us assume
that 

’

. ~ q(x~ y) =1~ 
yEE

. sup qm (x ~ y) > ~ ~ x ~ y E E.
m

(This last equation means that there is a path :co = x, .ci,... , Xm = y leading
from x to y such that q(xi, > 0, i = 0, ... , t -1.)

. the invariant probability distribution ~ of q (which is unique under the
preceding assumptions) is such that

y) = x)~
Let us consider also an inverse temperature ,Q > 0, /? E I~. To this temperature
corresponds the Gibbs distribution G(E, U,,Q), defined by

G(E , ,U, 03B2) (x) = (x) Z exp(-03B2U (x))
where Z (the "partition function" ) is

. 

Z = ~ exp(-,QU(x)).
xEE

The distribution G(E, ~7, /?) describes the thermal equilibrium of the thermo-
dynamic system (E, U, ,Q) . We then define the transition matrix at inverse
temperature ,~. This is the Markov matrix P,8 : E x E -~ [0,1] defined by

y) = y) U(x))+, y E E,
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where r+ = max{0, r}.

Proposition 1.1. The matrix pp is irreducible. It is aperiodic as soon as U is
not constant, and therefore

lim (( - v) pa = 0,n-~+oo ’

where the set of probability measures on E. Moreover pa is reversible
with respect to tc p = G(E, p, U, ,Q) .

Proof. It is irreducible because pp(x, y) > 0 as soon as q(x, y) > 0. If U is
not constant there are x, y E E such that q(x, y) > 0 and  U(y), which
implies that pp (x, x) > 0 and therefore that pp is aperiodic. Moreover

y) = 1 Z (x)q(x, y) exp (-03B2(U(x) V U(y)))
= ~~ (y)pA (y~ x) ~ x ~ y E E~ x ~ y~

1.1.1. . Construction of the Metropolis algorithm. On the canonical space ~)
where B is the sigma field generated by the events depending on a finite number
of coordinates, we consider the canonical process (Xn )nEN defined by

= x E E~,
and the family of probability distributions on B) defined by

=~x~

Px03B2(Xn = y| (X0, ... , (x0,...,xn-1)) = y).
The homogeneous Markov chain (Xn)nEN, B, is the canoni-

cal realization of the Metropolis algorithm with state space E, Markov matrix
q, energy function U and inverse temperature ,Q. We will use the notation

q, U, ~). .

1.1.2. Computer implementation. Assuming that = x E E, choose a state
y according to the distribution q(x, y), compute U(y) - , if U(y)  U(x), ,
put Xn = y, if U(y) > U(x), put Xn = y with probability exp -,Q(U(y) - U(x))
and Xn = x otherwise.

1.1.3. Behaviour at temperature zero ~,Q = Letting ,Q tend to +oo in the
definition of M(E, q, U"Q), we define the infinite inverse temperature algorithm
M(E~ q~ U~ +~) bY

P+oo(Xn = y I Xn-1= ~) =  U(x)), > x ~ y E E.
This is a relaxation algorithm: U(Xn) is almost surely non increasing. It is

still homogeneous, but no more ergodic in general (if U is not constant on E, E
has at least one transient component).
When ,Q tends to infinity, M(E, q, U,,~) weakly tends to M(E, q, U, +oo), in

the sense that for any function f : : E~ -~ R depending on a finite number of
coordinates we have

lim ENf(y)P03B2 (dy) = EN f(y)P+~ (dy) 



72

(Note that it implies that the same holds for any continuous function f, E~ being
equipped with the product topology, because any such function is a uniform limit
of functions depending on a finite number of coordinates.)
When it is observed during a fixed interval of time, M(E, q, U, p) is a small

perturbation of M (E, q, U, +oo) at low temperature.
We can see now that the Metropolis algorithm is suitable for the two purposes

we announced at the beginning:
. Simulation of the thermal equilibrium distribution G(E, U"Q): As pp is

irreducible and aperiodic and as E is finite, (Pp ) p p = Pp o X-1n tends
to G(E, U"Q) when r~ tends to infinity (at exponential rate, as will be
seen in the following). .

. Minimisation of U: The Gibbs distributions = G(E, U, ~3) get con-
centrated around arg min U when ,Q tends to +00.

Indeed, for any r~ > 0,

 min U + ~l) > 1 - - exp ( ~(~? + min !7)),
Z > ,

therefore we have the following rough estimate

 min U + ~) > 1- .

Taking 7; = min{U(y), y E j6’ B arg min U } - minE U, we see that, as a
consequence,

lim G ( E, U, ~3) (arg min U) =1. .

Thus

Proposition 1.2. For any é > 0 there are N E N and ,Q E such that

for any n > N

Pp (U (Xn ) = min U) > 1- E.

1.2. The Gibbs sampler. This algorithm is meant for a product state space
E = where the components Fi are finite sets. The purpose is the same
as for the Metropolis algorithm (simulate the Gibbs distribution or minimise the
energy) .
Description: Let us consider

. An energy function U : : E -~ M, which can in fact be any real valued
function.

. An "infinite temperature" probability distribution  E M+1.

. An inverse temperature ~3 E ~+~

. The Gibbs distribution

G(E,~,~/?)(~)= ~(x) °

. A permutation a~ E 6r of ~1, ... , r}.
Let us define
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~ For any i E {1,... , , r~ the transition matrix p~ : E x E 2014~ [0,1] at site i

and inverse temperature ~3

where we have used the notations x = E Fj and xi = .

. The global transition matrix at temperature ,Q
r

p~ = = .. , p°~r~ >
i=l

which corresponds to the scan of the sites defined by the permutation cr.

Properties of pp: :
. It is a full matrix, (pp (x, y) > 0, x, y E E), thus it is irreducible and

aperiodic.
~ The Gibbs distribution G is p~ invariant for any i e ~ 1, ... , r}, therefore
G is also the (unique) invariant probability measure of pp .

We consider then the Markov chain with canonical realization (E~, (Xn)nEN, B, Pp)
where Pp is the probability measure on B) of the Markov chain defined by
Pp and

P(Xn = y I xn-1 = x) = y)~ , ~~ y E E.

The homogeneous Markov chain (X, is called a Gibbs sampler with state
space E, energy function U, reference measure ~c, scan function o~, inverse tem-
perature ,Q and initial distribution The notation GS(E, ~, ~, U,,Q, ,~o)
will denote this process in the following. Let us describe its computer imple-
mentation with more details.

Computer implementation:
Each step of the chain corresponds to one scan of all the ,sites, in the order

defined by cr. It includes thus r sub-steps.
To perform the ith sub-step, i = 1,..., r, if x is the starting configuration,

we have to draw at random f E Fa(i) according to the conditional thermal equi-
librium distribution at site knowing that the configuration should coincide
with x on the other sites.

This computation is easy if
~ The number of elements of is small,
~ The conditional distribution = f ( X ~ = ~ o~ ( i) ) depends on

few coordinates, as it is the case for a Markov random field. The new state
at the end of the ith sub-step is y E E, given by i) = f and yj = ,

j ~ ~(i) ,
Behaviour at "zero temperature ": Here again lim p~ exists, therefore lim p p

exists and defines a Markov chain at temperature zero. This zero temperature
dynamic is a relaxation algorithm: the energy is almost surely non-increasing.
It is not in general an ergodic process, and Pp converges weakly to as in

the case of the Metropolis dynamic. Moreover the purposes of simulation of the
equilibrium distribution and of minimisation of the energy are fulfilled in the
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same way, and, as for the Metropolis algorithm, proposition 1.2 holds also for
the Gibbs sampler.

2. MARKOV CHAINS WITH RARE TRANSITIONS

2.1. Construction. We are going to put the two previous examples into a more
general framework. Let us consider

~ An arbitrary finite state space E,
~ A rate function Assume that V is irreducible

in the sense that the matrix exp(-Y(x, y)) is irreducible.
~ A family Y = (E~, B, of homogeneous Markov chains

indexed by a real positive parameter ,Q.

Definition 2.1. The family of homogeneous Markov chains ~ is said to have
rare transitions with rate function V if for any x, y E E

lim - log P03B2(Xn = y | Xn-1 = x) 03B2 = V(x,y),
(with the convention that log 0 = -oo) . .

Remarks about this definition:
. This is a large deviation assumption with speed ,Q and rate function V

about the transition matrix. We will see that it implies large deviation
estimates for the exit time and point from any subdomain of E.

. The two examples of algorithms given previously fit into this framework.
Indeed the rate function of the Metropolis algorithm M(E, q, !7, /?, is

V(x,y) = { (U(y) - U(x))+ if p03B2(x,y) > 0 for 03B2 > 0+~ otherwise.
As for the Gibbs Sampler GS(E, 7, U, /?, ~o) with E = ~i=1 Fi, the rate
function V is built in the following way:

For any x, y E E, any i E ~ l, ... , r~, let us put

~ (x’ y) - ( +oo ~~~ otherwise,
and let us consider the path y = (,k )rk=0 defined by

y03C3(i) if i ~ k,03B303C3(i)k = x03C3(i) 

otherwise.

The rate function of the Gibbs sampler is

r

k=1
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2.2. Rate function induced by a potential.

Definition 2.2. We will say that the rate function V : E x E -~ is
induced by the potential U : E -~ R if for all e E

+ y) _ U(y) + x)~
with the convention that +00 + r = +00 for any r E R.

Proposition 2.1. The rate function of the Metropolis algorithm M(E,,u, U"Q, ~o)
is induced by ~.

Proof. .~
As q is irreducible, > 0 for any x E E. Indeed there is Xo such that

> 0 and there is n such that x) > 0, therefore ~(~) _ >

~) > 0. Thus q(x, y) > 0 if and only if q(y, x) > 0, from the p
reversibility of q. Therefore V(x, y) = +00 if and only if V(y, x) = +00. In the
case when q(x, y) > 0, x ~ y,

y) - = (U(y) - U(x))+ - (U(x) - ~(y))+ = ~(y) - U(x). ° o

3. LEMMAS ON IRREDUCIBLE MARKOV CHAINS

Let E be a finite state space, p : E x E -~ [0, Ij an irreducible Markov matrix,
~, P) an homogeneous Markov chain with transition matrix p,

W C E a given subset of E and W = E B W its complement. For any oriented
graph g c E x E and any x E E, we write g(x) = {~/ ~ I (.c,~/) E g~ and more
generally U g(y).

