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SIMULATED ANNEALING ALGORITHMS AND MARKOV
CHAINS WITH RARE TRANSITIONS

OLIVIER CATONI

ABSTRACT. In these notes, written for a D.E.A. course at University Paris
XTI during the first term of 1995, we prove the essentials about stochastic
optimisation algorithms based on Markov chains with rare transitions, un-
der the weak assumption that the transition matrix obeys a large deviation
principle. We present a new simplified line of proofs based on the Freidlin
and Wentzell graphical approach. The case of Markov chains with a peri-
odic behaviour at null temperature is considered. We have also included
some pages about the spectral gap approach where we follow Diaconis
and Stroock [13] and Ingrassia [23] in a more conventional way, except for
the application to non reversible Metropolis algorithms (subsection 6.2.2)
where we present an original result.

ALGORITHMES DE RECUIT SIMULE ET CHAINES DE MARKOV A TRANSI-
TIONS RARES: Dans ces notes, tirées d’un cours de D.E.A. donné au pre-
mier trimestre 1995, nous établissons les bases de la théorie des algorithmes
d’optimisation stochastiques fondés sur des chaines de Markov & transi-
tions rares, sous I’hypothése faible selon laquelle la matrice des transitions
vérifie un principe de grandes déviations. Nous présentons un nouvel en-
semble de preuves originales fondées sur ’approche graphique de Freidlin
et Wentzell. Le cas des chaines présentant un comportement périodique
a température nulle est traité. De plus nous avons aussi inclus quelques
pages sur les méthodes de trou spectral, dans lesquelles nous suivons Dia-
conis et Stroock [13] et Ingrassia [23] d’une fagon plus conventionnelle, si
ce n'est pour 'application aux algorithmes de Metropolis non réversibles
de la section 6.2.2, qui est originale.

INTRODUCTION

These lecture notes were written on the occasion of a course of lectures which
took place from January to April 1995. We seized the opportunity of the present
English translation to add some proofs which were left to the reader and to cor-
rect some misprints and omissions. Sections 4.1, 4.2 and 4.3 contain standard
material from [13] and [23]. The rest is more freely inspired by the existing
literature. The presentation of the cycle decomposition is new, as well as lemma
1. We chose to make weak large deviation assumptions on the transition matrix
pp at inverse temperature 3, and to give results which are accordingly concerned

Date: May 1995, English translation January 1997, in revised form November 1998.
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only with equivalents for the logarithm of the probability of some events of inter-
est. In the study of simulated annealing, we considered piecewise constant tem-
perature sequences, in order to avoid introducing specifically non-homogeneous
techniques. Our aim was to give tools to study a wide variety of stochastic opti-
misation algorithms with discrete time and finite state space. For related results
directed towards applications to statistical mechanics, we refer to [8].

1. EXAMPLES OF HOMOGENEOUS MARKOV CHAINS

We are going to study in this section homogeneous Markov chains related to
stochastic optimisation algorithms.

1.1. The Metropolis Algorithm. This algorithm can be applied to any finite
state space E on which an energy function U : E — R is defined (U can be any
arbitrary real valued function). Its purpose can be either:

e to simulate the equilibrium distribution of a system from statistical me-
chanics with state space E and energy U interacting with a heat bath at
temperature T,

e or to find a state z € E for which U(z) is close to ;Iélbljl Uly).

We will mainly be interested in the second application in these notes.
Description of the algorithm

Let us consider a Markov matrix ¢ : E X E — [0, 1] which is irreducible and
reversible with respect to its invariant measure. In other words let us assume
that '

e Y q@y) =1, z€E,

YEE
e sup¢™(z,y) >0, z,y€E.

m
(This last equation means that there is a path 2o = z,z1,...,z, = y leading
from z to y such that ¢(zi,zi41) >0,:=0,...,1-1))
e the invariant probability distribution g of ¢ (which is unique under the
preceding assumptions) is such that
n(@)q(z, y) = n(y)e(y, ).

Let us consider also an inverse temperature 8 > 0, 8 € R. To this temperature
corresponds the Gibbs distribution G(E, i, U, §), defined by

68, 1,U,B)() = M exp(-pU (@)
where Z (the “partition function”) is
Z =" u(z)exp(-BU(x)).
z€E

The distribution G(E, p, U, 3) describes the thermal equilibrium of the thermo-
dynamic system (E,pu,U, ). We then define the transition matrix at inverse
temperature 3. This is the Markov matrix pg : E X E — [0, 1] defined by

pp(z,y) = q(z,y)exp—PBU(y) - U(z))t, z#y€E,
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where r+ = max{0, r}.
Proposition 1.1. The matriz pg is irreducible. It is aperiodic as soon as U is
not constant, and therefore
+ : - no_
VC’ veE Ml (E)) HBTOO(C V)pﬁ 0)
where M7 (E) is the set of probability measures on E. Moreover pg is reversible
with respect to pg = G(E, p, U, B).

Proof: 1t is irreducible because pg(z,y) > 0 as soon as ¢(z,y) > 0. If U is
not constant there are z,y € E such that ¢(z,y) > 0 and U(z) < U(y), which
implies that pg(z,z) > 0 and therefore that ps is aperiodic. Moreover

we(@)pp(,y) = %u(w)q(w, y) exp (—-B(U(z) V U(y)))
ne(W)ps(y,z), z,y€EE,z#y.

1.1.1. Construction of the Metropolis algorithm. On the canonical space (EV, B)
where B is the sigma field generated by the events depending on a finite number
of coordinates, we consider the canonical process (X, )nen defined by

Xn(z) =2,, z€EN,
and the family of probability distributions (P;,” )eece on (EN, B) defined by
Pg o X(')—l = bz,
P5(Xn =y | (Xoy- -, Xn-1) = (2o, .-, Zn-1)) = Pp(Tn-1,9)-

The homogeneous Markov chain (EN, (X, )nen, B, (P§)zeE) is the canoni-
cal realization of the Metropolis algorithm with state space E, Markov matrix
g, energy function U and inverse temperature 3. We will use the notation
M(E,q,U,p).

1.1.2. Computer implementation. Assuming that X,_1 = ¢ € E, choose a state
y according to the distribution g¢(z,y), compute U(y) — U(z), if U(y) < U(z),
put X, =y, if U(y) > U(z), put X,, = y with probability exp —3(U (y) — U(z))
and X, = ¢ otherwise.

1.1.3. Behaviour at temperature zero (f = +o0). Letting 3 tend to +oco in the
definition of M (E, ¢,U, §), we define the infinite inverse temperature algorithm
M(E,q,U,+00) by

Proo(Xn =y | Xn-1=2) =¢(2,9) 1(U(y) < U(e)), z#yEE.

This is a relaxation algorithm: U(X,) is almost surely non increasing. It is
still homogeneous, but no more ergodic in general (if U is not constant on E, E
has at least one transient component).

When S tends to infinity, M (E, q,U, ) weakly tends to M(E,q,U, +00), in
the sense that for any function f : EN — R depending on a finite number of
coordinates we have

Jim [ P = [ fw)Pe (@),
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(Note that it implies that the same holds for any continuous function f, EN being
equipped with the product topology, because any such function is a uniform limit
of functions depending on a finite number of coordinates.)

When it is observed during a fixed interval of time, M (E, ¢,U, 8) is a small
perturbation of M(E,¢,U, +o0) at low temperature.

We can see now that the Metropolis algorithm is suitable for the two purposes
we announced at the beginning:

e Simulation of the thermal equilibrium distribution G(E, u,U, B8): As pg is
irreducible and aperiodic and as E is finite, (Pgo Xy 1)pg = PgoX,;! tends
to G(E, p, U, B) when n tends to infinity (at exponential rate, as will be
seen in the following).

e Minimisation of U: The Gibbs distributions pg = G(E, u, U, B) get con-
centrated around arg minU when £ tends to +o0.

Indeed, for any n > 0,

ps(U(@) <minU+7) > 1~ Zexp(~f(n+minD)),

Z > p(argminU)exp (—fminU),

therefore we have the following rough estimate

pa(U(z) < HgnU +1n) > 1— p(argminU)~te=P7.

Taking n = min{U(y), y € E \ argminU} — ming U, we see that, as a

consequence,
lim G(E,u,U,p)(argminVU) = 1.
B—4o00
Thus
Proposition 1.2. For any ¢ > 0 there are N € N and 3 € R, such that
foranyn >N

P3(U(Xn) =minU) > 1—e.

1.2. The Gibbs sampler. This algorithm is meant for a product state space
E =TIi_, Fi, where the components F; are finite sets. The purpose is the same
as for the Metropolis algorithm (simulate the Gibbs distribution or minimise the

energy).
Description: Let us consider

e An energy function U : F — R, which can in fact be any real valued
function.

e An “infinite temperature” probability distribution p € Mf

e An inverse temperature 3 € RY.

o The Gibbs distribution

G(E,1,U,B)(x) = M2 dep(-pu @)

e A permutation o € &, of {1,...,r}.
Let us define
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e For any i € {1,...,r} the transition matrix p% : E x E —[0,1] at site ¢
and inverse temperature g

ph(z,y) =1@F =F)G(E, 1, U, By |7 =7'), z,y€E,

where we have used the notations z = (¢7)}_,, ¢/ € F; and T = (29); -
e The global transition matrix at temperature g

ps = Hp;(i) — p;(l) . 'pg(r),

i=1
which corresponds to the scan of the sites defined by the permutation o-.
Properties of ps:

e It is a full matrix, (pg(z,y) > 0,2,y € E), thus it is irreducible and
aperiodic.

e The Gibbs distribution G is pg invariant for any ¢ € {1,...,r}, therefore
G is also the (unique) invariant probability measure of pg.

We consider then the Markov chain with canonical realization (EN, (X, )nen, B, Ps)
where Pg is the probability measure on (EN, B) of the Markov chain defined by
PgoX5! and

P(Xn=y|Xn—1=l')=Pﬁ($,y)» xayeE'

The homogeneous Markov chain (X, Pg) is called a Gibbs sampler with state
space E, energy function U, reference measure p, scan function o, inverse tem-
perature G and initial distribution PsoXy ! = Lg. The notation GS(E, i, o, U, 3, Lo)
will denote this process in the following. Let us describe its computer imple-
mentation with more details.

Computer implementation:

Each step of the chain corresponds to one scan of all the sites, in the order
defined by o. It includes thus r sub-steps.

To perform the ith sub-step, i = 1,...,r, if z is the starting configuration,
we have to draw at random f € Fy(;y according to the conditional thermal equi-
librium distribution at site o () knowing that the configuration should coincide
with z on the other sites.

This computation is easy if

e The number of elements of Fy ;) is small,
e The conditional distribution G(X°() = f | XJ = 29, j # o(i)) depends on
few coordinates, as it is the case for a Markov random field. The new state
at the end of the ith sub-step is y € E, given by y°() = f and o = 27,
i #ali).
Behaviour at “zero temperature”: Here again lim p% exists, therefore lim pg
B—+o0 B+

exists and defines a Markov chain at temperature zero. This zero temperature
dynamic is a relaxation algorithm: the energy is almost surely non-increasing.
It is not in general an ergodic process, and P converges weakly to Py, as in
the case of the Metropolis dynamic. Moreover the purposes of simulation of the
equilibrium distribution and of minimisation of the energy are fulfilled in the
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same way, and, as for the Metropolis algorithm, proposition 1.2 holds also for
the Gibbs sampler.

2. MARKOV CHAINS WITH RARE TRANSITIONS

2.1. Construction. We are going to put the two previous examples into a more
general framework. Let us consider

e An arbitrary finite state space E,

e A rate function V : E x E — Ry U {+00}. Assume that V is irreducible
in the sense that the matrix exp(—V (z,y)) is irreducible.

o A family F = (EN, (Xn)nen, B, Ps)ser., of homogeneous Markov chains
indexed by a real positive parameter £.

