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On martingales which are finite sums of
independent random variables with time

dependent coefficients

Jean Jacod
and

Victor Pérez-Abreu

1 Introduction

We consider the following problem: for a positive integer n > 1, let t~i, ..., Un be n
independent, integrable, centered, non-degenerate random variables. We are looking
for conditions on a family of n cadlag functions f l, ..., f n on IR+ with li(O) = 0, under
which the following process:

n

Xt - ~ (1)
i=1

is a martingale, with respect to its own filtration 
This (apparently) simple problem has a general solution given in Section 1. How-

ever, the answer is not quite satisfactory, since for example it does not allow to

recognize whether there is a unique (up to the obvious multiplication by constants
and time-changes) set ( fi meeting our condition.

To get more insight, we specialize in Section 3 to the case where n = 2 and (for the
most interesting results) with ~7i and U2 having the same law. In this very particular
situation we are able to give a complete description of all martingales of the form (1).
This description emphasizes the particular role played by the stable distributions.

For the case n > 3, we have been unable to provide any interesting result of the
same kind as for n = 2.

2 A general result

Here is a general theorem solving (in principle) our problem.

Theorem 1. The process X is a martingale if and only if it satisfies the following:

Condition [M]: There are an integer p, 0  p  n, and deterministic times 0 =

To  Tl  ...  Tp  Tp+1 = and p linearly independent vectors aj = in

(when p > 1), such that, with va = 0 and v? = for j > l, ,
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(Ml) discrete-time martingale;

(M2) ..Xt = ~,1jp 

Before proving this theorem, we state some remarks on the conditions. First,
Condition (M2) implies that fi(t) = ~1~~p because of the following
property: 

~ ~

n n

ai, 03B2i E IR, 03A3 03B1iUi = 03A3 03B2iUi a.s. ~ ai = 03B2i Vi. (2)
i=1 i=1

Second, Condition (Ml) is obviously difficult to verify, except when p = 0 (it is
void) and p = 1 (it is obvious because V1 is centered). Below we give an equivalent
condition based on the characteristic functions 03C6i of Ui. We recall that each function

is C1 with = 0. Then, when p > 2, (Ml) is equivalent to the following:

Condition (M’l). For all 1  I  p - 1 and all v~ in IR,

n I I

yal+1 fl = 0. (3)
i=1 j=1 j=1

We observe that (3) is the same as v ) exp i ~~=1 = 0. When the

pi’s do not vanish (so = exp with of class C1 and = 0) this condition
is also equivalent to:

Condition (M"1). . For all 1  l  p - 1 and all vj in IR,

n I

~(al+1- = o. (4)
.i=1 j=1

Proof. The sufficient condition is obvious. For the necessary condition, we suppose
that .Y is a martingale and let F(t) be the vector with components 
Denote by Et the linear space spanned by (F(s) : s  t), let dt = dim(Et), T_1 = -1, ,

j) for 0 :::; j  n, and = ~. Thus T.i  0 = To  T1  ... 

Tp  Tp+i = oo for some 0  p  y?, and do = 0.

Let 0  i  p with Ti  and consider s, t such that Ti  s  t  Ti+i. Then
Et = ES is spanned by the linearly independent vectors F(sl), ..., F(si) with s~  s

(if i = 0, then Et = Es = ~0}). Therefore, XS and X, are 
and thus Fs = Ft = ~( Xsl , ..., (which is the trivial ~-field when i = 0). The
martingale property ~~S yields a.s., and (2) gives F(s) = F(t).
It follows that F(.) is constant on (Ti, Ti+1 as well as on Ti+1 ) by right-continuity.
Thus

Ti  = i V r E [Ti, Ti+1 ). (5)
In fact 0  Tl  ...  Tp; otherwise we would be in one of the following two situations:
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a) 0 = Tj  Tj+l for some 1  j  p, and therefore dT~ = do = 0, which contradicts
(5);

b) T;-i  Ti = Tj  Tj+i for i,j with 1  i  j  p, in which case d.r = x - 1 on

(TE-1, T~ by (3). This implies that d~~  i; being also impossible since dT~ > j.
Since 0  Ti  ...  Tp holds, we trivially have (M2) with aj = F(Tj). Finally,

(M2) and the martingale property of X yield (Ml). 0

3 The case n=2

Let p; be the characteristic function of Ui, and when 03C6i never vanishes we use the
notation 03C6i = exp 03C8i without further comment. In this section we always assume
that n = 2.