Definition 3.1. We let G( W) be the set of oriented graphs g C E x E satisfying
1. For any x E E, ~g(x)~ = lyy (no arrow starts from W, exactly one arrow

starts from each state outside W).
+00

2. For any x E E, .c ~ Og(x), where = U is the orbit of x under
n=i

g, (g is without loop).
Equivalently, the second condition can be replaced by: For any x 

W, Og(x) n 0 (any point in W leads to W).
Definition 3.2. For any x E E, y E W, we will write

{g ~ G(W) | y ~ Og(x)} if x ~ W
Gx,y(W) = G(W) if x = y~ 0 if x E W~~y~.

Thus Gr,y(W) is the set of graphs g e G(W ) linking x to y. We will also write

GA,B (W ) = ~9 ~ d~ E A, ~y E B such that g E 

We will give three formulas which express the equilibrium distribution of p,
the probability distribution of the hitting point of W, and the expectation of
the corresponding hitting time, as the ratio of two finite sums of positive terms.
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They have been introduced in the large deviation theory of random dynamical
systems by Freidlin and Wentzell [16] . The idea of using graphs to compute
determinants has been known since the nineteenth century and presumably goes
back to Kirchhoff [24] . The proofs which we propose are based on a preliminary
lemma:

Lemma 3.I. For any W c E, W # Ø, let p|W W be the matrix p restricted to
WxW:

p|W W(x, y) = p(x,y) 1(x E w) I (Y E w) °

Let T(W) be the first hitting time of JV: T(W) = 0|Xn e W). For any
z, y e W we have

> Y) " £ pn|W W(Z > Y)
T(W) )= E03B2( 1(Xn = y) | X0 = x)

= (p(g) )(p(g) )-1 ,

where p(g> * fl pZ, t> .
z,t>Eg

Remark: The fact that idp- - is non singular is a consequence Of the fact
that p is irreducible (limn pn|W W = 0 and therefore all the eigenvalues Of p|W W
are of module lower than one). .

Lemma 3.2. The (unique) invariant probability distribution of p 
is given by

(x) = ( p(g))( p(g)) -1, x ~ E°
Lemma 3.3. The distribution of the first hitting point can be expressed as

P(xTW> " Y 1 x0 " Z) " ( £ P(~) ( £ P(~) >~ 
for any w # 0, z e W, y e W.

Lemma 3.4. For any W # Ø, any z E W, 

E(T(W) ) |X0 = z) = ( £ p(g)) ( p(g)) -1.
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Proof of lemma 3. ~’
As p is irreducible, for any 0, there is g E G(W ) such that p(g) > 0 (the

proof of this is left to the reader).
Let us write for any x, y E W 

m(x,y) = ( p(g))( p(g))-1 .

We want to check that for any x, y E W

(1) ~ (id(x, z) - p(x, z)) m(z, y) = id(x, y).
zEW

Using the equality

p(x, x) =1- £ p(x, z),

we can equivalently check that

(2) ~ y) = y) + ~ p(x, z)m(z, y). .
z~{x} z~W{x}

The left hand side of this equation is equal to 

(p(x, z)p(g))(p(g))-1.

where Ci = {(z, g) E {x} x G(W U {y}) ; g E Gx,y(W U {y})}, the right hand
side is equal to 

id(x, y) + ( 03A3 p(x,z)p(g) ( 03A3 p(g) ,/ ) /
where

C2 = ~(z~ 9) E W U ~x} x G(W U ~ 9 E GZ,y(w ~ 

Let us consider first the case when x ~ y. Then we can define a one to one
mapping 03C6 : C1 ~ C2 by

(z, g) if g ~ Gz,y(W ~ {y}),
03C6(z, g) = (g(x) , (g ~ {(x, z)}) B {(x, g ( x ))}) if g ~ Gz,y(W U {y}).

The easiest way to check that y is one to one is to check that

(z,g)03C6-1(z,g) = (g(x),(g~{(x,z)}) B (x,g(x))}) if g ~ Gx,y(W U y 1
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Let us write ~p = (cpl, ~p2) to show the two components of ~p. The following
change of variable

I = i 
(z,g)EC2 

_ ~ 

shows that

~ y) _ ~ y).
zE{x} zEWU(r)

We have now to check the case when x = y. In this case C2 C Cl. Let us

consider the one to one mapping ~p : Cl 1 C2 -~ G(W) defined by =

9 U ~(x, z)~, with inverse ~p-1 (g) = (g(x), 9 ~ ~(x, 9(x))~).
We have

L.. p(x’ z)p(9) - L~ p(9)’ >
gEG(W)

and therefore

()p(x, z)p(g))(p(g))-1

= 1 + ( 03A3 p(x, z)p(g)) ( 03A3 p(g) . C1~ 
Proof of lemma ~.~:

+~

= y | Xo = x) _ 03A3 03A3 P(Xn = z, r(W) > n |X0 = y)
. 

= (p(g)p(z, y) ) (p(g) )
-1

= ( p(g)) (p(g) )-1 .
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Proof of lemma ~..~ : :

)E(r(W) | X0 = x) = E 1(Xn E W) | X0 = x

= E(1(Xn = y,(W) > n) | X0 = x)

i I p(9)
_ 

yEW 
~ 

i () 
.

g~G(W)

Proof of lemma ~.~ :

Let v ( x) = inf~n > 1 ~ = x}.
= E(v(x) ~ X o = 

= (p(x, y)E(({x}) | X0 = y) + 1)-1
= ( p(x, y)p(g) + p(g))

-1 (

p(g))
= (p(g) )(p(g) )-1 ,

because for any z ~ x 03C6z : {(y, g) | y ~ x, g ~ Gy,z({x, z})} ~ G({z}) defined
by = g U ~ (x, y) } is one to one.

4. CYCLE DECOMPOSITION OF A FAMILY OF MARKOV CHAINS WITH RARE
TRANSITIONS

4.1. Behaviour of the invariant distribution, virtual energy.

Definition 4.1. The rate function Y : : E x E --~ I~+ U ~+oo} is said to be
irreducible when the matrix (exp -Y(x, y))(x,y)EE2 is irreducible. This means

namely that for any x, y E E there is a path zo = x, ... , zr = y such that

Y(zz_1, z~)  +oo, i =1~ ... , r.

Proposition 4.1. Let ~’ = be a family of homoge-
neous Markov chains with rare transitions, with irreducible rate function V. .
Then for 03B2 large enough (X, Pp) is irreducible and its invariant probability dis-
tribution ~Cp is such that for any x E E

lim = U(x) E ~+~



80

The "virtual energy" function U : E -~ I~ can be expressed as

U(x) = min V(g)-min min V(g),
yEE 9EG(f y})

where V(g) = V(z, t). In the case when V is induced by a potential func-

tion U, we have for any x E E that U(x) = U(x) - miny~E U(y).

Corollary 4.1. The family ~’ describes an optimisation algorithm for the min-
imisation of the virtual energy U: For any E > 0, there are N E N and ~3 E ~+
such that, for any n > N,

min P03B2 ((Xn) = 0 | X0 = x) ~ 1- .

This algorithm is called a "generalised Metropolis algorithm".

Proof: .~ The first part of the proposition is a straightforward consequence of
lemma 2. In the case when t~ is induced by U, consider the one to one mapping

~P ~ i

defined by

_ ~(z~ t) E g, t ~ ~ ~(t~ z)~ (z~ t) E g~ t E 

It is obtained by reversing in g E G(~y}) the path leading from x to y. We have

U(y) + U(x) + min min V (g) = min (V (g) + U(x))
E gE ({y})

= 

z ~ U {x} 
V (z, t) + U(x) + 

z E Og(x) U {x} V(z, t)

= min( V(z, t) + U(y) + V(t, z))

= min (U(y) + V(03C6(y)))

= U(y) + min V (g)
= U(y) + U(x) + min min V(g),

zEE 9EG({z})

The proof of the corollary is the same as in the case of the classical Metropolis
algorithm when the chain is aperiodic. When the chain has period d, then each
chain is aperiodic for k E {0, ... , d-1~, and the combination of the
inequalities obtained for these d processes gives the result for (Xn)nEN. . D
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4.2. Large deviation estimates for the exit time and exit point from
a subdomain. In this paragraph we will study the limiting behaviour of the
law of the exit time and exit point from an arbitrary subdomain D of E. Let us
recall some notations introduced in section 3:

D = E B D,
r(D)=inf{neN : ~ CD}.

Proposition 4.2. For am/ D G F, D ~ 0, for any .r ~ D, under the same
hypotheses as previously,

lim log E03B2((D) | X0 = x) 03B2 = min V(g) - min min V(g),

moreover, for any y ~ D

lim -1 03B2P03B2(X(D) = y|X0 = x) = min V(g) - min V(g).
/3-~+oo /? 

" "~~ 

PFe use the following notations for these new rate functions:

lim -03B2-1 log P03B2(X(D) = y |X0 = x) def VD(x,y)

lim |X0 = .c) def HD(x).
~-~.+00

In the next paragraph, we will link the rate functions appearing in these two
large deviation estimates with the virtual energy !7. For this purpose, we will

introduce the decomposition of the state space into cycles due to Freidlin and
Wentzell.

4.3. Definition of cycles.

Definition 4.2. Under the preceding hypotheses, a subdomain C C ~ is said
to be a cycle if it is a one point set or if for any .r, ~/ ~ C, .c ~ ?/, the probability,
starting from .c, to leave C without visiting ~ is exponentially small, by which
we mean that

>0.

As a consequence we have of course

= y|X0 = x) = 1.