Definition 2.1. The family of homogeneous Markov chains ¥ is said to have
rare transitions with rate function V if for any z,y € F

lim —log Ps(Xn =y | Xn-1=12)
B—+o0 Ié)

=V(z,y),

(with the convention that log0 = —o0).

Remarks about this definition:

e This is a large deviation assumption with speed 8 and rate function V
about the transition matrix. We will see that it implies large deviation
estimates for the exit time and point from any subdomain of E.

e The two examples of algorithms given previously fit into this framework.
Indeed the rate function of the Metropolis algorithm M (E, ¢, U, 3, Lo) is

_ [ U -U(=z))+ ifps(e,y)>0for >0
Viz,y) = { +00 ¥ otherwise.

As for the Gibbs Sampler GS(E, u, 0, U, 8, Lo) with E = [[_, Fi, the rate
function V is built in the following way:
For any z,y € E, any 1 € {1,...,r}, let us put

i [ U -inf{U(z) | F =7}, fF =7
Vie,y) = { 400 otherwise,

and let us consider the path v = (yx)%—, defined by

o(i) _ {y”(i) if 1 <k,

ke z°()  otherwise.

The rate function of the Gibbs sampler is

Vie,y) = Y VoE (yer, ).
k=1
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2.2. Rate function induced by a potential.

Definition 2.2. We will say that the rate function V : E x E - R, U {+0c0} is
induced by the potential U : E - R if forall z,y € E

Uz)+V(e,y) =U(y) + V(y, ),
with the convention that +00 4+ r = +00 for any r € R.

Proposition 2.1. The rate function of the Metropolis algorithm M (E, u, U, B, Lo)
ts induced by U.

Proof:

As q is irreducible, pu(z) > 0 for any z € E. Indeed there is zo such that
u(zo) > 0 and there is n such that ¢”(zo,z) > 0, therefore u(z) = pg™(z) >
p(x0)g™ (zo,2) > 0. Thus ¢(x,y) > 0 if and only if ¢(y,z) > 0, from the p
reversibility of ¢. Therefore V(z,y) = +o0 if and only if V(y, z) = +00. In the
case when ¢(z,y) > 0,z # y,

V(z,y) = V(y, o) = (U@) - U(@)" - U) -U@)* =U( -U(z). O

3. LEMMAS ON IRREDUCIBLE MARKOV CHAINS

Let E be a finite state space, p: E x E — [0, 1] an irreducible Markov matrix,
(EN, (Xn)nen, B, P) an homogeneous Markov chain with transition matrix p,
W C E a given subset of E and W = E \ W its complement. For any oriented
graph ¢ C E x E and any ¢ € F, we write g(z) = {y | (z,y) € ¢} and more
generally ¢"(2) = ] g(v).

yegr—1(z)

Definition 3.1. Welet G(W) be the set of oriented graphs g C F x E satisfying

1. For any z € E, |g(z)| = 13 (no arrow starts from W, exactly one arrow
starts from each state outside W).
+o00
2. Forany xz € E, z ¢ Oy(z), where Oy4(z) = U g" () is the orbit of  under
n=1
9, (g is without loop).
Equivalently, the second condition can be replaced by: For any z € E'\
W,O04(z) "W # @ (any point in W leads to W).

Definition 3.2. For any z € E, y € W, we will write

{9 € GW) | y€ O4(z)} ifzeW
Goy(W) =1 GW) ifz=y
0 if z € W\{y}.
Thus Gz, (W) is the set of graphs g € G(W) linking z to y. We will also write

Ga,B(W)={g | Vz € A,y € B such that g € G, ,(W)}.
We will give three formulas which express the equilibrium distribution of p,

the probability distribution of the hitting point of W, and the expectation of
the corresponding hitting time, as the ratio of two finite sums of positive terms.
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They have been introduced in the large deviation theory of random dynamical
systems by Freidlin and Wentzell [16]. The idea of using graphs to compute
determinants has been known since the nineteenth century and presumably goes
back to Kirchhoff [24]. The proofs which we propose are based on a preliminary
lemma:

Lemma 3.1. ForanyW C E, W # 0, let Piwxw be the matriz p restricted to
WxW:
Piwxw (@, y) = p(z,y)1(z € W)l(y ¢ W).

Let 7(W) be the first hitting time of W: 7(W) = inf{n > 0|X,, € W}. For any
z,y € W we have

400
(id — piwsw) "' (z,9) = (Z p,"WXW) (2,9)

(W)
=FEj Zl(Xn:y)Ionm
n=0

:( > p(g)) ( > p(g)) :
9€Gz,y(WU{y}) gEG(W)
where p(g) = H p(z,1).

(2,t)€g

Remark: The fact that idgr — pyr. 37 is non singular is a consequence of the fact
that p is irreducible (limy, erxW = 0 and therefore all the eigenvalues of py7, 7

are of module lower than one).

Lemma 3.2. The (unique) invariant probability distribution of p is given by

ul(z) = ( > p(g)) (Z 3 p(g)) —1, z€E.

g€G({z}) YyEE geG({y})

Lemma 3.3. The distribution of the first hitting point can be expressed as

P(XT(W)=y|Xo=w)=( > p(y)) ( > p(y)) :
)

gEG =,y (W geEG(W)
foranyW £0, z € W,yeWw.
Lemma 3.4. For anyW #0, any z € W,

E(r(W) | Xo=2) = (Z > p(g)) ( > p(g))_l.

yeW 9€Gz,y(Wu{y}) geEG(W)
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Proof of lemma 3.1:

As p is irreducible, for any W # 0, there is g € G(W) such that p(g) > 0 (the
proof of this is left to the reader).

Let us write for any z,y € W

m(w,y)=( > p(g)) ( > p(g)) :
9EGL,y(Wu{yl}) geEG(W)

We want to check that for any z,y € W
(1) > (d(z, 2) - p(=, 2)) m(z,9) = id(a, y)-
zEW
Using the equality

p(z,z)=1- Z p(z, 2),

zeEB\{z}
we can equivalently check that
(2) S bz, me,y) =idw,y) + Y. ple,2)m(z ).

z€{z} 2€WU{z}

The left hand side of this equation is equal to

-1
( > p(x,Z)p(g))( > p(g)) :
(2,9)€C1 geG(W)

where C1 = {(z,9) € {&} x G(W U{y}) : g € Goy(W U{y})}, the right hand
side is equal to

id(a:,y)+( > p(x,Z)p(g))( > P(g)) )

(2,9)€C2 gEG(W)
where
Cy={(2,9) e WU{z} x G(WU{y}) | g€ G.y(WU{y}}.

Let us consider first the case when & # y. Then we can define a one to one
mapping ¢ : C1 = C3 by

ol(z,9) = { (2,9) if g € G2 y(W U{y}),
’ (9(2), (g U{(z, )H \ {(z, 9(x))}) ifg & G-y(WU{y}).

The easiest way to check that ¢ is one to one is to check that

<p_1(z g) — { (Z,g) ifg € Gw,y(W u {y});
’ (9(2), (g U{(z,2))\{(z,9())}) ifg & Goy(WU{y}).



78

Let us write ¢ = (1, p2) to show the two components of ¢. The following
change of variable

Y paple) = Y. p@ei(z0)p(pa(z,0)

(219)602 (Z;g)ecl

= > p(=z2)p(9)

(2,9)€C1
shows that

Z p(a:,z)m(:c,y) = Z p(x,z)m(z,y).

z€{z} zeWuU{z}

We have now to check the case when # = y. In this case Cy C C;. Let us
consider the one to one mapping ¢ : C; \ C2 — G(W) defined by ¢(z,9) =

gU{(z,2)}, with inverse ¢~ (g) = (9(z), 9\ {(z, 9(2))})-
We have

> p2)ple)= Y. ple),

(2,9)€C1\C2 geEG(W)

and therefore

( > p(w,Z)p(y)) ( > p(g))
(2,9)€C) geG(W)
=1+( > p(w,Z)p(y)) ( > p(y)) .o

(2,9)€C2 geG(W)

Proof of lemma 3.3:

400
PX;wy=y|Xo=2) = Z ZP(X,, =z,7(W)>n|Xo=2x)p(z,y)
) ZGW"':O

= Z( > p(y)p(z,w) ( > p(g))_l

2€W \9EG:,:(Wu{z}) geEG(W)

( 3 p(g)) ( > p(y)) :
9€EGz,y(W) geG(W)
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Proof of lemma 3.4 :

(W)-1
E(T‘(W)lXo:(l!) = E( IX EW)!X()—:E)
+o0
= E( Zl :y,r(W)>n)|Xo::c>
yew n=0
p(9)
_ yEW 9€G,y(WU{y})
Z p(9)

Proof of lemma 3.2 :
Let v(z) = inf{n > 1| X, = z}.

p() = E((z)|Xo=2z)""
= | Y p(@y)EFr({e}) [ Xo=y) + 1)
Y, y#z L
= |33 3 p@wvpe)+ Y p(y)) ( > p(y))
Y Y#T 2,2#% g€Gy,. ({2,2}) g€eG({=}) 9€G({=z})
= > p(g)) (Z > p(g)) ,
9€G({=}) :€B geG({2})

because for any z # z ¢, : {(v,9) |y # ®,9 € Gy,.({z,2})} = G({z}) defined
by ¢.(y,9) = g U{(z,y)} is one to one.

4. CYCLE DECOMPOSITION OF A FAMILY OF MARKOV CHAINS WITH RARE
TRANSITIONS

4.1. Behaviour of the invariant distribution, virtual energy.

Definition 4.1. The rate function V : E x E — R, U {400} is said to be
irreducible when the matrix (exp —V'(z,¥))(y)eg> is irreducible. This means
namely that for any ¢,y € E there is a path 20 = z,..., z. = y such that

V(zi-1,2z:) <400, i=1,---,r.

Proposition 4.1. Let F = (EN,(Xn)neN,’B,Pp)pem+ be a family of homoge-
neous Markov chains with rare transitions, with irreducible rate function V.
Then for 8 large enough (X, Pg) is irreductble and its invariant probability dis-
tribution pg is such that for anyxz € E

lim —8~" logup(z) = U(z) € Ry.
B—r+o0
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The “virtual energy” function U : E — R can be expressed as

-~ : . V _ . . V
()= min, V() —mip min Vi),

where V(g) = Z V(z,t). In the case when V is induced by a potential func-
(z,t)€g
tion U, we have for any ¢ € E that U(z) = U(z) — minyeg U (y).

Corollary 4.1. The family § describes an optimisation algorithm for the min-
tmisation of the virtual energy U: For any € > 0, there are N € N and f € R,
such that, for any n > N,

min Ps(U(X,) =0 | Xp=2) > 1 —e.
z€E -

This algorithm is called a “generalised Metropolis algorithm”.

Proof: The first part of the proposition is a straightforward consequence of
lemma 2. In the case when V is induced by U, consider the one to one mapping

¢:G({y}) — G({=}),
defined by
o(g9) ={(2,t) € g,t & Og(x)} U {(t,2),(2,t) € g,t € Oy(x)}.
It is obtained by reversing in ¢ € G({y}) the path leading from z to y. We have

ﬁ(y) +U(z)+min min_ V(g) = (V(g) +U(=))

g) = min
z€E geG({z}) 9€G({y})

= in Viz,t) + U(z) + Vi(z,t
emin > (2,8) + U(z) > (2,1)
z g Og4(z) U {z} z € Og(z) U {z}
(z,t)€g (z2,t) € g

= gl(i{l:l}) Z V(z,t)+ U(y) + Z V(t,2)

ge

2 € Og(z) U {2} 2 € Og(z) U {z}
(z,t)€eg (2,t) €9
= min (U(y)+V
min (V) +V(e()
=U(y)+ min V
(¥) e (9)

=U U(z) + min min_ V(g),
(v) +U(e) + min min V(s)

The proof of the corollary is the same as in the case of the classical Metropolis
algorithm when the chain is aperiodic. When the chain has period d, then each
chain (Xnd+k)nen is aperiodic for k € {0, ... ,d—1}, and the combination of the
inequalities obtained for these d processes gives the result for (X, )nen. O
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4.2. Large deviation estimates for the exit time and exit point from
a subdomain. In this paragraph we will study the limiting behaviour of the
law of the exit time and exit point from an arbitrary subdomain D of E. Let us
recall some notations introduced in section 3:

D=FE\D,
(D) =inf{n e N : X,, € D}.