Theorem 2. The process X is a martingale i f and only if it has one of the following
two (mutually exclusive) representations:

a) For some a, ,~ E IR., Si, 5’2 E (0, oo]

Xt = + ~iU21fs2,~)(t). (fi)

b ) For some 0  Ti  T2  oo, a, a’, ~y, y’ E R* with y ~ y’ and

~i(u)~2(~’’u) +’Y’~1(’~)4~2(’Yz’) _ ~ dv E IR, (7)

Xt = + a (Ul + ~’’U2)1(T2,x)(t)~ (8)

Remark. Since the coefficients in (8) do not vanish, the form (8) is indeed symmetric
in (Ui L2). When and c~2 do not vanish, (7) is equivalent to ~1(v)+~y’~’’.,2(~yv) = 0,
which is the same as + ~,-~ ~~2(~yv) = 0, which in turn is equivalent to

= c~2(’Yv) ’~r~~‘ du E (9)

Proof. Sufficient condition: That (a) gives a martingale is obvious. Condition (b)
implies (M2) with ai = a, al = a2 = a’ + at, a2 = a’~y’ + a1 and then (7) gives
(M’l ).

Necessary condition: We assume (M’1) and (M2). If Ti = oo, then (a) holds with
a = 0 and 8i arbitrary. If Ti  T2 = oo, then (a) holds with a = ai, ~i = a1 and

Suppose now that Ti  T2  oo. We have 0, and since both (a) and (b) are
symmetric in (Ui U2), without lost of generality we assume that 0. Let a = al

= ai ja and write a2 = ai + ~i8. Then the linear independence between ai and
a2 gives

~ ~ (10)
while (M’l) is

+ = 0 E IR. (11) )
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We assume first that, = 0. Recalling that = 1, = 0 and c~~ is not

identically 0 in any neighborhood of 0 ( because P( L’t = 0 )  1 ), ( 11 ) yields ,Ql = 0,
that is, we have (a) with Sl = Ti, s2 = T2, ~3 = ~2.

Next, assume that, fl 0. Then there exists 0 E IR* with ~l (9) ~ 0, pi (9) ~ 0 and

~2(~y9) ~ 0. Suppose for the time being that y~2(~y9) = 0. Then (11) yields ~il = 0 and
since there is another 0’ E IR* with ~1(9’) ~ 0 and ~2(~y8’) ~ 0, we also have ~2 = 0,
which contradicts (10). Thus ~2(~y8) ~ 0 and (10) and (11) yield ~31 fl 0 and ~32 ~ 0.
Hence we have (b) with ~y’ _ ~2/~31 and a’ _ ~1 (note y’ follows from ( 10),
and (7) is the same as (11)). D

When Ul and U2 are arbitrary, it seems there is not much more to say. From now
on we concentrate on the case where L i =d h2, i.e. ~1 = ~2 = ~. In this situation,
the existence of a martingale .I of the form (b) above depends on the existence of
constants 03B3, 03B3’ E IR* with, ~ 03B3’ and

= 0 dv E 1R. (12)

Let D denote the set of all 03B3 E IR* for which ( 12 ) holds for some 03B3’ E with

03B3’ ~ 03B3. If 03B3 E D there is a unique 03B3’ = 03B4(03B3) satisfying (12), because we have seen
before that for each, ~ 0 there is 03BD ~ IR with 0 and fl 0.

Theorem 3. a) If Ul is symmetric about 0, then one of the following three cases
is satisfied:

{Cs-1) D = ~-l,1}. ,

(Cs-2) D = : n E T } for some r > 1 and never vanishes.