4.4. Some properties of cycles.

Proposition 4.3. The subdomain C o/ E* is a z/ and only if it 25 a one
point set or for am/ .c, ?/ G C, .c ~ y the number NC(x, y) of round trips including
.c and y performed by the chain starting from .c before it leaves C satisfies

lim 
/3-~.+oo p
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Remark: This property justifies the name "cycle".
Proof: Let us give a more formal mathematical definition of NC (x, y). For this
let us introduce the sequences of stopping times (x, y), v~ (x, defined
by the following induction

v_ 1 ( x ~ y) = 0

y) = y) : Xn E ~y} U C}
y) = inf~n > y) : Xn E ~x} U C}~ ,

then y) = : ~ C or ~ C}.
We have 

~ 

+00

y) | Xo = x) = 03A3P03B2(NC(x, y) > n | X0 = x)
n=0

+00

= L = y and = x ~ X o = 
n=0

= (l - = y and = x ~ X o = x .

Moreover

= y and = x | X0 = x)
= = y ~ X~ = = x ~ Xo = J)
= (l - I XQ = x) 1- ~ x ~ I Xo = y)) .

Therefore

lim 1 03B2log E03B2(NC(x, y) | X0 = x)
v (z, t) E {(x, y), (y, x)} and u E C},

which proves that

lim 1 03B2log E03B2(NC(x,y)|X0 = x) > 0

for all z, y E C, x ~ y, if and only if YC‘{y} (x, z) > 0 for all (x, y) E C2, z E C.
D

Proposition 4.4. Let C(E, V) be the set of cycles of (E, V). It has a tree

structure for the inclusion relation, with root E and leaves the one point sets.
This means that if C1 and C2 are cycles, either Cl C C2 or C~ C C1 or C1 nC2 =
0.
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Proof : If it were the case that :c ~ C1 n C2, y E C*i B C2 and z 6 C2 B Ci, we
would obtain a contradiction: we would have

~ " 

~ = ~)

 o. D

Proposition 4.5. For any subdomain D of E, we define the principal boundary
B(D) of D by

: 

Then for any cycle C 6 6(E,V), any subdomain D C C, 0, C,

B(D) C C.

Proof:
If y ~ B(D) B C, e C B D, then

= !/ = x) ~ P(X(CU{z}) = !/ ! | X0 = .c),

because in this case y ~ ?U {.z} and CU {2-} C D. This is in contradiction with
the fact that

lim -1 03B2log P03B2(X(D) = y| X0 = x) = 0

and

= 2/! = ~) > o.

Therefore C C. D

An important property of a cycle is that, at low temperature, the exit time
and exit point become independent from the starting point when it belongs to
the cycle.

Proposition 4.6 (Independence from the starting point). For any cycle C G
e(E,v), 

and

.

The quantity H(C) is called the depth of the cycle C.

Proof:
= 

~ P03B2(X(C) = z| X0 = = X0 = 2/).
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Therefore VC (x, z) + x) by the definition of cycles
x) = 0, therefore Vc(y, z)  VC (x, z) and, exchanging x and y, Vc(y, z) =

z). Similarly we have

E03B2((C)|X0 = x) E03B2( 1(Xn = u) |X0 = x)

and

Ep (1(Xn = u)|X0 = x) = E03B2(1(Xn = u)|X0 = u)
x = u|X0 = x).

Therefore HC (x) is independent of x E C. D
Now we will give some properties of cycles linked with W-graph computations:

Proposition 4.7 (characterisation of cycles in terms of W-graphs). . A subset C
of E is a cycle if and only if it is either a one point set or satisfies: for any
y E C, any g E arg min V(g), g(C ‘ ~y~) C C.

gEG(CU{y} )

Proof: .~ For any subset C of E, ~ C ~ > 1, any y E C,

min 
= min min min V(g) - min V(g)

= 
_ 

min V(g) - min V(g),

therefore min lim = .r) ) > 0 if and only if

arg min 0
gEG(CU{y} )

Proposition 4.8 (leading terms in a C-graph). For any cycle C E , any
x E C, any y ~ C such that V(C, y)  +00, any graph 9 E 

g(C) C C U ~y}. . 
~~ 

Proof: Let us consider the state z E Og(x) U {.c} such that (z, y) E g. Let g E
arg min V(g), then according to the preceding proposition

_

g( C B {~}) C C, therefore 9 U ~ ( z, y) ~ belongs to Gx,y( C). . Thus

V(z~y)~V(9)=V(9U~(z~y)~) ~V(9)=V(9~~(z~y)})+V(z~y). .

This shows that V (g B ~(z, y)~) = arg min V (g), and therefore that

0
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Proposition 4.9 (local computation of the virtual energy). . For any cycle
C E C(Y~, any x, y c C,

U(x) - U(y) = min V(g) - min V(g).
gEG(CU{x}) gEG(CU{y})

This shows that the computation of the virtual energy within a cycle up to an
additive constant depends only on the restriction of the rate function V to this

cycle.

Proof: For any graph g ~ E x E, any subset ACE, let us put g|A = {(u, v) E
g : u E A}. With the notations of the proposition, let g E G({x}), then

g~C E G(CU {x}), G(C) and

V(g) = V(glc) + 

Therefore

min V(g) > min V(g) + min V (g). ,
gEG(CU{x}) gEG(C) )

On the other hand, if g E arg ming~G(Cu{x}) V(g) and g E G(C), then g U g is
without loop, because g(G’) C C, and thus g U g E G(~x~), and

min V (g) + Y(g) = min V (g U g) > min Y(g). .
gEG(C) gEG(C) 

We have proved that min V(g) + min V(g) = min V(g) and the
gEG(C) yEG(CU{x}) 

proposition follows from the fact that

U(x) - U(y) = min V(g) - min U(g). D
gEG({y})

4.5. Iterative construction of cycles and the virtual energy function.
For any subset let us put U(D) = minU(x).

xED

Proposition 4.10. Let E = U Ci be a partition of E into disjoint cycles.
iEI

Assume that it is not trivial, namely that ~I~ > 2. Let us consider on CI =

{Ci ( i E I} the graph s of the typical jumps, defined by

s - {(Ci, Ci) | i ~ I} U Cj) I $(Ci) n Cj ~ }.

Let CJ = ~Cj ~ j E J} be an irreducible and stable component of s, that is a

component of ~I for the equivalence relation

= ~(Ci~ Cj) ’ E I, ~i E ) and Cj E U ~(Ci~ c‘i) : ; 2 E I}~

such that C There exists at least one such component, because s

induces on a graph without loop, which has therefore at least one leaf (or
terminal node~. Moreover J is not reduced to one point, because this would mean
that the principal boundary of the would be unique cycle in C~ would be empty,
which is impossible.
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Then C = U Cj is a cycle, and G~, j E J are the maximal strict subcycles of
jEJ

C for the inclusion relation. for any i, j E J

U ( Ci) + H(Ci) = UlC3) + H ( Cj ) , i
H(C) = min V(Cj y) + ,

~E

and for any y ~ C

V (C, y) = - min V(Cj,z).
Remark: This proposition allows to build iteratively all the cycles, starting from
the trivial partition of E into one point sets, computing in the same time the
quantities U(x) - U(C), x E C, H(C) and V(C, y), y ~ C.
Proof: ~ Let y E C. We will prove that for any g E 

C C.
Let us assume that y E Cjo. . As C J is a component of it is possible to

extract from s/eJ an oriented tree a with root Cjo (we mean by this that a graph
without loop connecting each point of C J to . Let g~° E arg min V (g)

and for any j E JB{j0}, let gj E arg ming~G(Cj) V(g) be such that ga (Cj) c Cj U
a (Cj ) . Such a gj exists, according to proposition 4.8, because B (Cj )~03B1 (Cj ) ~ .
The graph without loop, and therefore belongs to G(C U ~y}), thus

= V (U > = E .

jEJ jEJ / jEJ

This proves that

= min V (g) ~ j E J ~ ~jo }’ 

and
V = min V (g), ~

and therefore that
= Cjo

and

g(Cj) c Cj U B(Cj), j E J 1 
Thus 9(C) = C.

This shows that C is a cycle. Let us prove now that Cj C C are maximal
among the subcycles of C distinct from C itself.

Assume that for some jo E J and some cycle C’ E (Y), Cj0 C C’ C C,
Cj0 ~ C’. As C(V) is a tree (proposition 4.4), there is J’ C J such that

C’ = U Cj J’. . From a preceding proposition, for any j E J’,
j~J’

B(Cj) C C’, since Cj ~ C’. Therefore, s(Cj, j E J’) C ~Cj, j E J’}, which
implies that J’ = J and therefore that C’ = C.
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From the local computation of the virtual energy into cycles, we see that

= 

xECi

- min E G(C U {?/})}.

From the preceding computation, for any x E Ci

: ~7 E G(CU {.c})} = ~ C 

+ 

Therefore

U(Ci) - U(Cj) = E G(Ci U {.c})}
x~Ci

- min E G(Cj U ~y~)~
yECj

+ min{V(g): 9 E G(Cj)} - min{V(g) : 9 E 
= H(Ci)~

Similarly

H(C) = : g E G(C)} - : g E G(C U {x})}

= min min{V(g) : g E 
zEC jEJ 

"

+ ~ : g 

- : 

= 

zEC JEJ kEJ

- : g E G(CU ~x~), x E C~
= ma,x H(Cj ) ,

zEC jEJ ~EJ

We have also for any x E C,

V(C, y) = min V(g) - min V(g)
gEG(C)

= min min V(g) + ~ min V(g)
~ 

- min min ( min V(g) + ~~ min V(g)
z ~ /

= min V (Cj y) - min min V ( Cj , , z) . D
jEJ z jEJ
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4.6. Maximal depth and maximal partition of a domain. In this subsec-
tion we will compute the maximal depth maxxED HD (x), of a domain
D C E in terms of the maximal partition of D defined below:

Definition 4.3. For any domain D C E, we let M(D) be the set of maximal
elements of ~C E 6(E); C c D} for the inclusion relation. Due to the tree
structure of C(E), this is a partition of D. We call it the maximal partition of
D.