Proposition 4.2. For any D C E,D # 0, for any x € D, under the same
hypotheses as previously,
log Ep(r(D) | Xo = z)

lim = min V(g)-min _min V(g
B—=+00 ,B gEG(D) y€D QGG:n:,y(DU{y})

moreover, for any y € D

1
lim —=Ps(X,py=vy|Xo=2)= min_ V(g9)— min V(g).
plim =5 Ps(X, @) =y|Xo=2) e im (9) ,Jain (9)

We will use the following notations for these new rate functions:

. -1 . _ def
plim —f~" log Ps(X,(p) = y| Xo = 2) = Vb (2,)

Jlim 87 1og Fy(r(D) | Xo = 2) &

= HD(:L‘)

In the next paragraph, we will link the rate functions appearing in these two
large deviation estimates with the virtual energy U. For this purpose, we will

introduce the decomposition of the state space into cycles due to Freidlin and
Wentzell.

4.3. Definition of cycles.

Definition 4.2. Under the preceding hypotheses, a subdomain C' C FE is said
to be a cycle if it is a one point set or if for any z,y € C, ¢ # y, the probability,
starting from z, to leave C' without visiting y is exponentially small, by which
we mean that

1
plim 5108 Ps(X, @y # ¥ Xo =2) > 0.

As a consequence we have of course

Sim Po(X @y =yl Xo=2)=1

4.4. Some properties of cycles.

Proposition 4.3. The subdomain C of E s a cycle if and only if it is a one
point set or for any z,y € C, x # y the number N¢(z,y) of round trips including
z and y performed by the chain starting from x before it leaves C satisfies

1

ﬁBToo 3 log Eg(N¢(z,y) | Xo=12) > 0.
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Remark: This property justifies the name “cycle”.
Proof: Let us give a more formal mathematical definition of N¢(z,y). For this,

let us introduce the sequences of stopping times (px (2, y), vk (, y))nen defined
by the following induction

v_i(z,y) = 0
pe(z,y) = inf{n>w_1(z,y) : X, € {y}UC}
v(z,y) = inf{n > pk(z,y) : X, € {z}UC},
then N¢(z,y) = inf{k : Xpr(zy) €Cor Xy (zy) € CY
We have
+o0
Es(Ne(z,9) | Xo=2) = Y Ps(Ne(z,y)>n|Xo=2z)
n=0
+o00
= Z (Pﬁ(Xuo(xvy) =yand Xy (z,y) = 2| Xo = :c))
n=0
-1
= (1 — Ps(Xyo(a,y) =y and Xoo(zy) = | Xo = :1:)) .
Moreover

Py (Xuo(z,y) = ¥ and Xig(zy) = 2| Xo = @)
= Pﬂ(Xr(ﬁu{y}) =y|Xo= x)Pﬂ(XT(EU{x}) =z|Xo=y)

= (1 = Ps(X;mugyyy # ¥ Xo = 17)) (1 = Po(Xr@ugey # ¢ Xo = y)) :
Therefore

. 1
lm 3 log Eg(Ne(z,y) | Xo = z) B
= inf{Ve\ (o3 (t, u) : (2,t) € {(z,9), (y,2)} and u € C},

which proves that

. 1
pRToo 3 log Eg(Ne(z,y) | Xo=2) >0

for all z,y € C, = # y, if and only if Vc\(y} (2, 2) > 0 for all (z,y) € C?, z € C.
O

Proposition 4.4. Let C(E,V) be the set of cycles of (E,V). It has a tree
structure for the inclusion relation, with root E and leaves the one point sets.
This means that if C1 and C5 are cycles, either C; C Cy or Cy C C1 or C1NCy =
p.
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Proof: If it were the case that z € C1 N Csy, y € C1 \ Cs and z € Cy \ C1, we
would obtain a contradiction: we would have

) 1
0 = ,lim FlogPs(X @i =21 X0 =1)

. 1
E ,Bl:r-}l:loo Elog Ps(Xr@uqey # V| Xo=2)

< 0. O

Proposition 4.5. For any subdomain D of E, we define the principal boundary
B(D) of D by
B(D)={y¢ D : Vp(z,y) =0 for some = € D}

Then for any cycle C € C(E,V), any subdomain D C C, D # @, D # C,
B(D)cC.

Proof:

Ifye B(D)\C,z €D, ze C\D, then

Pﬁ(XT(I)‘) =y|Xo=2)< P(XT(EU{Z}) =y | Xo=12),

because in this case y € CU{z} and CU{z} C D. This is in contradiction with
the fact that

. 1
Jim_ — 5108 Pa(X, 5y =1 Xo = ) = 0

and

. 1
plm ~3 log Ps (X, zu(zy) = ¥ Xo=2) > 0.

Therefore B(D) C C. O

An important property of a cycle is that, at low temperature, the exit time
and exit point become independent from the starting point when it belongs to
the cycle.

Proposition 4.6 (Independence from the starting point). For any cycle C €
C(E,V),anyzeC,yeC,z¢C,

Vel(z, z) = Ve(y, 2) def V(C,2)

and

He(z) = Ho(y) ¥ H(C).

The quantity H(C) is called the depth of the cycle C.
Proof:
Pp(XT(a) =z |X0 = y)

Ps(X, ) = 2| Xo = 2)Ps(X gugeyy = 2| Xo =)
+Ps(X, Gugey) = 21 Xo =)
.Pﬁ(X-r(_C') =z|Xo= x)Pﬁ(Xr('C—u{z}) =z|Xo=y).

v
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Therefore Ve (y, z) < Ve(z, 2) + Ve (o} (v, z) by the definition of cycles
Vevizy (¥, ) = 0, therefore Ve (y, 2) < Ve (z, z) and, exchanging ¢ and y, Ve (y, 2) =
Ve (,2). Similarly we have

7(C)
Es(r(C) | Xo=2) = ZEﬁ(Z ,,_u)|X0::c)

u€eC n=0
and
7(C) 7(C)
Eg | D 1(Xn=w)[Xo=2 | =Ep [ Y 1(Xn =u)|Xo=u
n=0 n=0

X Pp(X, @utuy) = vl Xo = ).

Therefore He () is independent of z € C. O
Now we will give some properties of cycles linked with W-graph computations:

Proposition 4.7 (characterisation of cycles in terms of W-graphs). A subset C
of E is a cycle if and only if it is either a one point set or satisfies: for any
yeC,anygearg min V(g), §(C\{y}) CC.

geG(Cuiy})

Proof: For any subset C of E, |C|> 1, any y € C,

xerg{r{ly} ﬁBToo ——ﬁ— log Ps(X:@uyy) # ¥ Xo = 2)

= min min min V(ig)— min V(g)
2€C\{y} 2€C geq,,.(Cu{y}) geG(Cu{y})

= min Vig)— min V(g),
9€G(Cuiy}) g(C\{ygC 9€G(Cu{y})

f li ——l P = Xo = 0 if and only if
therefore zelg{l{ly}ﬂ_:&loo 3 og Ps(X +(Cuiy}) # y|Xo =) > 0if and only i

arg min V(g C{geG(CuU{y}) : g(C\{y})cC}. O
geG(Cu{y})

Proposition 4.8 (leading terms in a C-graph). For any cycle C' € @( ), any
z € C, anyy ¢ C such that V(C,y) < +0c0, any graph § € arg mmgeG Vig),
4(C) c Cu{y}.

Proof: Let us consider the state z € Oy(z) U {z} such that (z,y) € §. Let § €

arg min V(g), then according to the preceding proposition
9eEG(CU{z})

§(C\ {2}) C C, therefore §U {(z,y)} belongs to G,4(C). Thus
V(z,y) + V(@) =V(@Eu{(z v} 2 V@) =V \{(z 9} +V(zy).
This shows that V(§\ {(z,y)}) =arg min V(g), and therefore that
geG(Cu{z})
gC\{zhcc. O
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Proposition 4.9 (local computation of the virtual energy). For any cycle
Ce e(V), any z,y € C;
U(z)-U(y) = min V(9)— min V(g)
geG(Cu{z}) geG(Cu{y})
This shows that the computation of the virtual energy within a cycle up to an
additive constant depends only on the restriction of the rate function V to this
cycle.

Proof: For any graph g € E x E, any subset A C E, let us put g4 = {(u,v) €
g : u € A}. With the notations of the proposition, let g € G({z}), then
gic € G(C U {:L'}), g|5 € G(C) and

V(g) = Vigic) +V(9jz)-

Therefore
min V(g)> min V(g)+ min V(g).
g€G({=}) (9) 2 geG(Cu{z}) (9) geG(C) ()
On the other hand, if § € argmin ¢ @uysy) V(g) and g € G(C), then gU g is
without loop, because §(C) C C, and thus g U § € G({z}), and
in V V() = min V(gUj) > in V(g).
i V(9) + (§) = min V(s 9z min (9)
We have proved that min V(g) + min V = min V and the
p join (9) L (9) emin ) (9)
proposition follows from the fact that

U(z)—U(y) = min V(g)— min V(g). O
() = U(y) emin (9) I (9)

4.5. Iterative construction of cycles and the virtual energy function.
For any subset D C E, let us put U(D) = IIélB Ulz).
T

Proposition 4.10. Let E = UC’i be a partition of E into disjoint cycles.
iel

Assume that it is not trivial, namely that |I| > 2. Let us consider on C; =

{C; | i € I} the graph s of the typical jumps, defined by

s = {(C’,-,C,) |ie ]} U {(Ci,Cj) | B(C,') N C; # 0}

Let 5 = {C; | j € J} be an irreducible and stable component of s, that is a
component of Cr for the equivalence relation

R, = {(C;,Cj) : 4,j € I,C; € O4(Cj) and Cj € O,(C:)}U{(Ci,Cy) : i € I},

such that s(C;) C Cy. There exists at least one such component, because s
induces on C;/R, a graph without loop, which has therefore at least one leaf (or
terminal node). Moreover J is not reduced to one point, because this would mean
that the principal boundary of the would be unique cycle in C; would be empty,
which is impossible.
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Then C = U Cj is a cycle, and Cj, j € J are the mazimal strict subcycles of
JjeJ
C' for the inclusion relation. Moreover, for any i,j € J

U(Ci) + H(C;) = U(Cj) + H(Cj),

H(C) = min V(Cj,y) +max H(C)),

and foranyy ¢ C

V(C,y) =minV(C;,y) - (Join V(Cj, 2).
Remark: This proposition allows to build iteratively all the cycles, starting from
the trivial partition of E into one point sets, computing in the same time the
quantities U(z) — U(C), z € C, H(C) and V(C,y),y ¢ C.
Proof: Let y € C. We will prove that for any § € arg minge ¢ @u{y}) V(9),
gicycc.

Let us assume that y € Cj,. As C; is a component of Cr/R,, it is possible to
extract from s/C; an oriented tree o with root Cj, (we mean by this that a graph
without loop connecting each point of C5 to Cj,). Let g’ € arg ~ min Vig)

ge€G(Cou{y})
and for any j € J\{jo}, let ¢/ € argmin ¢z V(g) be such that ¢7 (C;) C C;U
a(Cj). Such a g’ exists, according to proposition 4.8, because B(C;)Na(C;) # 0.
The graph Uje ;9 is without loop, and therefore belongs to G(C U {y}), thus

Yvigh=v{Ue | >2V@E) =D Ve,

jeJ JjeJ jeJ
This proves that
V(gic;)= min V(g), je€J\{jo}

9€G(Cj)
and
Vi) = 4€G(C5,uia) Vi)
and therefore that
ﬁ(Cjo) = Cjo
and
9(C;) c CjUB(C;),  jeJ\{j}-

Thus §(C) =C.