From the graph point of view, the maximal partition has the important fol-
lowing property:

Lemma 4.1. For any domain D C~ E

(3) min V(~) =. L min Y(g). ,
~ 

Proof. A first remark is that for any g E G(D)
= £ i

This proves that the left hand side of equation (3) is not smaller than the right
hand side. To prove the reverse inequality, consider the graph s on M(D) U ~D~
defined by

(Ci, C2) E s iff Ci E M(D) and C2 U 0. .
Then according to proposition 4.10, s is without any stable irreducible com-

ponent and connects every cycle ofM(D) to D. Therefore it can be spanned by
a disjoint union of oriented trees leading to D, from which we can build as in
the proof of proposition 4.10 a graph 9 E G(D) such that glC = E

G’(C)} for any C E M(D), proving that the right hand side is not smaller than
the left hand side of equation (3). D

We are ready now to compute the maximal depth of a domain:

Proposition 4.11. For any domain E let us define

H(D) = EaDxHD (x).
Then

H(D) = max~H(C) ; C E M(D)}.

Proof. Let us put for short for any set of graphs G

V(G) = min V(g).g~G

By definition we have

H(D) = V(G(D)) - min V(G(D U ~y~)) ~
yED

For any fixed y E D, let C E M(D) be such that y E C. Pemarking that

1
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and using the previous lemma we get that

H(D) = max maxV(G(C)) - V (G(C U ~y}))
yEC

= max H (C) . ,

D

4.7. Computing the cycles in term of path elevations. In order to give
a description of cycles and therefore of the behaviour of the trajectories which
recalls what happens in the case when the rate function V derives from an energy
function U, we will introduce a characterisation of the energy based on paths
instead of graphs.
Energy barrier between two points

For any two states x, y E E, let r x,y be the set of paths joining x to y:

r x,y = f (~a, ... , , x,.) : r > 0, xa = x, xr = y} c U Er ~
r

For any path 03B3 = (~o, ... , ,xr), let

H(’Y) = max U(xi_1) + V (xi_1, xi),
i=1,... ,r

with the convention that when r = 0 we put

= 

The energy barrier between ~ and y is defined to be

H(x, y) = min H(03B3).

Proposition 4.12 (energy barrier of a cycle). For any cycle C E V), any
y ~ C, we have

minU(x) + y) = U(C) + H(C) + V(C, y) 
xEC

Proof: :

min + y) - U(C)
xEC

= min { min V(g) + v(x, y) - min min V(g)
E 

= min v(g) - min min V(g)
gEGc,y(C) zEC 

= Y(C, y) + H(C). ° CI

Proposition 4.13 (elevation of paths within a cycle) . For any cycle C E C(V) ,
any x E C, any y C, there is a path ~p E r x,y, ~p = (~pa, ... ) such that
~pi E C, i = 0, ... s - 1 and = U(C) + H(C) + V(C, y) . For any x,

y E C, there is a path 03C6 = (03C60,... ps) E rx,y such that 03C6i E C, i = 0, ... , s
and H(03C6)  U(C) + | ~ C, C c C, C ~ C} (with the convention
that sup 0 = 0~.
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Proof. Let us proceed by induction on the size of cycles. For any G C,
there are Co,... ,C~ E 6(V) such that C, G C, C, C~ are maximal,
j3(C,-i) n 0, z = 1,... , k, .c ~ Co, y ~ Ck. This is a consequence of

proposition 4.10 on the iterative construction of cycles. Let = 1,... , ~ be
a point in n C~ and let yo = ~. According to our induction hypothesis
that proposition 4.13 is true for the strict subcycles of C, we can find paths
~ C z = 1,... , k, such that ~ C C and = + 

We can also find C such that C Ck C C and 
+ H(Ck). The concatenated path = (~~ ... ~ belongs

to C and has an elevation lower than !7(C) + C C C(V),C c
C, ~ C}. Let us now consider .c G C and z ~ C, we can find according to
proposition 4.12 a point y such that + V(y, z) = 7(C) + H(C) + V(C, ~). .
Let be constructed as above. The path ~) is included in C except its
end point z and has an elevation equal to !7(C) + H(C) + V(C, ~). Proposition
4.13 being easily seen to be true for one point cycles is therefore proved by
induction. D

Proposition 4.14. The elevation function is symmetric:

~(.r~)=~(~.c), , 

Proof : Let Ci 0 e(V) be the largest cycle such that .r ~ Ci, y ~ Ci. Let

C’2 ~ e(V) be the largest cycle such that .c % C2 , y ~ C2 . Let C3 ~ e(V) be the
smallest cycle such that {.c,~/} ~ C3. The cycles Ci and C2 are maximal strict
sub cycles of 63, therefore ~(~) = = ~(C2)+t/(C2) = ~(~/,~). .
D

Proposition 4.15. For any cycle C ~ C,

H(C) = ,

~~C ~C

and more generally for any D ~ E, D ~ 0,

H(D) = max min H (x, y) - !7(.c). .

Proof. The case of a cycle is a direct consequence of propositions 4.12 and 4.13
, In the case of a general domain D, one has to consider the maximal partition
M(D) of D and apply proposition 4.11, to see that if Co is one of the deepest
cycles in M(D) then H(D) = H(Co). Taking .c in the bottom of Co, and

remarking that
> ,

we get that

H(D) = H(Co)  .

Now, for the converse, let .r be any point in D and let Co be the maximal cycle
of M(D) to which .r belongs. As seen in the proof of equation (3), there is

a sequence of cycles Co,.... Cr such that B(Q) n C,+i ~ 0 , z = 0,... , r - 1

and B ( Cr ) UD / 0. Remark that + is decreasing: indeed, taking
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u E Ci and v E P(Ci) we see that U(Ci) +H(Cz) = H(u, v) = H(v, u) >
U (Ci+1 ) +H (Ci+1 ) . With the help of proposition 4.13 we build a path ~y, starting
at x, going through this sequence of cycles and ending in D such that

min H ( x, y)  H(y)

 max U(Ca) + H(Ci) )- 

= U(Ca) + H(Co)
 U(x) + H(D). .

D

Proposition 4.16 (Weak reversibility condition of Hajek and Trouvé).
Let U : E --~ I~ be an arbitrary real valued function defined on E. Let the
elevation Hu (03B3) of a path 03B3 = (zo, ... , zr) E with respect to U and V be
defined by

= max U(zi_1) + zi).
i=1,... ,r

Let y) = min , x, y E E, x ~ y.

Then U(x) = U(x) +minU(y), x E E if and only if Hu is symmetric.
yEE

Proof. See question 10.3 of the appendix for some hints about the proof.

Proposition 4.17. For any x, y E E,

U(y)  U(x) + v(x, y). .
Consequently for any path 03B3 = (03B30,. .. , 03B3r)

r

H (’Y) ~ U (1’a ) + ~ V (’Yk-l ’Yk ) ~
k=1

Proof: :
U(y)  H(y, x) = H(x, y)  U(x) + v(x, y). D

4.8. Another construction of cycles. For any a E let us introduce the

equivalence relation

~a = E ~2 I x ~  ~} U ~(x~ x) ~ x E ~}~
Proposition 4.18. The components of are the one point sets ~x} such
that U(x) > ~ and the cycles C E C(v) such that
(4) + H(C) C, C C C, C ~ C}  a  U(C) + H(C). .
Thus = U 

03BB~R+

Proof. If C E C(v) satisfies equation (4), then C E according to previous
propositions. On the other hand, let us compute for any x E E the component of
x in Let us consider the maximal sequence of distinct cycles Co = ~x} C
Cl C C2 C ~ ~ ~ C E containing x (C2 is the smallest cycle strictly containing
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Cj-i). If H(Co) + lfl(Co) > A, then (z) e otherwise let us consider

io = min(I [ H(Cj) + lfl(Cj) > A) , then according to the first part of the proof
z e Cj~ e D

4.9. Exit time from a subdomain. From Freidlin and Wentzell’s lemma we
deduce that

Proposition 4.19. For any subdomain D c E, D # E, any z e D, any e > 0,

lim -1 03B2 log P03B2((D) > e03B2(H(D)+) | X0 = x) = +~,

and

 e03B2(H(D)-) ’ xo = Y> > 6>

where H(D) = max HD (y) .
yeD

Proof: Applying the Markov property, we see that:

> e03B2(H(D)+) | X0 = z)

 > e03B2(H(D)+/2) [ Xo = y) 
L e03B2~/2

 ( Xo = y)e-03B2(H(D)+/2))e03B2/2
 exp -# ( 4 (e03B2/2 - l) ) ,

To prove the second equation, let us notice that

+cx~

£ P(T(D) > ke?# [ Xo = z) > [ Xo = z),
k=0

and that

P((D) > ke03B303B2 | X0 = x) ~ ( max P((D) > e03B303B2 | X0 = y))k

= (min P((D) ~ e03B303B2 | X0 = y))-1,
thus

minP(T(D)  e?fl ( Xo = y)  e?flE(T(D) ( Xo = z)~~ . D
yeD 

~ 

Proposition 4.20. For any cycle C E C(V), any sufficiently small e > 0, any
z e C,

 e03B2(H(C)-) i xo = z> > 6.
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Proof. .~
For any x, y E C, ~y > 0,

p(T(C)  e~~ I Xo = x)   ~ Xo = y) p(xT(cu{y}) = y ~ Xo = x)

+P(XT(Cu{y}) ~ y ~ Xo = x).
Let

E = 

x min lim -1 03B2 lo g P ( X T(Cu{y}) ~ y I Xo = x )
~->+ fJ

= (x, z) : x, y E C, x ~ y, z E C~ > 0,
then for all E  Eo and 03B2 large enough

p(T(C)  e03B203B3|X0 = x)   e03B203B3|X0 = y) + 
yEC

We end the proof by taking ~y = H (C) -E and applying the preceding proposition.
0

5. CONVERGENCE TOWARDS EQUILIBRIUM

Proposition 5.1. For any cycle C E (Y), any y > 0 such that
H ( {t E C ( U (t) > U(C)})  y  H(C), any x, y E C,

liminf -1 logP(Xe03B203B3 J = y , T ( C ) > | Xo = x ) - > U(y) - U ( C ) .
p-~+~ p

Corollary 5.1.