This shows that C is a cycle. Let us prove now that C; C C' are maximal
among the subcycles of C distinct from C itself.

Assume that for some jo € J and some cycle C' € €(V), C;, C C' C C,
Cj, # C'. As C(V) is a tree (proposition 4.4), there is J' C J such that
C' = U C; and {jo} # J'. From a preceding proposition, for any j € J',

jeJ!
B(Cj) C C', since Cj # C'. Therefore, s(C;,j € J') C {Cj,j € J'}, which
implies that J' = J and therefore that C' = C.
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From the local computation of the virtual energy into cycles, we see that
0(C)~0(C;) = minmin{V(g) : g € GTU{z})
T i

~ minmin{V(g) : g € G(Cu{yh}.

From the preceding computation, for any z € C;

min{V(g) : g € G(CU{z})} = E min{V(g) : g € G(Ck)}
keJ\{i}

+ min{V(g) : g € G(C; U {z})}.

Therefore
Uc)-u(c;) = minmin{V(g) : g € G(C; U {z})}
— minmin{V(g) : g € G(C; U {y})}
+ min{V(g) : g € G(C;)} —min{V(9) : g € G(Ci)}
= H(C;) - H(C)).
Similarly

H(C) = min{V(g) : g € G(C)} ~minmin{V(g) : g € G(CuU{z})}
= Eréig?ei?{min{V(g) i g€ ch,z(éj)}
+ Z min{V (g) : gGG(@k)}}
keJ\{j}
—min{V(g) : 2 €C,g € G(CU{z})}

= gx;lg?‘él}lV(Cj,z) +I;mm{V(g) : g € G(Ck)}

— min{V(g) : g € G(CU{z}),z € C}
= Eré%njnel}l V(Cj,z) — I}lea}’H(Cj).
We have also for any z € C,

V(Cy) = min_ V(g) — min V(g)
9€Gc,y(C) 9€G(C)

= min min_ V(g)+ min V(g)
7 g€Gc;,y(Cy) keg\:{j}geG(Cj)

—mzinmjin( min_ V(g)+ > minV(y))

gGch,z(aj) keJ\{j} 9661

= min V(Cj,y) — min min V(C;j, 2). O
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4.6. Maximal depth and maximal partition of a domain. In this subsec-

tion we will compute the maximal depth H (D) &f maxzep Hp(z), of a domain

D C E in terms of the maximal partition of D defined below:

Definition 4.3. For any domain D C E, we let M(D) be the set of maximal
elements of {C € C(E); C C D} for the inclusion relation. Due to the tree

structure of C(F), this is a partition of D. We call it the maximal partition of
D.

From the graph point of view, the maximal partition has the important fol-
lowing property:

Lemma 4.1. For any domain D ¢ E

(3) min_ V(g) = min_V(g).
9€G(D) Ce_%:(mgec:w) )

Proof. A first remark is that for any g € G(ﬁ)
Vig) = Z V(gic),
CeM(D)

This proves that the left hand side of equation (3) is not smaller than the right
hand side. To prove the reverse inequality, consider the graph s on M(D) U {D}
defined by

(C1,Cy) € s iff C; € M(D) and C; N B(Ch) # 0.

Then according to proposition 4.10, s is without any stable irreducible com-
ponent and connects every cycle of M(D) to D. Therefore it can be spanned by
a disjoint union of oriented trees leading to D, from which we can build as in
the proof of proposition 4.10 a graph § € G(D) such that gilc =min{V(g); g €

G(C)} for any C € M(D), proving that the right hand side is not smaller than
the left hand side of equation (3). a

We are ready now to compute the maximal depth of a domain:
Proposition 4.11. For any domain D G E let us define
H(D) = Igleas(HD(.’L').
Then
H(D) = max{H(C); C € M(D)}.
Proof. Let us put for short for any set of graphs G
V(G) =minV (g).
(G) =minV(g)
By definition we have
H(D) = V(G(D)) - min V(G(D U {y})).
For any fixed y € D, let C € M(D) be such that y € C. Pemarking that
M(D\ {y}) =MD\ C)uM(C\ {v}),
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and using the previous lemma we get that
H(D) = Céﬂﬁé))glgV(G(C)) -V(G(Cu{y})
= max H(C).
CEM(D)

O

4.7. Computing the cycles in term of path elevations. In order to give
a description of cycles and therefore of the behaviour of the trajectories which
recalls what happens in the case when the rate function V derives from an energy
function U, we will introduce a characterisation of the energy based on paths
instead of graphs.
Energy barrier between two points

For any two states z,y € E, let I'; , be the set of paths joining = to y:

Try={(z0,...,2) : 7>0,20 =2,z = y} CUE".
r

For any path v = (zo,...,2,), let
H(y) =  max U(zizy) + V(ziz1, zi),

i=1,...,r

with the convention that when r = 0 we put

H((20)) = U(zo).
The energy barrier between z and y is defined to be
H(z,y) = min H(y).
(¢,y) = min H(y)
Proposition 4.12 (energy barrier of a cycle). For any cycle C € C(E, V), any
y & C, we have

géigff(:c) + V(z,y) =U(C)+ H(C) + V(C,y).

Proof:

;Iéiél U(z) +V(z,y) = U(C)

= min min  V(g) + V(z, —min min V
IGC{gGG@U{x}) ) ( y)} 2€C geG(Cu{z}) (@)

= min_ V(g)—min min V(g)
g€Gc,y(C) 2€C geG(Cu{z})

=V(C,y)+H(C). O

Proposition 4.13 (elevation of paths within a cycle). For any cycle C € C(V),
anyz € C, any y & C, there is a path ¢ € Tz y, ¢ = (¥o,...,ps) such that
i €C,i=0,...,5s—1and H(p) = U(C) + H(C) + V(C,y). For any z,
y € C, there is a path ¢ = (po,...,ps) € Iy such that p; € C,i=0,...,s
and H(p) < U(C) +sup{H(C)|C € €,C c C,C # C} (with the convention
that sup® =0).
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Proof. Let us proceed by induction on the size of cycles. For any z,y € C,
there are Cp,...,Crx € C(V) such that C; C C, C; # C, C; are maximal,
B(Ci-1)NC; #0,i=1,... ,k, z € Cy, y € Cx. This is a consequence of
proposition 4.10 on the iterative construction of cycles. Let y;, ¢ =1,...,k be
a point in B(C;-1) N C; and let yo = z. According to our induction hypothesis
that proposition 4.13 is true for the strict subcycles of C, we can find paths
¢ €Ty, 1 yiri=1,...,k, such that ¢* C C and H(¢') = U(Ci_,) + H(Ci_1).
We can also find ¢**! € Ty, , such that ¢*+! C Cr C C and H(pFt!) <
U(Ck) + H(Cy). The concatenated path ¢, 4 = (¢,...,9*+!) € I,y belongs
to C and has an elevation lower than U(C) 4+ max{H(C) : C € ¢(V),C C
C,C # C}. Let us now consider z € C and z ¢ C, we can find according to
proposition 4.12 a point y such that U(y) + V(y,z) = U(C) + H(C) + V(C, 2).
Let ¢, 4 be constructed as above. The path (¢g,y, 2) is included in C' except its
end point z and has an elevation equal to U(C) + H(C) + V(C, z). Proposition
4.13 being easily seen to be true for one point cycles is therefore proved by
induction. a

Proposition 4.14. The elevation function is symmetric:
H(z,y) = H(y,z), z,y€E.

Proof: Let C; € C(V) be the largest cycle such that x € Cy, y € Cy. Let
Cs € C(V) be the largest cycle such that @ ¢ C3, y € Ca. Let C3 € C(V) be the
smallest cycle such that {z,y} € Cs. The cycles C; and C, are maximal strict
subcycles of Cs, therefore H(z,y) = H(C1)+U (C1) = H(C2)+U(C:) = H(y, z).
O

Proposition 4.15. For any cycle C € C,
H(C) = maxmin H(z,y) - Ulz),

and more generally for any DC E, D# E, D #0,
H(D) = inH —Ulz).
(D) = maxmin H(z,y) - U(z)

Proof. The case of a cycle is a direct consequence of propositions 4.12 and 4.13
. In the case of a general domain D, one has to consider the maximal partition
M(D) of D and apply proposition 4.11, to see that if Co is one of the deepest
cycles in M(D) then H(D) = H(Cy). Taking x in the bottom of Co, and
remarking that

min H(z,y) > min H(z,y),
min H(z,3) > min H(z,1)

we get that 3
= < 1 - .
H(D) = H(Co) < maxminH(z,y) U(z)

Now, for the converse, let = be any point in D and let Cp be the maximal cycle
of M(D) to which z belongs. As seen in the proof of equation (3), there is
a sequence of cycles Cy,...,Cy such that B(C;)NCiz1 #0,i=0,...,r—1
and B(C,) N D # 0. Pemark that U(Ci) + H(C;) is decreasing: indeed, taking
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u € Cj and v € B(C;) NCiy1, we see that U(C:)+ H(C;) = H(u,v) = H(v,u) >
U(Ci+1)+H (Cit1). With the help of proposition 4.13 we build a path v, starting
at ¢, going through this sequence of cycles and ending in D such that

min H(z,y) < H
min #(2,3) < H()

O

Proposition 4.16 (Weak reversibility condition of Hajek and Trouvé).
Let U : E — R be an arbitrary real valued function defined on E. Let the
elevation Hy () of a path v = (20,...,2,) € E™*! with respect to U and V be
defined by

Hy(y) = max U(zi-1)+ V(zi-1,2).

i=1,...,r

Let Hy(z,y) = min Hy(y), 2,y € E, z £ y.
v

Y

Then U(z) =U(z) + rrélg U(y), € E if and only if Hy is symmetric.
]

Proof: See question 10.3 of the appendix for some hints about the proof.
Proposition 4.17. For any z,y € E,

() < (@) + V(z,9).
Consequently for any path v = (yo,-.. , )

H(y) <U(y)+ E V(vk-1,7%)-
k=1
Proof:

Uly) < H(y,z) = H(z,y) <U(x) + V(z,y). O

4.8. Another construction of cycles. For any A € R, let us introduce the
equivalence relation

R={(z,y) €E* |2 £y, H(z,y) < A}U{(z,z) | z € E}.
Pr0p~osition 4.18. The components of E/Ry are the one point sets {z} such
that U(x) > A and the cycles C € C(V) such that
(4) max{U(C)+H(C)|Cee CcC,C#CY<A<U(C)+H(C).

Thus (V) = ] E/R.