X o = x ) > 0
~-~+~ a

Proof : Let us put N = le~’p~ . Let A = arg min U(x). For any x, y E C,
xEC

= y~ T (~%) > I Xo = x)  ~’I~ (T (~’ U A) > ( Xa = x)
+ sup 
k~N,z~A

Let fk( x ) = P p( X k = x | X o = We have =

fk+1 (y) , and p03B2 (x , y) 03B2 (x) 03B2(y) =1 therefore

max fk(x)  = 

1 03B2(z),
and sup P(Xk = y | X0 = z )_  . Cl

kE~ (z)

Proposition 5.2. Let us assume that C E is such that for some
z E arg min U(x), considering the graph s of the null cost jumps,

xEC

s = ~(x~ y) E E2 ~ ~(x~ y) _ ~~~
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the orbit Os (z) is aperiodic. Then for any ~, y E C, any ~y such that
H(C 1  ~y  H(C),

= y, r(C) > | X0 = .c) = (y) - U(C).

Proof. 
Let us consider the Markov chain on C with transitions

P,B(Yn = y ~ Yn-1= x) = lim = y ~ Xn-1= x, T(C) > M).

The existence of this limit is a consequence of the Perron-Frobenius theorem

applied to the (non stochastic) aperiodic irreducible non negative matrix 
This theorem says that

p03B2|C C = P 03C01 + R o 03C02,

where forms a system of projectors (i.e. ~rl o ~2 = ~r2 0 ~rl = 0 and

TTi + 7r2 = Id), where TTi is the projection on the one dimensional vector space
generated by a positive eigenvector, where p > 0 is the spectral radius 
and where the spectral radius of R is strictly lower than p. This implies that

~ pp(T(~%) > M ~ Xo = z)
> M ~ X o = y)

exists for any y, z E C and is equal to

03B4z03C011 03B4y03C011.

Therefore as soon as > 0,

= ~~ T(C) > ~) y) > ~ - n = y)
has a limit when M tends to infinity, which proves in turn the existence of the
limit defining the transitions of Y at temperature ,Q.
Now that the definition of Y is justified, let us return to the main stream of

our proof. We have
= y, T(C) > I X0 = x Pp T C > M - | X0 = y

= J = y,(C) > M | X0 = x),
and therefore

pp j 
= y, r{ C) > | X0 = x)

= P03B2 (Xe03B303B2 = y | (C) > M, X0 = x) 
P03B2((C) > M | X0 = x) P03B2((C) > M - e03B303B2 | X0 = y)

.

Moreover

Pp (T(C) > M IXo = ~) =

L = z, T (C) > | X0 = > M - e03B303B2 I X0 = z) .

zEC
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Let I~~ = ~ ,

> Ii | X0 = z) > Pp (XT(Culy}) - y | X0 = > h | X0 = y),

therefore

lim sup sup |P03B2((C) > K | X0 = z) P03B2((C) > K | X0 = y)- 1| = 0.

Thus

lim sup|P03B2((C) > M | X0 = x) P03B2((C) > M - e03B303B2 | X0 = y) - 1|

= lim P03B2(Xe03B303B2 = z, T(C) > e03B303B2 Xo = a;) - 1

=0,

and, letting M ~ +00,

lim P03B2(Xe03B303B2 = y, (C) > e03B303B2 | X0 = x) P(Ye03B303B2 = y | Y0 = x) = 1.
In the same way, we can prove that for any x, y E C,

lim p03B2(x,y) P03B2(Y1 = y|Y0 = x) = 1.

Therefore Y is a Markov chain with rare transitions and rate function Vc xc. . Ac-

cording to proposition 4.9, the virtual energy of Y is (U(x) - U(C))xEC. . There-
fore it is enough to prove the proposition in the special case when C = E. We will
assume in the following of the proof that we are in this case. Let us consider the

family of product Markov chains ((E x E)N, ® B, P103B2 ® Pp 03B2~R+ ,

where PJ and PR have the same transitions as Pp and have the following initial
distributions:

= x 

Pa ° (Xo ) 1 = 

(here 03B2 is as usual the invariant distribution at inverse temperature ,Q) . It is a

family of Markov chains with rare transitions with rate function

~2(~~ y) _ yl) + v(~2~ y2)~ .

Moreover x E) ~ ~(z, z)~) = H(E ~ {z}). Indeed there is no such that

for any n 2: no, there is a path (~pl, ... such that cpl = ~on = z and
= 0 . For any x E E there is an infinite path such that

03C81 = x and  U(x), (take a path such that = 0). Moreover,
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for any i e N, z)  H (x, z), indeed

z)  x), H ( x, z))
= max(H(x, ~i), H(x, z)
= max( U ( x ), H ( x, z))
= H(x, z).

With these two types of paths, it is easy to build in E x E a path ~ E r(x,y),(z,z)
such that 

~ ~ 

~ (U(x) + H(y, z)) V H(x, z)
(Let the first component follow ~ while the second component is led to z via
a path of minimal elevation H(y, z), then let the first component follow a path
of minimum elevation, while the second component follows a path cp of suitable
length.) This proves that x E ~ ~(z, z)}) = H(E 1 ~z}), because it cannot
obviously be lower.
Now for any y E C, putting N = applying the Markov property at

time T2(~(z, z)}), and remarking that X1 and X2 conditioned by the same initial
condition have the same distribution, we have

P~ ® = y) and T2(~(z, z)})  N)
= P~ ~ = y) and T2(~(z, z)})  N)
> = y) - P~ ® z)}) > N).

(This argument is equivalent to considering a "coupled" Markov chain where X~
and X2 are glued together once they meet.) As

lim -1 03B2log P103B2 ~ P203B2(2({(z, z)}) > N) = +~,

we get the desired result. D

Theorem 5.1 (convergence rate). . Let us put

Hi = H (E 1 arg min U)
H2 = H(E 1 ~z}), z E arg min U,
H3 = H2((E X E), 0),

where the value of H2 is independent from the choice of z E arg min U(x) and
xEE

where A = {(x, x) : x E E}. For > H1, any x E E, y E E,

lim inf -1 = y | X0 = x ) > - U ( ) y .

For any 03B3 > H2

> Xo = z) = +00, x E E, z E .

p 
g p( (l }) I ) 

xEE 
( )

anyx, yEE

lim -1 03B2 log P03B2(Xe03B303B2 = y | X0 = x) = (y) .
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In general the constants H1 ~ H2 ~ H3 are distinct. However, when the null
cost graph s = {(~~) ~ ~~ ! [ = 0} U A has an aperiodic component in
arg min , we have H2 = H3. Moreover if arg min  is a one point then

Hi = H2 = H3.
Eventually the following non-convergence results holds : for any 03B3  Hi , there

is .c G E such that

I Xo=.c)>0;

for any 03B3  H2, e arg min , there is .c (E E such that

= ~) > 0,
p 

-

for any 03B3  H3, any z G arg min , there is .r ~ E such that

z | X0 = z) > 0.
P

Remark 5.1. The second and the third critical depths are distinct when the chain
is "almost" periodic on the set on ground states, that is when it behaves as a
periodic chain on a time scale larger than 6~~. The non convergence results
show that H1, H2 and H3 are sharp.

Proof. The first convergence result is a consequence of proposition 5.1, the sec-
ond one is a consequence of proposition 4.19, and the third one is proved exactly
as the end of the proof of proposition 5.2. The first and second non convergence
results are easy corollaries of proposition 4.20. The third non convergence result
is proved in the following way: take (~,?/) G ~ in the bottom of the deepest
cycle of E x E B {(~, ~); ~ G j6’}. By definition, the depth of this cycle is the
third critical depth H3, therefore for any 03B3  H3, any z G arg min 11,

lim -1 03B2 log P03B2(2({(z, z)}) ~ e03B303B2 | (X1, X2)0 = (x, y)) > 0.

But

J = z Xo = .c), J = z Xo = ~/)}
 = (~)! = (~,!/))

 ~(r({(~,.)}) ~ = (.r,~/)).
This proves that either

lim sup-1  log P03B2(Xe03B303B2 = z | X0 == .r) > 0
P 

’

or

> 0
P

D
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Corollary 5.2 (choice of $ as a function of N). For any q > 0 and any q >
H (E ( arg min 11) = Hi , we have

log ~ ~ | X0 = x) ~ ~ 03B3.
(The probability of failure of the algorithm with N steps has an upper bound of

order 1 N) Q/Hi . ) On the contrary for any q  Hi, there is z e E such that

lim inf - 1 log N log P(log N)/03B3 ((XN)  ~ | X0 = x) > 0,

(the probability of failure consequently tends to one.)
Remarks:

. The inverse temperature parameter $ has to be chosen as a function of the
number of iterations N .

. To get an approximate solution y such that 8(y)  q with probability
I - e, the number of iterations needed is of order ~-H1/~ .

. To get an exact solution with probability I - e, it is necessary to set in

the previous estimate the value of the constant q to q = min(11(z) ] z e
E, 8(z) > 0), which may be very close to zero, in which case the num-
ber of iterations needed is very large. Therefore, in some situations, the
Metropolis algorithm is very slow and speed-up methods are required.

. Another weakness of the Metropolis algorithm is that it is as a rule impos-
sible to compute explicitly the value of Hi , whereas this value is needed
to set the temperature parameter in an efficient way.

6, GEOMETRIC INEQUALITIES FOR EIGENVALUES OF MARKOV CHAINS

6.I . Reversible Markov chains.

6 . I . I . Spectral gap estimates.

Theorem 6,i. Let E be a finite set and P) be the canonical
realization of a Markov chain with irreducible and reversible transition matrix p
and invariant probability distribution zr. Let us define the operator p i -

L2(zr) by p f(z) = £ p(z, y)f(y). . This operator is self-adjoint, therefore it can
yEE

be put in diagonal form and its eigenvalues Ao > .. , > Am-i (where m = [E] ),
counted with their multiplicities, satisfy:

i = Ao > Ai > A2 > ... > Am-i > -I.

For any probability distribution p e Mj (E) , any integer n e N,

~ pn - "l12,x  , -03BBm-1))n ~  - "l12,7r.
Moreover, for any subset D of E, any n e N,
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~o=.r)-7r(D)~ [ 

~ (~(~)’~~~~~) 
Proof : For any functions f,g G L~(7r),

= ~ 
x~E,y~E

= ~ 
x~E,y~E

As 7r(.c)p(.c, ~) = .c), we have that (f,pg) = (p/~). The strict inequality
between /?o > /?i is part of the Perron-Frobenius theorem which we will not prove
here. We have = -1 when p is 2-periodic.