)\E]K.;.
Proof: If C € C(V) satisfies equation (4), then C' € E/R, according to previous
propositions. On the other hand, let us compute for any z € E the component of

z in E/Rx. Let us consider the maximal sequence of distinct cycles Co = {z} C
Cy C C3 C -+ C E containing z (C; is the smallest cycle strictly containing
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Ci-1). If H(Cy) + U(Co) > A, then {z} € E/R), otherwise let us consider
io = min{i| H(C;) + U(Ci) > A}, then according to the first part of the proof
S C,'o € E/R)\. O

4.9. Exit time from a subdomain. From Freidlin and Wentzell’s lemma we
deduce that

Proposition 4.19. For any subdomain D C E, D# E, anyz € D, any ¢ > 0,

lim —% log Ps(r(D) > LHDI+) | X = ) = 400,

B—=+o0
and
lmajnf - 5 log(mip Pa(r(D) < ")~ | Xo =y) 2 ¢,
where H(D) = max Hp(y).
yeD

Proof: Applying the Markov property, we see that:

P(r(D) > PHEDITI | X, = z)

Leﬂe/ZJ
< <1T1635(P(T(D~) > ef(H(D)+e/2) | Xo =)
)

le?</?]
< <maxE(r(ﬁ) | Xo = y)e‘ﬁ(H(DHf/?))

yeD
corp-p (5 (272 -1)),

To prove the second equation, let us notice that

and that

+00 _ +00 _ 5 k
kE_OP(T(D) > ke’ | Xo=2) < ; (gleagP(r(D) > e | Xo= y))

= i D)<e’ | Xo=
(mpre@ < 1%=9)

thus

néiBP(T(E) <e” | Xo=y)<ePE(r(D)| Xo=2z)"". O
]

Proposition 4.20. For any cycle C' € C(V), any sufficiently small € > 0, any
zeC,

liminf—%Pp(r(a) < PHO)=) | Xg=g)> e

B—+00 ="
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Proof:
For any z,y € C, v > 0,

P(r(C)< e’ | Xo=z) < P(r(C) < e’ | Xo =y)P(X,cugyy) = ¥ Xo=2)
+P(X; oy # ¥ | Xo=2).
Let

. . 1
€ = x’yglcl',il’;#yp_l:{:loo —E log P(XT(-C—U{y}) # Yy l XO = x)

= min{Ve\{y}(2,2) : z,y€C,z#y,z € C} >0,
then for all € < €y and f large enough

P(r(C) < e’ | Xg = 2) < min P(r(C) < €#7 | Xo = y) + e~P<.
yeC

We end the proof by taking v = H(C)~e¢ and applying the preceding proposition.
a
5. CONVERGENCE TOWARDS EQUILIBRIUM

Proposition 5.1. For any cycle C e C(V), any ¥ > 0 such that
H{teC|Ut)>U(C)}) <y< H(C), anyz,y€ C,

. 1 . .
liminf % log P(X|,sv) = 4,7(0) > € | Xo =) > U(y) ~U(©).
Corollary 5.1.

. 1 ~ ~
lplglﬁgf_EIOgP(U(Xle"’J) #£U(C)| Xo=2)>0

Proof: Let us put N = [e??|. Let A = arg Hélg [7(:0) For any z,y € C,
T

Ps(Xp =y, 7(C) > e | Xo = 2) < Po(r(CUA) > ™ | Xo = z)

+ sup P(Xx=y|Xo=2).
kEN,z€4

Let fi(z) = Ps(Xx =z | Xo = 2)pg(z)~!. We have Z fk(m)pﬁ(x,y)#p(x) =

ey #p ()
fes1(y), and Z pa(z,y) #s (2) =1, therefore
oy 1 (y)
1
max fi(¢) < max fo(z) = 150’

and supP( Xk =y | Xo=2) < #ﬂ(y).
keN po(2)
Proposition 5.2. Let us assume that C € C(V') is such that for some

z € arg Hélg U(z), considering the graph s of the null cost jumps,
T

s={(z,y) € E* : V(z,y) =0},
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the orbit Os(2) is aperiodic. Then for any x,y € C, any v such that
H(C\{z}) <7< H(C),
. 1 — ~ ~
p-lll-:loo ——ﬂ—log Ps(X|evs) =y, 7(C) > " | Xo=2) =U(y) - U(C).
Proof:
Let us consider the Markov chain (Y, )nen on C with transitions

Ps(Yo=y|Yoo1=12)= Ml_i}r:_loo P3(Xp =y| Xn-1 =1, T(E) > M).

The existence of this limit is a consequence of the Perron-Frobenius theorem
applied to the (non stochastic) aperiodic irreducible non negative matrix pg| ¢y -
This theorem says that

Poicxc = P™1 + Romy,

where (m,m;) forms a system of projectors (i.e. m om = mom = 0 and
m + mp = Id), where m; is the projection on the one dimensional vector space
generated by a positive eigenvector, where p > 0 is the spectral radius of P|cxc
and where the spectral radius of R is strictly lower than p. This implies that

o 52(pﬁ|cxc)M1 ~ 1 Ps(r(C) > M | Xo = 2)
M—+o0 8y (P 1oy )Ml Mot Pg(r(C) > M| Xo = y)
exists for any y, z € C and is equal to
6,m1
5y7l‘11.

Therefore as soon as pg(z,y) > 0,

Ps(Xn = 2| Xn-1=2,7(C) > M) _ ps(z,2) Ps(r(C) > M —n|Xo = z)
Ps(Xn =y | Xp-1=2,7(C) > M)  pp(z,y) Ps(r(C) > M —n|Xo =y)
has a limit when M tends to infinity, which proves in turn the existence of the

limit defining the transitions of Y at temperature £.

Now that the definition of Y is justified, let us return to the main stream of
our proof. We have

P(X|eve) = y,7(C) > |7 | Xo = 2) Ps(r(C) > M — ||| Xo = )
= Ps(X|evs) = y, 7(C) > M | Xo = z),
and therefore
Ps(X(evs) = ¥, 7(C) > e | Xo = z)

Pp_(T(a) >M I Xo = .’L‘) ‘
Pp(r(C) > M — ||| Xo = y)

= Pﬁ(X[eyﬂJ = y|T(6) > M, Xo = (l:)

Moreover

Ps(r(C) > M| Xo=2) =

3" Pp(Xeve) = 2,7(C) > € | Xo = ) Py(r(C) > M — [ | | Xo = 2).
zeC
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Let K = M — ||,
Ps(7(C) > K | Xo = 2) > Ps(X, @ugyy) = Y| Xo = 2)Ps(7(C) > K| Xo = y),

therefore
Pg(r(C) > K| Xo = z)

C
Pp(‘r(a'—) > K| Xo=1y)

lim sup sup
B—+00 KeN

—l’:O.

Thus

. Pﬁ(T(a) >M | Xo= .‘l:) ‘
lim sup = -
po+00 ar5ens | Po(r(C) > M — 7] [ Xo = )
- 1 - C V6 =z)—
—ﬁ—lir-fr-loo ;Pﬁ(XLeyﬂJ—Z,T(C)>e IXQ—:C) 1
=0,

and, letting M — +o0,

Ps(Xevo) =y, 7(C) > | Xo=2) _,

I
ﬁ-—:ﬂ-noo P(Yle'yﬂj =y I Yo = 1,‘)

In the same way, we can prove that for any z,y € C,

lim Pa(z,9)

=1.
p-++o0 Pg(Y1 =y| Yo =)

Therefore Y is a Markov chain with rare transitions and rate function Vo x¢o. Ac-
cording to proposition 4.9, the virtual energy of Y is (U(z) — U(C))zec. There-
fore it is enough to prove the proposition in the special case when C' = E. We will
assume in the following of the proof that we are in this case. Let us consider the

family of product Markov chains ((E x BN, (X', X%),en, B® B, Pﬁl ® Pg)p .

ER 4
where P[} and Pﬁ2 have the same transitions as Pg and have the following initial
distributions:

P,BIO(X(})—I = s,
Pio(X3)™" = g,

(here pp is as usual the invariant distribution at inverse temperature g8). It is a
family of Markov chains with rare transitions with rate function

Viz,y) = V(e y') + V(2?, 7).

Moreover H2((E x E)\ {(z,2)}) = H(E \ {#}). Indeed there is ng such that
for any n > ng, there is a path (¢1,...,¢n) such that ¢1 = ¢, = 2z and
V(pi-1,¢i) = 0. For any @ € E there is an infinite path (¥n)nen+ such that
¥, = z and U(¢;) < U(z), (take a path such that V(s;_1,%;) = 0). Moreover,



for any i € N, H(vi,2) < H(z, z), indeed

max(H (vi, z), H(z, z))
max(H (x,;), H(z, z)
max(U(z), H(z, z))

With these two types of paths, it is easy to build in £ x E a path ¢ € T'(g,y) (z,2)
such that
H(y) < (U(z) + H(y, 2)) V H(z, 2)

(Let the first component follow 1 while the second component is led to z via
a path of minimal elevation H(y, z), then let the first component follow a path
of minimum elevation, while the second component follows a path ¢ of suitable
length.) This proves that H%(E x E\{(z,2)}) = H(E \ {z}), because it cannot
obviously be lower.

Now for any y € C, putting N = |&"? |, applying the Markov property at
time 72({(z, z)}), and remarking that X' and X? conditioned by the same initial
condition have the same distribution, we have

Pi@Pi(Xy=y) > P;®Pi((Xy =y) and 7°({(2,2)}) < N)
P[} ® Pﬁz((XI{, =y) and 72({(z,2)}) < N)
> Pi(X{ =v) - P; ® Pi(r*({(z,2)}) > N).

(This argument is equivalent to considering a “coupled” Markov chain where X!
and X? are glued together once they meet.) As

i =S8 o PR ((, ) > M) = oo

we get the desired result. O
Theorem 5.1 (convergence rate). Let us put
H, = H(E\argminD)
Hy, = H(E\{z}), z€argminU,
Hs = H*(ExE)\A),
where the value of Hy is independent from the choice of z € arg Ixiélgﬁ(m) and

where A = {(z,z) : € E}. Foranyy> H,,anyz € E, y€ E,
1 -

liminf ——= Ps(X|evs) = Xo=12z)>Uly).

lim.inf ﬁlog 5(X|evs) =y | Xo=2) > U(y)
For any v > Ha

1 .
ﬁETm—ElogPﬁ(T({z}) >e® | Xg=2)=+400, £ €EE,z € argla;lélgU(x).

Foranyy > Hs, anyz, y€ E

Glim —%bgPﬁ(XLevﬁJ =y | Xo=2)=U(y).
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In general the constants Hy < Hy < Hgz are distinct. However, when the null
cost graph s = {(z,y) € E? | V(z,y) = 0} U A has an aperiodic component in
argmin(j, we have Hy = Hsz. Moreover if a,rgmin(j' 1s a one point set, then
H1 = H2 = H3,

Eventually the following non-convergence results holds: for any v < H,, there
is x € E such that

1 .
lim inf — = log P, ve|) = = ;
lim inf -7 log p(U(X|eve)) =0 | Xo=12) >0
for any v < Hy, any z € arg min U, there is « € E such that
1
lim inf — = log Ps(7({}) < e | Xo = z) > 0,
Bo+o0 B -
for any v < Hs, any z € argmin [j, there is ¢ € E such that
. 1
llmsup—B log Pg(X|evs) = 2| Xo =) > 0.

B+

Remark 5.1. The second and the third critical depths are distinct when the chain
is “almost” periodic on the set on ground states, that is when it behaves as a
periodic chain on a time scale larger than ef/2#. The non convergence results
show that Hy, Hs and Hgs are sharp.

Proof. The first convergence result is a consequence of proposition 5.1, the sec-
ond one is a consequence of proposition 4.19, and the third one is proved exactly
as the end of the proof of proposition 5.2. The first and second non convergence
results are easy corollaries of proposition 4.20. The third non convergence result
is proved in the following way: take (z,y) € E? in the bottom of the deepest
cycle of E x E\ {(z,2); z € E}. By definition, the depth of this cycle is the
third critical depth Hg, therefore for any v < Hs, any z € arg min U ,
1
im0 Pa(r*({(2,2)}) < €7 | (X%, X7)o = (2,4) > 0.
But

min{Ps(X|evs) = 2| Xo = z), Ps(X|evs) = 2| Xo = y)}
levA]
< P (XL, X)) = (2,2) [ (X1, X2)o = (2, 9))

<\Ps(r({(,2)}) < P | (X1, X2)o = (,1)).