The matrix p being irreducible, its invariant measure 7r is everywhere strictly
positive. Therefore we can define a representation

20142014~(7T)

by = d  d03C0 and put on the corresponding Euclidean norm ~ ~2,03C0 =

The adjoint operator p = o p o i : M+1(E) ~ M+1(E) is nothing
but the right action ofp: = = Note that it is

~

self adjoint with the same spectrum as p.
Let p = = We have ~ pn-03C0~2,03C0 = ~( -03C0)pn~2,03C0.

Moreover

(~-~,~,.=~~-1)~=0,
therefore /z 2014 7r is in the space generated by the eigenvectors of p correspond-
ing to the eigenvalues Ai,... , Let ~i,... , be some choice of these

eigenvectors
~-i

= 

k=1

m-1

= 

A;=l

m-1

= 

~=1

m-1

 

~=1

= 
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Moreover

E D | X0 = -c) - 7r(D)! = /* 1) I
where fn(y) = P(Xn = y | X0 = x) 03C0(y) = 03B4xpn(y) 03C0(y) . 

Applying the Cauchy-Schwartz
inequality, we obtain that

I  (D(fn(y)-1)2d03C0(y)) 1/203C0(D)1/2
~ 

~ 
Moreover

~-~=(2014~)-+’-~) =(-~r) -
In the same way

|P(Xn ~ D | X0 = x) - 03C0(D)| ~ y,fn(y)>1(fn(y)-1)d03C0(y)
~ 1 2E|fn(y)-1|d03C0(y)

~ 1 2~03B4xpn-03C0~2,03C0

~ ~))~-~!k.. . a

6.1.2. Poincaré inequalities. Let us call a "routing function" any function, :
+00

E~ 2014)- U E~ such that = (zo = .c~i,... = y) is a path (of
n=2

arbitrary length r(.c,?/)) going from :c to y, with the supplementary condition
that r(a?, y) be odd when .c = y. Let F be the set of all routing functions.

For any Markov matrix p, irreducible and reversible with respect to its invari-
ant probability distribution 7r, we define the length of (2~0,... zr) with respect
to p by

r

~o,... ,

t=l

with the convention that 0"~ = -t-oo.
Let us introduce the constants

K = min 03B3~0393 (z,t)EE2(A 

max V~ 
x E E, 

)/B ~ /’P ~ /
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Theorem 6.2. With the previous notations, the spectrum ao =1 > ~tl > ~ ~ ~ >