This proves that either

. 1
limsup —— log Pg(X|evs) = 2| Xo=12) >0
B—=+0o0 /3

or

. 1
limsup —— log P (X |evs) = 2| Xo=y) > 0
B—+00 :6
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Corollary 5.2~(choice of 3 as a function of N). For any n > 0 and any v >
H(E\ argminU) = H;, we have

lim inf — —
No+too  logN

10g Pliog Ny (T(Xn) > 1| Xo=z) > 1

(The probability of failure of the algorithm with N steps has an upper bound of

n/Hy
order (F) .) On the contrary for any v < Hy, there is ¢ € E such that

. 1 ~
Nm inf — 1o 108 Plog 5 (U(Xn) < | Xo =2) >0,

(the probability of failure consequently tends to one.)

Remarks:

o The inverse temperature parameter § has to be chosen as a function of the
number of iterations N.

e To get an approximate solution y such that U(y) < n with probability
1 — ¢, the number of iterations needed is of order ¢~ H1/7,

e To get an exact solution with probability 1 — ¢, it is necessary to set in
the previous estimate the value of the constant 7 to 7 = min{U(z) | z €
E,U (2) > 0}, which may be very close to zero, in which case the num-
ber of iterations needed is very large. Therefore, in some situations, the
Metropolis algorithm is very slow and speed-up methods are required.

e Another weakness of the Metropolis algorithm is that it is as a rule impos-
sible to compute explicitly the value of H;, whereas this value is needed
to set the temperature parameter in an efficient way.

6. GEOMETRIC INEQUALITIES FOR EIGENVALUES OF MARKOV CHAINS

6.1. Reversible Markov chains.

6.1.1. Spectral gap estimates.

Theorem 6.1. Let E be a finite set and (EN, (Xn)nen, B, P) be the canonical
realization of a Markov chain with irreducible and reversible transition matriz p
and invariant probability distribution . Let us define the operator p : L%(m) —

L3(m) by pf(z) = Z p(z,y)f(y). This operator is self-adjoint, therefore it can
yeE

be put in diagonal form and its eigenvalues Ao > - -+ > Ap—1 (where m = |E|),

counted with their multiplicities, satisfy:

1=X>A1 > 22> -2 A1 2> -1
For any probability distribution p € M‘l" (E), any integer n € N,

lup™ = 7ll2,x < (max(Ar, =Am-1))" |1 = 7l|2,x-
Moreover, for any subset D of E, any n € N,
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P(Xn€D | Xo=2)=m(D)
< <-1L(x)> min (W(D)llz, %) (max(A1, ~Am_1))".

m(z)

Proof: For any functions f,g € L?(n),

(f,p9) = Y. f(@)p(z,y)9(y)r(z)

z€E,yeE

> ple,y)f(v)g(z)m().

z€E,yeE

(pf.9)

As m(z)p(z, y) = 7(y)p(y, ¢), we have that (f, pg) = (pf, g). The strict inequality
between B9 > 1 is part of the Perron-Frobenius theorem which we will not prove
here. We have A,—1 = —1 when p is 2-periodic.

The matrix p being irreducible, its invariant measure 7 is everywhere strictly
positive. Therefore we can define a representation

i: M} (E) — L*(m)

by i(p) = j—i and put on M} (E) the corresponding Euclidean norm |||z, =

||i(12)||L2(xy- The adjoint operator p =i~ topoi: M} (E) — M{ (E) is nothing

but the right action of p: p(u)(y) = (up)(y) = Zu(x)p(m,y). Note that it is
xr

self adjoint for || ||2,», with the same spectrum as p.
Let p = Iil>af(|/\kl = max(A1, —Am-1). We have ||up” —7||2,x = ||(u—7)p"||2,x-

d
(H—”a”)lnz/(ﬁ— )dﬂ':O,

therefore p — 7 is in the space generated by the eigenvectors of p correspond-

Moreover

ing to the eigenvalues A1,...,Am_1. Let v1,...,Vpn-1 be some choice of these
eigenvectors
m—1
(=7 = D oww,
k=1
m—1
(p—mp" = QN V)
k=1
m-—1
N =mp 3. = D lowl el lvell3 «
k=1

IA

m-—1
P Y e Pllvell3 «
k=1

= Pzn”li - WH%,N‘



100

Moreover

|P(X, €D | Xo =z) —n(D)| =

[, ete) =1yt

P(X, = Xo = 0" .
where f,(y) = ( ﬂ_y(yl) 0=2) = :(y()y) Applying the Cauchy-Schwartz
inequality, we obtain that

1/2
|P(X, € D | Xo=2)—7(D)] < </D(f,,(y) - 1)2d7r(y)> m(D)Y/?
< 16:p" = 7ll2, (D)2
< P8z = wllam(D)2

Moreover

In the same way

P €D Xo=2)-nD) < [ ()~ 1dr)
Y,fn(y)>1
1
< 5 [ 160 - 1ldn()
< loer = 7l

1
< 3= lar. O

6.1.2. Poincaré inequalities. Let us call a “routing function” any function « :
400

E? — U E™ such that y(z,y) = (20 = z,21,...,2r(zy) = ¥) is a path (of

n=2
arbitrary length r(z,y)) going from z to y, with the supplementary condition
that 7(z,y) be odd when # = y. Let I' be the set of all routing functions.
For any Markov matrix p, irreducible and reversible with respect to its invari-
ant probability distribution 7, we define the length of (zo,. .., z.) with respect
to p by

-
|(ZO) s ’ZT)IP = Z (W(Zi—l)P(Zz'—l, zi))_l )
i=1
with the convention that 0~ = +oc0.
Let us introduce the constants

P TN Goepa > by
(z,y) € E\ A,
(zrt) € "/(:"'ry)

L= min max z [v(z, z)|pm(x).

€l (z,t)eE?
€T (2,t) s CE,

(z,t) € v(z,x)
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Theorem 6.2. With the previous notations, the spectrum Ao =1> A3 > --- >
Am-1 > —1 of p satisfies

M<l-t
K
Amoi<1- 2,
L
Proof:
Let us write A; as
M= sup 8PP
peLi(m), (P¢)n
Ex(p) =0

this gives

1— Al — inf 8(()07()0)
¢,Ex()=0 (£, P)n

)

where

Ep,p) = (PP —PP)n
= Y o@)(¢(z) - p(z, ¥)e(y)) ()
z,yeE
= > o) (e@)p(z,y) - p(z,y)ey))r(z).
z,yEE

Let us put 7(z)p(z,y) = Q(z,y). We have

> w(@)(p(z) — ¢(1)Q(=,v)

z,yeE

= 3 Y (66) —v)*Qz,y)

z,yeE

E(p,9)

(Remark: The quadratic form & is called the Dirichlet form of p.)
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When Er(p) = 0, we have for any routing function y € T

(po)r = 5 D, (e(®) = p) n(2)r(y)

z,y€E2\A

DY ( > so(t)—so(z)> r(z)r(y)

r,yEEN\A \(z,t)€v(x,y)

IA

1 1

5 Z 7!'(37)7['(:'/) ( Z (Z,t))
(z,y)€E2\A (2,t)€v(2,y)

X > Q(z,1) (p(t) — 0(2))?
(z,t)€v(z,y),2#¢

% 3o Q) (plt) - e(2))?

(z,t)eE2\A

x oy, w@r@hi )l
(z,y) € E*\ 4,
(2,t) € v(z,y)
E(p,p) max Z m(@)m(y) v (2, y)lp-
(z,t)€E*\A 2
(z,y) € E°\ A,
(2,t) € v(z,9)

IN

IA

This being true for any choice of ¥ € I', we have

(sol, ®)r < kE(p, p),

1
whence 1 — Ay > =

Let us come now to the second inequality. We have

1+ M., = inf L‘EM
pel2(r) (@, @)n

Moreover

(ere+@)e = Y. e@)(p(e,y)e() +¢(2)m(2)
(z,y)EE

= > @) (p) +¢)Q(z,y)
(z.y)€EE

= -;— Z (go(z)+so(y))2Q("3:y)'

(z,y)EE



(¢ o)e = > ol (2(—1)‘ (p(a) +so(2i+1>>)

WEE,'Y(W,Z'):(ZO,-U,Zr) i=0

1. r—1
< 1 Z 7(z) (Z (p(z) + 90(2i+1))2 Q(zi, Zi+1))
z€E y(z,x)=(20,... ,2r) i=0
(Z Q Zn zz+1 )
< g Z (@), Y, (p(2) + () Qz,t)
:cEE (z,t)E'y(x,:c)
1
< (pppte)ey max > w(@)y(z2))
(z,t)€ z€E,(2,t)ey(z,x)
Thus .
(@ 0)x < 5%, PP + @)r,
and 1+ Mg > -f— 0.

6.2. Application to the generalised Metropolis algorithm.
6.2.1. Reversible case.

Theorem 6.3. Let us consider a family (EN, (Xp)nen, B, Pg)per, of homoge-
neous Markov chains with rate function V and transition matriz pg. Let us
assume that V is irreducible and that pg is reversible with respect to its invari-
ant probability distribution pg. Let us assume moreover that for some strictly
positive constants fo,a,b,c,d, for any B> By, any z, y € E,

ae™PUE) < pg(a) < bemPUE)
ce_ﬂv(xyy) S (x y)'

Let us assume that V(z,z) = 0, fo rany x € E. Let ¥ € T be a routing
function such that for any (z,y) € E?\ A

H(y(z,y)) = H(=,y),
and let
L(y) = X A I7(z,y)l,  (nb. of edges)
D =  max [y e€B\A] () €v(z ).

Then the eigenvalues of pg, Ao = 1> Ay > -+ > Ajm1 > —1, satisfy, for any
B > Po,
ac
A — ¢ PHa
' b2 L(7)D(7)
—Am—l S 1-2ec.

IA
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Consequently for any > By, any D C E, anyz € E,
|P5(Xn € D | Xo=2) —pp(D)] < a= 2PV (uy(D))'/

x (1 — min <2c, %))n.

Proof: The upper bound for A; is a consequence of the expression for k. To get
the lower bound for Ap,_1, consider the routing function y(z, z) = (z, ).

6.2.2. The non-reversible case. Let us consider afamily (EN, (Xn)nen, B, Ps)sek,
of Markov chains with rare transitions with irreducible rate function V' and tran-
sition matrix pg.

Given some real number A €)0, 1(, let us consider the Markov matrices

gp(,y) = M(e,y)+(1-Nps(z,9)

;qﬁ( ) )q,@(y) )ﬂﬁ(z)'

.q_ﬁ(x’y)

The matrices gg and g4 are irreducible and g is their common invariant distri-
bution. Moreover gy 1s reversible, it is a non negative self-adjoint operator in
Lﬁ g since it is the product of gz and of its adjoint. Let pg be the spectral gap
of qﬁ ’

ps =1 —max{[¢||€ € Sp(3p),€ # 1}

=1—max{¢|€ € Sp(gs), & # 1}
Theorem 6.4. We have

limsup— = log ps < Ha = H(E\ {z})
B—+00 :3

for any z € argmin[j. Moreover for any D C E, anyx € E, any n €N,

1— ps(z 12 n
Po(r(D) < n | Xo =) 2 pa(D) = (L) Ty 0131 — oyt
Proof. Let (EN, (Xn)nen, B, Qp)ser, be the canonical realization of a family of
Markov chains with transition matrix gg (and some irrelevant arbitrary initial
distribution). We have

Q(Xn€D|Xo=2) = ) (k> Ak (1= X)¥Pg(Xy € D | Xo =2)
k=0
max Pp(Xk €D| Xo=12)
k=0,...,n

IA

IN

Ps(r(D) <n| Xo=1z).
Moreover

|Q5(Xn € D | Xo = z) — pp(D)| < up(D)/116245 — pplla,us-
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For any probability distribution v

2 _
L9 _ ((V—up)qrp (v—u;a))
- )
[2%¢] 2,18 Hg Hp 17}
2
_—_ (1= pp),
He 2,up

therefore

1— r 1/2
Pa(r(D) S| Xo = 2) 2 np(D) - (HEAE) T up(D) 501 = o)
Let V be the rate function corresponding to (g5)per,. It is easy to check
that for any z, y € E, .
V(z,y) <V(z,v),
thus Ho(V) = rr}EachV(x,y) -U(z) < meaé(Hv(x,y) — U(z) = Hq, where y is

an arbitrary point in arg minU. Thus, considering a routing function satisfying
Hy(y(,y)) = Hy(x,y), we see that

. 1
limsup —— log pg < Ha.
B—+00 ﬂ

Remark 6.1. We have in fact more precisely that

. 1
lim _eprs _ H,.
B—4o0
This can be seen from [29] where the reader will find an alternative approach to
the non reversible case, or from the fact that a lower limit would contradict the
optimal rate of convergence of ¢j towards its invariant distribution proved in the-

orem 5.1. Another interesting reference for the “multiplicative reversiblization”
method is [15].