-1 of p satisfies

-

- a m-1 1-2. .
- 

,

Proof. :
Let us write Ai as

,, = sup 
~5~~ > ,

c~ E L~(~r), P> P 7r
= 0

this gives

1 - 03BB1 = inf ~(03C6,03C6) (03C6,03C6)03C0,

where

= 

= ~ 

= ~ y) - 
x,yEE

Let us put y~ = Q(x, y) . We have

~~~P~ ~P) - ~ ~P~~)~~P~x) - y)
x,yEE

1
- 

2 ~ - y)
x,y~E

(Remark: The quadratic form ~ is called the Dirichlet form of p.)
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When = 0, we have for any routing function, E r

(03C6, 03C6)03C0 = 1 2 (03C6(x) - 03C6(y))203C0(x)03C0(y)

= 1 2 ( 03C6(t) -03C6(z))2 03C0(x)03C0(y)
 - 1 ( (z,t)E,(x,y) ¿ 1 ) )

X ¿ t) (03C6(t) - 03C6(z))2

~ 2 Q(z, t) (p(t) - p(z))

x ¿ ~(~)~(y) I ~’(x~ 
(x~ y) E E2 ~ ~,
(z ~ t) E 

 E(s~~ s~) max ~; ~(x)~(~~I ~’(x~ y)~~~
(x~y) E E2 ~ ~~
(z~ t) E 

This being true for any choice of 03B3 E I‘, we have

(S~~ S~)~  ~E(S~~ S~)~

1
whence 1- a 1 > - .

Let us come now to the second inequality. We have

1 a _ - inf (~’ ~~ + ~)’~ 
.~PEL2(~) (~~ ~l~ l 
.

Moreover

+ s~)~ _ ~ + s~(x))~(x~

= 2: s~(~~(s~(x) + ~)

= 

1 " (SP( ) x + 
2 
Q(x, y).
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(03C6, 03C6)03C0 = 03C0(x) 1 4 ((-1)i(03C6(zi) + 03C6(zi+1)))2

rEE,q(r,r)=(zo,... ,zr) ~=~ 
~ 1 4 03C0(x)( (03C6(zi) + 03C6(zi+1))2Q(zi,zi+1)

~ 1 4 03C0(x) |03B3(x, x)|p (03C6(z) + 03C6(t))2Q(z, t)

~ (03C6,p03C6 + 03C6)03C01 2max03C0(x)|03B3(x,x)|p.
Thus 

(03C6, 03C6)03C0 ~ 2 ( 03C6, p03C6 + 03C6)03C0,

and I + Am-1 > ~ . D.
- 

1

6.2. Application to the generalised Metropolis algorithm.

6.2.I. Reversible case.

Theorem 6.3. Let us consider a family (EN,(Xn)n~N, B, P03B2)03B2~R+ of homoge-
neous Markov chains with rate function V and transition matrix pp. Let us

assume that V is irreducible and that pp is reversible with respect to its invari-
ant probability distribution pp . Let us assume moreover that for some strictly
positive constants $o , a, b, c, d, for any $ > $o, any z, y e E,

 pp (z)  
 pp (z, y) .

Let us assume that V(z, z) = 0, for any z e E. Let q e F be a routing
function such that for any (z, y) e E2 ( A

Hl’f(Z> l/)) " H(Z> Y»
and let

L(q) = max [q(z , y) [ , (nb. of edges)

D(q) = max ( (z , y) e E2 ( A [ (z, t) e q(z , y) ) ) . .

Then the eigenvalues of pp, Ao = I > Ai > , . , > 03BBm-1 > -I, satisfy, for any
03B2 ~ 03B20,

03BB1 ~ 1 - a c b2 L(03B3)D(03B3)e -03B2H2

- 1 - 2 c.
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Consequently for any /? ~ /?o~ any .c ~ E,

e D | X0 = z) - 03B2(D)| ~ a-1/2e03B2U(x)/2 ( 03B2(D))1/2

(1-min(2c,ac exp(-03B2H2) b2L(03B3)D(03B3)))
n

.

Proof. The upper bound for Ai is a consequence of the expression for K. To get
the lower bound for consider the routing function z) = (z, z) .

6.2.2. . The non-reversible case. Let us consider a family (EN, ’B) 
of Markov chains with rare transitions with irreducible rate function V and tran-

sition matrix 
Given some real number A (E)0,1(, let us consider the Markov matrices

q03B2(x,y) = 03BB03B4(x,y)+(1-03BB)p03B2(x,y)

q03B2(x,y) = q03B2(x, z)q03B2(y, z) 03B2(y) 03B2(z).
The matrices g~ and g~ are irreducible and ~~ is their common invariant distri-
bution. Moreover 7~ is reversible, it is a non negative self-adjoint operator in

since it is the product of qp and of its adjoint. Let ~ be the spectral gap

of q03B2,

.

Theorem 6.4. We have

lim sup-1 03B2 log 03C103B2 ~ H2 /3-).+oo P

for ~ arg min U. Moreover for any D C jE’; any .c ~ E, any n G N,

P,(r(D) | X0 = x) ~ 03B2(D) - (1- 03B2(x) 03B2(x))1/2 03B2(D)1/2(1 -03C103B2)n/2.

Proof. Let (EN, ’B, be the canonical realization of a family of
Markov chains with transition matrix ~ (and some irrelevant arbitrary initial
distribution). We have

= 

 max ~ D Xo = z)
~ 

A:=0,...,~

 P/3(r(D) ~ ~ Xo=.c).

Moreover

e D | X0 = x) - 03B2(D)|  
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For any probability distribution v

~-1 ~ = /(~-~)~ (~-~)~~ 2,~ ~ ~ ’ ~ 

~ ~03BD- 03B2 03B2~22, 03B2 (1-03C103B2),

therefore

P03B2((D) ~ n | X0 = x) ~ 03B2(D) - (1 - 03B2(x) 03B2(x)) 1/2 03B2(D)1/2(1 - 03C103B2)n/2.
Let V be the rate function corresponding to It is easy to check

that for any .r, y e E, 
_

i

thus ~2~) = ~(.c) ~ = H2, where y is

an arbitrary point in arg min . Thus, considering a routing function satisfying
= ~~ see that

lim sup-1 03B2log 03C103B2 ~ H2./3-).+oo P

D

Remark 6.1. We have in fact more precisely that

~ 
~’

This can be seen from [29] where the reader will find an alternative approach to
the non reversible case, or from the fact that a lower limit would contradict the

optimal rate of convergence of g~ towards its invariant distribution proved in the-
orem 5.1. Another interesting reference for the "multiplicative reversiblization"
method is [15]. .

Remark 6.2. Theorem 6.4 can be used as an alternative tool to prove conver-

gence results, such as proposition 5.1 and 5.2. Indeed these propositions rely on
upper bounds for the tail distribution of the exit times from domains. As an

illustration, let us see how we can prove the first bound in proposition 4.19 from
theorem 6.4.

Let D ~ E be a domain and r(D) its exit time. The estimate we are looking
for does not depend on the behaviour of the Markov chain outside from D, so
we can modify the state space, creating a unique outer state A standing for D.
Let E’ = D U {A} be the new state space. Let the modified transition matrix

p’03B2 be
’P/?(.c,!/) 

, 

~ = ~ 
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By taking HA > H(D), we get a modified virtual energy U’ such that U’(~) = 0
and

HA - H(D)   Ho, xED.

Indeed

~’(.c) = 7~(A, .c) - 
= H~(~~ o) _ 
 H(D),

and

 H’(x, 0) = Ho.
Moreover the critical depths of the modified landscape are Hi = H2 = =

H(D). We see immediately that we have

lim ’03B2 (0) =1,
lim + = +oo, xED, E > 0,

lim 03C1’03B2 exp((H(D) + ~)03B2) = +oo, E > 0.

Plugging this altogether into theorem 6.4 applied to {0394} gives that for any 6 > 0

lim max Pp (T(D) > exp (,0(H(D) + E)) ~ Xo = ~) = 0,
~ED

(taking Ho = H(D) + é/2). This can be immediately strengthened to

using the Markov property as in the beginning of the proof of proposition 4.19.
We have sketched the link between theorem 6.4 and proposition 4.19 to show

that semigroup methods can be extended to the same generality as the Frei-
dlin and Wentzell approach, however the reader should keep in mind that their
main interest is to provide more explicit bounds and constants when stronger
assumptions are made on the transition matrix pp than what is assumed in these
notes.

7. SIMULATED ANNEALING ALGORITHMS

7.1. . Description. Let us consider a finite state space E and a family 
of Markov matrices with rare transitions and irreducible rate function V.

For any increasing inverse temperature sequence (of real positive
numbers), we can construct a non-homogeneous Markov chain
(E~, ’B, with transitions

= y ~ Xn-1= ~) = y)~ ~a y E E.

This chain describes the generalised simulated annealing algorithm. It is used

to minimise the virtual energy U corresponding to (E, V).



107

7.2. Convergence results. These results make use of two important constants
of (E, V). We have already used the first, it is the first critical depth

H1 = | C ~ e(V), c/(c) > 0}
The second will be called the difficulty of (E, V), and is defined to be

D = max{H(C) (C) | C ~ (V),(C) > 0}.
Theorem 7.1. With the precede hypotheses and notations, for any bounds H
and D such that H > and 0  D  D, for any ~ such that 0  ?7  H/D,
any integer r > 0, the triangular sequence of inverse temperatures

03B2Nn = 1 Hlog (N r)(H D~)1 r , 1 ~ n ~ N,

satisfies for any .c G E

~-lo~~)(~) ~ ! = .) > ~ (~)’~ . ’
Remarks:

. For r large, the order of magnitude of the upper bound for
> q [ Xo = z) is close to More precisely, for any

~ > 0,

Iog(l+e) 

lim inf -1 log N log P(03B2N)((XN) ~ ~ | X0 = x) ~ 1 (1 + ~)D.

The number of iterations needed to bring down the probability of failure
to a given order of magnitude is therefore independent of the precision
?y > 0. The upper bound for the probability of failure is at best of order

One can show that this is the best one can achieve using non-
decreasing inverse temperature sequences (see [6, 31, 33]).

. The choice of parameters is robust: it is not necessary to know the exact
value of D to choose the values of the parameters. We get a probability

of failure of order (1 N)1 D(~D H)1/r uniformly for any rate function V

such that H > Hi (E, V) and D  D(E, V). This is not the case with the
Metropolis algorithm in which the choice of /? requires a precise knowledge
of (namely the proved exponent of convergence of simulated an-

nealing 1 D ( -== ) 
1/r 

is uniformly close to the optimal exponent 1 D when

(~D H)1/r is close to one, which can be obtained by taking a large value for
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r, even when the gaps H - Hl and D - D are large, whereas the exponent
of convergence of the Metropolis algorithm ’1 is close to optimal only when

’Y

is small.)
H 1 

)
. Triangular sequences of inverse temperatures are absolutely needed: one

can show that for any infinite (unique) non-decreasing temperature se-
quence (,Q~, ) )

min lim sup - 1 log N log P(03B2.) ((XN) ~ ~ | X0 = x) ~ ~ H1(E ,V).

(See [5].) When a non triangular sequence is used, the convergence speed
is in first approximation of the same order as for the Metropolis algo-
rithm. This means that triangular sequences are crucial to get a significa-
tive speed-up with respect to the Metropolis algorithm.

Proof: :
Let us put, to simplify notations,

’Yk = 03B2Nn = 1 H log N r (H D~)k/r ,kN r  n ~ (k + 1)N r.

Let us also put = PN and assume that E N (the modifications needed
to handle the general case are left to the reader).

Let 03BE > 0 be fixed and let

H H r( 1 + ) , k=0,...,r-1.

Ao = +oo

~ _ (1+ 1 )H H ~ - i ~ _ i~ k - (1+~) , k =1, ... , r -1.

Let us consider the events

B = U(Xn ) V X X a N (k+1) N ),k = ~ ( n)’+’ ~a+1) - 
r _ 

n ( + 

Ak = Bk n  

We have

exp H03B3N0 = 

N r
,

exp (1 + 03BE) 1 + 1 D)-103BBk03B3Nk) - N r, > k > o,

and

_ 

1 D

~r_1=~~+1D~~?.
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Therefore

> ~ ~ Xo = x)  PN(U(XN) > ~ Xo = x)
r-1

~ 
k=0

r-1 k-1

~ 03A3PN(Ak ~  Al | X0 = x).
k=0 l=0

Moreover

k-1 k-1

PN(Ak ~  Al | X0 = z) ~ PN(Bk n Q Al | X0 = z)
~=0 c=o

k-1

n ~ Al n Bk I Xo = x).
c-o

Let us remark first that for any cycle C such that U (C) > 0 and H (C) + U (C) 
Ak we have

H (C)  1 + ~ ak . .
For any z E E such that U(z)  let us consider the smallest cycle Cz E

e(V) containing z such that U (Cz + H (Cz > . have U (Cz ) = 0. Indeed,
if we had U(Cz) > 0, we would have also U(Cz) + H(Cz)  + D) 

+ D) = Ak , which is a contradiction.
From the preceding remarks, we deduce that

H1(Cz, V|Cz Cz) ~ (1 + 1 D)-1 03BBk.

Indeed any cycle C C Cz such that C ~ Cz and U (C) > 0 satisfies

H(C)  1 + ak, and

V|Cz Cz) = max{H(C) : C C Cz, C E C(Y), U(G’) > 0}
= H(Cz B arg min U(y)).y~Cz

Let us remark now that

P(X(k+1)N/r = y, = z)

~ P(X(k+1)N/r = y, Xn ~ Cz, kN r  n ~ (k + 1)N r | XkN/r = z).
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Let US consider On Cz the Markov chain (Yn)neN with transitions
P(Yn = y [ Yn- i = z) = q(z, y) defined by

p03B3Nk(x,y) if x ~ y ~ Cz,
q(x,y) = 1- q(x, w) otherwise.~ wE(Cz((r))

(We obtain this new chain by reflecting (Xn)n~N on the boundary of Cz.)
As for any z, y e Cz, y)  q(z, y) , we have

PN(X(k+i> Njr = y, Xn e Cz , kN r  n  (k + 1)N r [ XkN/r = z)
~ P(YN/r = y | Y0 = z).

Applying to Y the theorem on the convergence speed of the Metropolis algo-
rithm, we see that for any e > 0, there is No such that for any N > No ,

k- I

= y) n fQ Ai n Bk [ Xo = z)  exp (-qll (il(y) - e)) . .
I=o

We have now to find an upper bound for

k- I

PN(Bk n Al | X0 = z) .
I=o

For any z e E such that lfl (z)  qk - i , we have

(k+I)N/;

PN(Bk | XkN/r " Z)  £ l’Nl’(Xn-I) + V(Xn-I> ’in) > hk ( XkN/r * Z)
n=kN/r+I

= £ PN(Xn-1 = u [ XkN/r = v)

~ 03B3Nk(u) 03B3Nk(z) p03B3Nk(u, v)

~ N r exp (-03B3Nk (03BBk - (z) - )),



111

for any e > 0 and N large enough. Thus for any e > 0, for N large enough,
k- I

PN(Bk n fQ Ai | X0 = z) = £ PN(Bk [ XkN/r = z)
I*° z,Y(z)qk-i

k-2

 PN((XkN/r = z) n fQ Ai n Bk-1 | X0 = z)
i=o

 £ ~ exp ( -If (Ak - 8(z) - e))
z,U(z)qk-i

x exp (-qll_1 (8(z) - e))
 ~ exp (-q/ (Ak - qk-i - e))

x exp (-q/_i (qk-1 - 2e)) .
Therefore, for any e > 0, there is No such that, for any N > No ,

k- I

P(Ak n fQ Ai | X0 = z)
i=o

~ N r exp (-(03BBk-~k-1)03B3Nk-~k-103B3Nk-1 + ~(03B3Nk + 03B3Nk-1))

+ exp (-(qk - e)q/) . .
Coming back to the definitions, we see that

N j~ ( N ) I I ( DQ ~k03B3Nk = log( N r) 1 (1 + 03BE) 1 D( D~ H) ,

03BBk03B3Nk+~k-1(03B3Nk-1-03B3Nk) = (1+ 1 D) (1+03BE)-1logN r

~ 
(l /g)D ( ~~# ~ 

~~~ 

~) log ~’
= logN r ((1+03BE)-1 (1+1 D (~D H)1/r)),

~03B3Nk ~ ~ ~D log N r.
Thus

P(Ak n At | X0 = x) ~ ( N r ) 
-(1+ 03BE)-1(1 D( ~D H)

1/r

-03BE) + 2~ ~D
P(Ak ~ ~ At | X0 = x) ~ (N r)-(1+03BE)-1( 1 D( ~D H)1/r-03BE) + 2~ ~D

+( N r)-(1+03BE)-11 D ( D~ H)1
/r

+~ ~D.
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Letting 03BE and E tend to zero, we get eventually that

lim inf-1 log Nlog PN(U(XN) ~ ~|X0=x)~1 D( D~ H) 1/r.
g 

- - D H

For more precise computations under the stronger hypothesis that for some
constant a > 0

 pp(~~ y)  
we refer to ~11~ .

8. THE ENERGY TRANSFORMATION ALGORITHM

8.1. The energy transformation method. The purpose of this algorithm is
to minimise a function tI : E -~ I~ defined on a finite set E, using to explore
the states of E an irreducible Markov matrix q : E x E ~ ~a,1~ with a fixed
symmetric support. The method is to use a rate function of the form

V(x, y) _ (E o U(y) - ~’ o U(x))+ a y) > a,
where F : -~ I~ U ~-oo} is a suitable increasing function.

8.2. Convergence result for a single transformation.

Proposition 8.1. Let q : E x E ~ [0, 1] be an irreducible Markov matrix
with symmetric support. Let B, be the canonical

realization of a family of Markou chains with transitions

(~~ y) _ y) exp -,Q o U(y) - .F~ o U(~))+ , x i- y,

where F~ (u) = log(u + ~), where ~ + Umin > 0.
Let us introduce the two rate functions:

V ~ _ { (U(y) - U(~))+~ y) > 0,V(x , y) = { +oo otherwase

W~ (x,y) = { 
(F~ o U(y) - F~ o U(x))+, p03B2,~(x, y) > 0
+~ otherwise.

Then W~ is the rate function describing the rare transitions of the sub-family
and for any r~ > P > a, E > 0 and any ~ E E,

lim 1 log N log P03B2N,~,~ (U(XN) - Umin ~ 03C1(~ + Umin)| X0 = x) ~

log(1 + 03C1) log( 1 + D (1 + ~)-1,

g( T 

with

where Hv (C) is the depth of C with respect to the rate function Y, induced by
U.
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Remark: If it is known in advance that a  Umin  b, it is possible to take
F(u) = a). This ensures a probability of failure bounded by
(1 N)log(1+03C1) log(1+D(Umin-a))(1+~)-1 

when failure means U(XN) ~ Umin + 03B4 with 03B4 =

p(b - a). The interesting thing is that the exponent

a = (1 ) 
= (i ~ E -1 describing thea ( + ) l0 g( 1 + D (vmin-a)) ( + ) log g ( 1 + l 

describing the

convergence speed depends on the precision (b - a) with which Umin is known
in advance, and that, for a fixed value of ~, a tends to +00 when the precision
b - a tends to 0.

Proo f 
As F1] is increasing, it is easy to see that C(V) = ~(W~). In the case when

Hl (V ) = = 0, there are no local minimum, = 0, and the
proposition is true with the convention that 1/0 = +oo, since the convergence of
the probability of error to zero is in this case easily seen to be exponential and
not polynomial in N. Therefore we will assume in this proof that Hl (W~ > 0.
For any cycle C E e(V) = ~(W~) such that U(C) > Umin,

HW~(C) = F~(U(C) + Hv(C)) - F~(U(C))

= log(1+Hv(C) U(C)+~)

~ log(1 + D(~+Umin)),

Moreover

+ Umin) + Umin) - = log(1 + p),
and exp + f))  N’

therefore

~N,~ log P~,,,,(~(X~) - + = .r)
a

In the following paragraph, we will use the energy transformation method re-
peatedly to improve a rough initial lower bound for Umin .

8.3. The Iterated Energy Transformation algorithm.

Theorem 8.1. Let,  Umin be a lower bound for Umin which is assumed to be
known beforehand. Let r~o > 0 be a non negative parameter, and let us consider
the (non-Markovian) stochastic process (Xn)n=1,." ,N, B, PN) with transi-
tions 

~ 

PN(Xn = y | (X0,..., Xn-1) = (x0,...,xn-1)) = p03B2N,tk(xn-1, y),

kN r  n ~ k + 1) N r,
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where

, ~ ~ 

~ = ~-1-. 
( l / 

7’o = 

and where r is the number of steps of tfie algorithm. Then for any .c ~ j6’

lim inf 2014 -201420142014

log PN (U(XN) - Umin ~ 03C1 (03C1 1+ 03C1 )r-1(Umin-03B3 + ~0) + ~003C1(1 + 03C1) | X0 = x)
>log(1+03C1).
- 

Remarks:

. The probability of failure can be reduced to order A~ with ~ arbitrarily
large by increasing p and r and decreasing A more precise study of the
algorithm (see [7]) would allow us to choose rand p as functions of N and
to get a convergence speed better than polynomial.

. The I.E.T. algorithm is well suited when D is large and ~ is moderate.
In order to fight against the number of states in E, it is possible to use an
energy transform of the form c~ + + 7~).

. The energy transformation method can also be used for the simulated

annealing algorithm: any concave increasing energy transformation will
decrease the difficulty (see [2]).

Proof: Let us introduce the events

Ak = {!7(~+l)~/r) - Umin  (Tk + 
We have

= 

/7TT2014 B

~ PN /
r-l A:-l

 

~=0 ~=0

r-1 A:-l

 

A:=0 ~=0

When holds,

U(XkN/r) + 03C4k-1  (Umin + 03C4k-1)(03C1 + 1),
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therefore Umin + Tk > ~0 and, applying the previous proposition,

lim inf-1 log N log PN(Ak | X0 = x, ~ Al) ~ log(1+03C1) (1+~)log(1+D~0),
thus

lim inf -1 N log PN(U(XN) ~ Umin + 03C1(Umin + r-1) |X0 = x)

~ log(I + p) 
.

- 

°

Moreover

k + Umin ~ (k-1 + Umin)
03C1 1+03C1 

+ ~0

~ ~003A3(03C1 1 + 03C1)l + (03C1 1 + 03C1)k(03C40 + Umin),

whence

(r-1 + Umin) ~ ~0(1 + 03C1) + (03C1 1+03C1)r-1 (Umin + ~0 - 03B3). []

9. A GENERAL REMARK ABOUT THE INTEREST OF REPEATED OPTIMISATION
SCHEMES

All the algorithms we have encountered in these notes have a probability of
failure bounded by 6(~V), where N is their number of iterations and where

= 0. Due to this slow convergence speed, these al-

gorithms should be used repeatedly. Indeed performing N / M repetitions of
the algorithm with M iterations, where M E arg minM~NM-1log~(M), and
keeping in the end the best solution among the computed solutions,
gives a probability of failure bounded from above by çN with ~ = 
(when N/M The fact that = 0 ensures that

argminMEN is not void and is bounded. See [2] and [7, 10] for
more details.

10. PROBLEM

The different questions are independent. The integer part of r is noted 

10.1. Question 1. Let us consider the state space E = ~ 1, 2, 3, 4, 5~ and the
rate function ~+oo} defined by the following matrix

/ 0 1 3 0 2 B
8 0 2 2 3
9 5 0 7 4
0 2 +00 0 +oo

B 8 5 4 11 0 /
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(for instance V(3,4) =7.)

~. Compute the virtual energy of each state and construct all the cycles by
induction.

1.2. Compute ~i(V), ~(V) et ~s(~).

1. 3. Let us consider a family B, jF~)~~R+ of homogeneous Markov
chains with rare transitions with rate function V. For any subset D of E, we
put r(D) = inf{n E N Xn e D}. Compute

lim -1 03B2log P03B2(X({2,3,5}) = 3 | X0 = 4),
and

~m~~IogE~(r({2,5})!Xo=3).
10.2. Question 2. Let us consider a family of homo-

geneous Markov chains with rare transitions defined on a finite state space E,
with an irreducible rate function V : E x E - JR+ U {+00}. Let U be its virtual
energy.

Let us assume that for some real positive constants a and b and for any
(~)eF’

~p~(.r~) ~6exp(-/?V(~~)),
where p~ : : E x E 2014>- [0,1] is the transition matrix of the chain P~: For any

p~,~) = = Xn- i = .c).

~~. Show that there is a positive real constant c such that for any subset D of
E, D ~ E, D ~ 0, any .r C E B D, any n C N, any /? C M+,

> n Xo = .c) ~ exp 

where r(D) is the first hitting time of D:

03C4(D) = inf{n ~ N | Xn ~ D}.

2. 2. Deduce from this that there is a positive real constant d such that for any
real positive ?7 ~ M+, any .c G E, any /? G R+,

Xo = ~) ~ exp + 

2.3. Using the preceding inequalities, state a convergence theorem concerning
> ?~ Xo = z) for a suitable function ~V(/?).
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10.3. Question 3: Weak reversibility condition of Ha jek and Trouve.
On a finite state space E, let us consider an irreducible rate function V : E x E -
?+ U ~+oo} and a real valued function U : E 2014>- ?. Let us define the elevation

of a path, = (z~, ~ ~ ~ zr) E with respect to U by the formula

HU(03B3) = max U(zi-1) + Y(zi-1, zi).

For any (x, y) E E2, let Fr,y be the set of paths joining x to y:
+00

rx,y = U {(z0, ... , zr) E Er+ 1 |z0 = = y}.
r=l

Let us define the minimum elevation between two states x E E and y E E by
= I ’Y E 

3.1. Let us assume that the function y) is symmetric. Namely, let us
assume that for any (x, y) E E2

y) = ~) 
(This is a "weak reversibility condition" , due to Hajek in the case when p~(.c, ~/) =
q(x, y) exp( -03B2(U(y) - U(x))+) with a non reversible kernel q and to Trouve in
the general case). Let U be the virtual energy corresponding to (E, V). . For any
cycle C E 6(V), consider the following property 5l(C) :

E C2, U(x) - U(x) = U(y) - U(y). °
Show by induction on ~C~ that is true for any cycle C E C(E, V).
Hints:

. Consider the partition (Ci)i~I of C in strict maximal subcycles. Introduce
the constants ci E R, i E I, defined by

U ( x) = v(~) + ci~ ~ E Ci.
. Show that if B ( Ci) n Cj ~ ~, (where B (Ci ) is the principal boundary of

Ci), then ci > cj. (For x E Ci and y E B(Ci) n Cj compare HU(x, y),
y) , Hu (y, x) and x)~)

. Draw from this the conclusion that ci = c~ for any (i, j) E I2.
This shows that y))(x,y)EE2 is symmetric if and only if for any x ~ E

U(x) = minU(y) + (x).

10.4. Question 4.

4.1. Give an example of a finite state space E and of an irreducible rate function
V : E x E ~ R+ U ~+oo} such that

Hl (E, ~) = l,

H2 (E, V) = 2,

H3(E, V) = 3.

4.2. Could-you give such an example in which = 4 ?
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,~.3. Could-you give such an example in which ~E~ = 5 ?
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