Remark 6.2. Theorem 6.4 can be used as an alternative tool to prove conver-
gence results, such as proposition 5.1 and 5.2. Indeed these propositions rely on
upper bounds for the tail distribution of the exit times from domains. As an
illustration, let us see how we can prove the first bound in proposition 4.19 from
theorem 6.4.

Let D ¢ E be a domain and 7(D) its exit time. The estimate we are looking
for does not depend on the behaviour of the Markov chain outside from D, so
we can modify the state space, creating a unique outer state A standing for D.
Let E' = D U {A} be the new state space. Let the modified transition matrix
pj be

ps(@,y) if (z,y) € D?,
, pr(a:,z) ife € Dyy=A,
pﬁ = z¢D

I_ll)TeXp(_'BHA) ifz=A,ye D.
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By taking Ha > H(D), we get a modified virtual energy U’ such that U'(A)=0
and

Ha-H(D)<U'(z) < Ha, z€D.

Indeed
Ha - U'(2) = H'(A,2) - U (a)
=H'(z,A) - U'()
< H(D),
and

U'(z) < H'(z,A) = Ha

Moreover the critical depths of the modified landscape are H{ = H) = H} =
H(D). We see immediately that we have

li (A) =
Sim pp(A) =1,
. ; _
ﬁHToo () exp((Ha + €)8) = +o0, z € De>0,
. / _
ﬂl:r-}l:loo ps exp((H(D) + €)f) = +oo, e>0.

Plugging this altogether into theorem 6.4 applied to {A} gives that for any € > 0

ol max Py (7 7(D) > exp(B(H(D) +¢)) | Xo = ) = 0,

(taking Ha = H(D) + €/2). This can be immediately strengthened to

pBTw —% logmaxPﬁ( 7(D) > exp(B(H(D) +¢€)) | Xo = z) = +oo
using the Markov property as in the beginning of the proof of proposition 4.19.

We have sketched the link between theorem 6.4 and proposition 4.19 to show
that semigroup methods can be extended to the same generality as the Frei-
dlin and Wentzell approach, however the reader should keep in mind that their
main interest is to provide more explicit bounds and constants when stronger
assumptions are made on the transition matrix ps than what is assumed in these
notes.

7. SIMULATED ANNEALING ALGORITHMS

7.1. Description. Let us consider a finite state space E and a family (pg)ser.
of Markov matrices with rare transitions and irreducible rate function V.

For any increasing inverse temperature sequence (Bp)nen (of real positive
numbers), we can construct a non-homogeneous Markov chain
(BN, (Xn)nen, B, Pg,),en-) With transitions

P(ﬁ.)(Xn:yIXn—lzx):pﬁn(x)y); :c,yEE.

This chain describes the generalised simulated annealing algorithm. It is used
to minimise the virtual energy U corresponding to (E, V).
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7.2. Convergence results. These results make use of two important constants
of (E,V). We have already used the first, it is the first critical depth

Hy=max{H(C) | C € €C(V),U(C) > 0}
The second will be called the difficulty of (E, V'), and is defined to be
H(C)

7(0) | C eCV),U(C)>0}.

D = max{

Theorem 7.1. With the preceding hypotheses and notations, for any bounds H
and D such that H > Hy, and 0 < D < D, for any n such that 0 < n < H/D,
any integer r > 0, the triangular sequence of inverse temperatures

|
ﬂN———%log(E)(H)r N , 1<n<N,

" r) \Dn

satisfies for any x € E

1 . 1 (Dy\Y"
}\}rﬂilg_logN log Por)(U(Xw) 21| Xo=2) 2 5 <*ﬁ“) -

Remarks:

e For r large, the order of magnitude of the upper bound for
Pny(U(Xn) > 1| Xo = z) is close to N~-YD_ More precisely, for any

€>0,
log (H/(Dn))
any r > Tog(L 4 ¢) ,any z € E,
. 1 - _1
Nmint gy P 000 211 Xo =2) > (s

The number of iterations needed to bring down the probability of failure

to a given order of magnitude is therefore independent of the precision

7 > 0. The upper bound for the probability of failure is at best of order

N~=YDP_ QOne can show that this is the best one can achieve using non-
decreasing inverse temperature sequences (see [6, 31, 33]).

e The choice of parameters is robust: it is not necessary to know the exact

value of D to choose the values of the parameters. We get a probability

1 (n2)""
. IND\H . .
of failure of order i uniformly for any rate function V

such that H > Hy(E,V) and D < D(E,V). This is not the case with the
Metropolis algorithm in which the choice of 3 requires a precise knowledge
of H1(V) (namely the proved exponent of convergence of simulated an-

. 1 /nD Lr . . . 1
nealing D (f) is uniformly close to the optimal exponent D when

1/r
(—F—) is close to one, which can be obtained by taking a large value for
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7, even when the gaps H — H; and D — D are large, whereas the exponent

of convergence of the Metropolis algorithm ! s close to optimal only when
v

5 -

1
o Triangular sequences of inverse temperatures are absolutely needed: one

can show that for any infinite (unique) non-decreasing temperature se-
quence (3,)

Lis small.)

. 1 ~ i
min lim sup — log P y(U(Xn)>n| Xo=2) < ———.
(See [5].) When a non triangular sequence is used, the convergence speed
is in first approximation of the same order as for the Metropolis algo-
rithm. This means that triangular sequences are crucial to get a significa-
tive speed-up with respect to the Metropolis algorithm.

Proof:
Let us put, to simplify notations,

==\ k/r
1 N /(H N
7’6 IBTB H log r (Q?]) ) r < n S (k + 1) r

Let us also put Pgvy = Py and assume that N/r € N (the modifications needed

to handle the general case are left to the reader).
Let £ > 0 be fixed and let

7 (AT
"k:m<2_n> , k=0,...,7r—1.
Ao = 4o

{)\k - %(%)—k/r, k=1,...,r—1.

Let us consider the events

. N N
Be = {U(Xa)+V(Xa, Xnp1) < k= <n < (k+1)—),
Ay = Bkn{U(X(k+1)N/r)<nk}'
We have
— N
epo"/(I,V = —,
r
1\7} N
exp((1+€)(1+5) Ak‘nﬁv) = o k>0,
and
1 D
1 =—=n<n.
Nr—1 £+1D"7_"7
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Therefore
Py(U(Xn) >0 | Xo=2) < Pn(U(XN)> 71| Xo=2)
r—1
< 1-Py([) Ak | Xo =2)
k=0
r—1 _ k-1
< ZPN(Akﬂ mAz | Xo = ).
k=0 =0
Moreover
k-1 k-1
PN(Akﬂ ﬂ AllX() I:C) SPN(Bkﬂ m AllX() ::l:)
=0 1=0

k-1

+PN((&(X(k+1)N/r) > nk) n n A; N By |X0 = ar:)
1=0

Let us remark first that for any cycle C such that U(C) > 0 and H(C)+U(C) <
A we have

H(C) < (1+ %)_lxk.

For any z € E such that U(z) < mk_1, let us consider the smallest cycle C, €
C(V) containing z such that U(C;)+ H(C,) > . We have U(C;) = 0. Indeed,
if we had U(C,) > 0, we would have also U(C,) + H(C;) < U(z)(1+ D) <
nk—-1(1 + D) = Ak, which is a contradiction.

From the preceding remarks, we deduce that

1 -1
Hy(C:,Vic,xe,) < (1+ -5) Ak

Indeed any cycle C C C; such that C # C, and U(C) > 0 satisfies
-1
H(C)< (1 + é) Ak, and

Hi(C.,Vic.xe.) = max{H(C): CCC,,CeCV),U(C)>0}
= H(C: \arg min U(y)).
Let us remark now that

P(Xk4+1)N/r =Y, Be | Xinyr = 2)
N N
< P(X(k41)Njr =Y, Xn € Cz,k7 <n<(k+ 1)7 | Xknyr = 2).
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Let us consider on C, the Markov chain (Y, ),en with transitions
P(Yp, =y|Ynoo1 = 2) = ¢q(z,y) defined by

p‘yi"(z;y) lf:L'?éyGCz,
g(z,y) =< 1- Z g(z,w) otherwise.
we(C:\{z})

(We obtain this new chain by reflecting (X, )nen on the boundary of C,.)
As for any z,y € C;, p.yiz(x,y) < g(z,y), we have

N N
PN(X(k+1)N/r = y;Xn, (S Cz,k';‘ <n S (k+ 1)7 IXkN/r = z)
< P(Yn/r =ylYo=2).

Applying to Y the theorem on the convergence speed of the Metropolis algo-
rithm, we see that for any € > 0, there is Ny such that for any N > Np,

k-1
PN ((Xesnyvyr =9) N (1) A0 By | Xo =) < exp (—'nﬁV(U(y) - f)) :
=0
We have now to find an upper bound for
k-l
Py(Bin () Al Xo = 2).

1=0

For any z € E such that U(z) < nx_1, we have

(k+1)N/r
PN(—B—k |chN/r = Z) S Z PN(U(Xn—l) +V(Xn—-1>Xn) > Ak |XkN/r: Z)
n=kN/r+1
= Z Py(Xn-1=u| Xgnyr = Z)Pq,f'(u,”)
kN/r<n<(k+1)N/r,
} (u,v)GEz,
U(u)+V(u,v)> i
N (U
< o ( )p'y}:’(u) ’U)
kN/r<n<(k+1)N/r, Hapy (2)
: (u,v)EE?,
U(u)+V (u,v)> i
N N T
< e (- - 0(2) - 9),
r
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for any € > 0 and N large enough. Thus for any ¢ > 0, for N large enough,

k-1
Py(Ben (Al Xo=2) = > Pn(Bk|Xenjr =2)
I=0 310(2)<T/k—1

k-2
x Py ((Xinyr = 2)0 [ A0 Byo1 | Xo = 2)
=0
N -
> Sew (A -T()-9)

2,U(2)<nk-1

xexp (<911 (0(2) - o))

IA

IN

N
— exp (=78 Ak — k=1 —€))

x exp (—7i_1 (k-1 — 2¢)) -
Therefore, for any € > 0, there is Ng such that, for any N > Ny,

k-1
P(An () Al Xo = 2)
=0

N
< —exp (=% = meo) sk = me-1mels + e +v1))

+exp (=(m — ) -
Coming back to the definitions, we see that

N\ 1 1 /Dp\'"
N =
e = log(r)(1+£)D(F) ’

1 _ N
<1+5> (1+¢) 110%;

e ()"

MV + -1 (B =)

N—————
5}
o
S| =

N € N
< — —.
RIS nD log -
Thus
1 /gD\Y" 2
k= p\ A+ (B (%) _5) +i5
P(AkﬂﬂAleO::c) S <_1°—) =

=0
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Letting & and € tend to zero, we get eventually that

limint - log Py(F(Xx) > 1| X0 =) > + (21}
N—=+400 logN 8N N)Z0 0-—75_5 Tﬁ— )

For more precise computations under the stronger hypothesis that for some
constant a > 0

a”le PVEY) < py(a,y) < aePVEY),
we refer to [11].

8. THE ENERGY TRANSFORMATION ALGORITHM

8.1. The energy transformation method. The purpose of this algorithm is
to minimise a function U : E — R defined on a finite set E, using to explore
the states of £ an irreducible Markov matrix ¢ : E x E — [0, 1] with a fixed
symmetric support. The method is to use a rate function of the form

V(z,y) = (FolU(y) — FoU(z))*, q(z,y) >0,
where F : R — RU {—o00} is a suitable increasing function.

8.2. Convergence result for a single transformation.

Proposition 8.1. Let ¢ : E x E — [0,1] be an irreducible Markov matriz
with symmetric support. Let (EV, (Xn)nen, B, Pp,n)peRy,nery, be the canonical
realization of a family of Markov chains with transitions

Pon(@,y) = 4(o,9)exp (=B (F o UQ) = FyoU@)*), z#y,

where Fy(u) = log(u + 1), where n+ Unin > 0.
Let us introduce the two rate functions:
_[ U@ -U@)*, psalz.y) >0,
Viz,y) = { +00 otherwise
_ [ (FyoU(y) = FpoU(z))*, ppn(z,y) >0

Wy (2,y) = { +00 otherwise.
Then W, is the rate function describing the rare transitions of the sub-family
(Pp,n)per,, and for any > —Umin, p >0, € > 0 and any z € E,

1

im inf — XnN) = Umin > in) | Xo =) >

lim inf logNlogPﬁN,n,n(U( N)—U _p(n+Umm)I(o ;c)_
log(1+ p -1
14¢)77,

log(1+D<n+Umm))( )
with
By = log N
M1 (T4 ) 1og(1 + Dy’
Hy(C)
o« = o eV,UC >Umin;
D maX{U(C)_Umeral € C(V),U(C) }

where Hy (C) is the depth of C' with respect to the rate function V, induced by
U.
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Remark: If it is known in advance that a < Upin < b, it is possible to take
F(u) = log(« — a). This ensures a probability of failure bounded by

log!l-*-p! -1
1 log ‘+D(Umin_a) (1+E)

N
p(b — a). The interesting thing is that the exponent

log(1+7)  _ (1, g log (1+ 52;)
= -} e)
log(1 + D(U pin-a)) 10g (1 + D(Upin-a))
convergence speed depends on the precision (b — a) with which Upin is known
in advance, and that, for a fixed value of §, o tends to +0o0 when the precision
b — a tends to 0.
Proof:

As F), is increasing, it is easy to see that C(V) = C€(W,). In the case when
Hy(V) = Hi(W,) = 0, there are no local minimum, D, v,,,,) = 0, and the
proposition is true with the convention that 1/0 = 400, since the convergence of
the probability of error to zero is in this case easily seen to be exponential and
not polynomial in N. Therefore we will assume in this proof that Hi(W,) > 0.
For any cycle C' € (V) = C(W,) such that U(C) > Unin,

when failure means U(Xy) > Unin + 6 with § =

a=(1+¢7!

describing the

Hw,(C) = F(U(C)+ Hv(C)) - F(U(C))
Hy(C) )
= 1 I+ —
°g< IO+
S log(]' + D(n+Umm))’
Moreover
F,,(p(n + Umin) + Umin) - Fﬂ(Umin) = lOg(l + P),
and exp (B, Hi(W;)(1+¢€) < N,
therefore
lim inf — log Pgy 0 (U(XN) = Umin > p(7 + Umin) | Xo = )

N—+o00 ﬁNﬂI
> log(1 + p). O

In the following paragraph, we will use the energy transformation method re-
peatedly to improve a rough initial lower bound for Upyy .

8.3. The Iterated Energy Transformation algorithm.

Theorem 8.1. Let v < Unin be a lower bound for Uy, which is assumed to be
known beforehand. Let 19 > 0 be a non negative parameter, and let us consider
the (non-Markovian) stochastic process (EV, (Xn)n=1,... N, B, PN) with transi-
tions

PN(Xn = yl(XQ) L) ,Xn—l) = (:BOa oo ;a’n—-l)) = pﬁN,Tk (wn—lay)’
kg <n<k+)

]
r
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where
By = log(N/r)
YT U+ e)log(l+ Dy)
1 .
Ty = Tg—1— (H—/J)(Tk_l + U(ka/r)) + 7o,
To = No—7,

and where r is the number of steps of the algorithm. Then for any x € E

}\}glfg_logN
r—1
log Pnv | U(XN) — Umin > p (%) (Umin = + n0) + mop(1 + p) | Xo = iv)

log(1 + p)
=~ (14¢€)log(1+ Dy,)’

Remarks:

e The probability of failure can be reduced to order N¢ with & arbitrarily
large by increasing p and r and decreasing 79. A more precise study of the
algorithm (see [7]) would allow us to choose r and p as functions of N and
to get a convergence speed better than polynomial.

e The LLE.T. algorithm is well suited when D is large and |E| is moderate.
In order to fight against the number of states in E, it is possible to use an
energy transform of the form au + #log(u + 7).

e The energy transformation method can also be used for the simulated
annealing algorithm: any concave increasing energy transformation will
decrease the difficulty (see [2]).

Proof: Let us introduce the events

Ax = {U(X(k+1)N/r) — Umin < (Tk + Umin)p}'

We have
PN(U(XN) 2 Unin + p(Umin + Tr—l) |X0 = CIZ) = PN(ZT—]. IXO)
r—1
< P[4 Xo==2
k=0
r—1 k-1
< PN(AkﬂﬂAllX():x)
k=0 1=0
r—1 k-1
< PN(Ak|Xg——'J), ﬂA[)
k=0 =0

When ()25 4; holds,
U(Xknyr) + -1 < (Umin + -1)(p + 1),
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therefore Unin + 7 > no and, applying the previous proposition,

lim inf — — b4P(Z|X-x?ﬁA)> log(1 + p)
Note TogN o VIR TR S (T g log(1+ Dy’

thus

1
lim inf—-ﬁ log PN(U(XN) > Unin + p(Umin + T,-_1) IXO = :c)

N340

log(1 + p)
= (1+¢€)log(l+ Dy,

Moreover

Tk + Umin S (Tk—l + Umin) + no

_r_
14p

k-1 i k
(-2 p _
= (75) + () oo

IN

whence
r—1
(Tr—l +Umin) < 170(1+p)+ (ﬁ) (Umin +770_7)- o

9. A GENERAL REMARK ABOUT THE INTEREST OF REPEATED OPTIMISATION
SCHEMES

All the algorithms we have encountered in these notes have a probability of
failure bounded by €(N), where N is their number of iterations and where
limy 400 N~ tloge(N) = 0. Due to this slow convergence speed, these al-
gorithms should be used repeatedly. Indeed performing N/ M repetitions of
the algorithm with M iterations, where M € argminyen M ~!loge(M), and
keeping in the end the best solution among the N/M computed solutions,
gives a probability of failure bounded from above by &V with ¢ = e(M ) M
(when N/M € N). The fact that limps 400 M~ *loge(M) = O ensures that
argminyren M~ 1loge(M) is not void and is bounded. See [2] and [7, 10] for
more details.

10. PROBLEM

The different questions are independent. The integer part of r is noted |r| =
max{n € Z | n<r}.

10.1. Question 1. Let us consider the state space £ = {1,2,3,4,5} and the
rate function V : E x E — Ry U {400} defined by the following matrix

01 3 0 2
8 0 2 2 3
9 5 0 7 4
0 2 400 0 +4o0
8 5 4 11 0
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(for instance V' (3,4) =7.)

1.1. Compute the virtual energy of each state and construct all the cycles by
induction.

1.2. Compute H1(V), Ho(V) et H3(V).
1.8. Let us consider a family (EV, (X, )nen, B, Pg) ek, of homogeneous Markov
chains with rare transitions with rate function V. For any subset D of E, we

put 7(D) = inf{n € N | X,, € D}. Compute

. 1
lim ——ﬂ—log Ps(X ;{2,351 =3 | Xo=4),

B—++o00
and
. 1
Llm 3 log Ep(7({2,5}) | Xo =3).

10.2. Question 2. Let us consider a family (EV, (X, )nen, B, Pg)per.. of homo-
geneous Markov chains with rare transitions defined on a finite state space F,
with an irreducible rate function V : E x E — R4 U {+o0}. Let U be its virtual
energy.

Let us assume that for some real positive constants a and b and for any

(z,y) € E?

aexp(—,BV(:L‘, y)) < pﬁ(m’y) < bexp(——ﬂV(:c,y)),

where pg : E x E — [0,1] is the transition matrix of the chain Ps: For any
neN,n>0,

pp(z,y) = Ps(Xn =y | Xn-1=1).

2.1. Show that there is a positive real constant ¢ such that for any subset D of
E,D#E,D#@,anyz € E\D, any n € N, any # € Ry,

Pg(r(D) >n | Xo =) <exp (_ lcne-ﬁH(E\D)J) ’
where 7(D) is the first hitting time of D:
7(D) = inf{n € N| X, € D}.

2.2. Deduce from this that there is a positive real constant d such that for any
real positive n € Ry, any ¢ € E, any § € Ry,

Ps(U(X,)>n| Xo=z) <exp (— l%e_ﬁH‘(V)J) +de P,

2.3. Using the preceding inequalities, state a convergence theorem concerning
Pg(U(Xn(py > n | Xo = z) for a suitable function N ().
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10.3. Question 3: Weak reversibility condition of Hajek and Trouvé.
On a finite state space E, let us consider an irreducible rate function V : ExE —
R4 U {+00} and a real valued function U : E — R. Let us define the elevation
Hy(y) of a path ¥ = (20, - -, 2,) € E™t! with respect to U by the formula

Hy(y) = max U(zi-1)+ V(zi-1,2).

For any (z,y) € E?, let T, , be the set of paths joining z to y:

+o0
I‘x,y = U{(ZO)"' :Zr) € Er+l | 20 =2,2, = y},
r=1

Let us define the minimum elevation between two states ¢ € E and y € E by
Hy(z,y) = min{Hy(7) | ¥ € Toy}.

3.1. Let us assume that the function Hy(z,y) is symmetric. Namely, let us
assume that for any (z,y) € E?

HU(:r,y) = HU(y, IL‘).
(This is a “weak reversibility condition”, due to Hajek in the case when pg(z,y) =
q(z,y) exp(—B(U(y) — U(z))4+) with a non reversible kernel ¢ and to Trouvé in
the general case). Let U be the virtual energy corresponding to (E, V). For any
cycle C' € €(V), consider the following property H(C):
V(z,9) €C?, Ulx)-U(x)=U(y) - U(y)-
Show by induction on |C| that H(C) is true for any cycle C € C(E, V).
Hints:

e Consider the partition (C;)ies of C in strict maximal subcycles. Introduce
the constants ¢; € R, ¢ € I, defined by

U(x)=U(z)+c, ze€C;.

e Show that if B(C;) N C; # B, (where B(C;) is the principal boundary of
Ci), then ¢; > ¢j. (For ¢ € C; and y € B(C;) N C; compare Hy(z,y),
Hy(z,y), Hu(y,z) and Hg(y,z).)

e Draw from this the conclusion that ¢; = ¢; for any (3, j) € I2.

This shows that (Hy(,y)) ,,y)e g2 is symmetric if and only if for any z € E
U(z) =minU(y) + U(z).
yeE
10.4. Question 4.

4.1. Give an example of a finite state space E and of an irreducible rate function
V:Ex E— RyU{+oco0} such that

H,(E,V) = 1,
HQ(E, V) = 2,
H3(E,V) = 3.

4.2. Could-you give such an example in which |F| =47



118

4.8. Could-you give such an example in which |E| =57
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