(Cs-3) D = IR*. This is the case if and only if Ul is stable with index p E (1,2],

i. e. = f or some a > 0.

b) If is not symmetric about 0, we are in one of thE" following five situations:

(Ca-1) D = {1 }.
(Ca-2) D = {-l,1}. . This is the case if and only if 03C6 = where p and rl

are real-valued, rl(0) = 0, and rl is constant on each open interval on which p (or
~~ does not vanish (necessarily ~ vanishes somewhere, and rl is not identically 0,
otherwise u~e would be in the symmetric case).

(Ca-3) D = : n E ~l} for some r > 1 and y~ never vanishes.

(Ca-4) D = n E 7l} for some r > 1 and y~ never vanishes.

(Ca-5) D = (0, oc). This is the case if and only if Ul is asymmetric strictly
st,able with index p E (1,2), l.e., = for some a > 0, 0,
~b~  " )

c) There is a constant 0 E (1,2~ such that b(~y) _ (so b(1) _ -1, and
b(-1 ) = 1 if -1 E D~, and 0 = p in cases (Cs-,~~ and (Ca,-.5).

Therefore the martingales of the form ~~~) are indeed represented as

Xt = a(Ul + -03B3U2/|03B3|03B8)1[T2,~)(t), (1:3)
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Remark. There are of course examples of variables satisfying (Cs-1) or (Cs-3) in
the symmetrical case, (Ca-1) in the asymmetrical case. We presume that (Cs-2) and
(Ca-3) are not empty, and believe that (Ca-2) is empty (but we have been unable to
prove these facts).

Before giving the proof of Theorem 3 we present some useful lemmas. First we
note that, =1 and ~y’ = -1 always satisfy (12), so 1 E D and b(1) _ -l. .

Lemma 4. y~e have -1 E D if and only if p = where p and r~ are

real-valued and r~(0) = 0 and r~ is constant on each open interval on which p (or
~~ does not vanish. Moreover, b(-1) = l.

Proof. Let (x, y) be a maximal interval on which 03C6 does not vanish, so 03C6 does not
vanish either on (-y, -x) (we may have (x, y) = IR, of course). We can write p = e03C8
with of class C1 on (x,,y) and (-y,-x), and since 03C8(-v) = 03C8(v) the property
- 1 E D and (12) yield

~J’(v) = ‘dz’ E (~, y)~
Since ~y‘ E we deduce that ~~’(i~) E ~ and thus ~y’ = 1 (because ~~’ cannot be
identically 0). Therefore, if ro E (x, y), we have ~(z~) - E IR for all v E (x, y) )
and hence 03C6 = 03C1e~ with ~(v) = E IR for all v E (x, y). The converse is obvious. 0

Lemma 5. Let 03B3 E IR* with |03B3| ~ l. . E D if and only if 03C6 does not
vanish, and satisfies for some C(03B3) > 0

= d-v E W. (14)

Moreover,

a)  0 for all ~~ E IR*.

b) h(’Y) _ -1‘~"(’Y).
c) For all n ~ Z we have 03B3n E D and C(03B3n) = C(03B3)n.
d) -~y E D if and only if y~ is real-valued, and then C, (-^~) = C.~(~y).

Proof. The sufficient condition is obvious, as well as (b).
Conversely, assume that Let ( -r, be the maximal interval on which 03C6

does not vanish. We have p = with y’.~ of class C."1 on (-x, x). For simplicity we set
= Rey., and we have ~ -~ as |u| ~ x if x  ~. On (-x,x), (12) yields

~’~(v) +’Y‘~’‘(’Yz’) _ 0, so ~t(z’) + ~, ~’’.’(’~2’) = 0, since z~~(0) = 0.
^~ ~ > 1 and :r.  then i = ~ ~/ I I 2~r,r ( ^w ) I -~ oo as T 

contradicting the fact that ~’? is continuous on (-x,:r). Similarly, if > 1 and
x  _ ~ ~~-,, ( ~ zj.’r ( v ) ~ --~ oo as fi x, bringing up the same contradiction;
therefore:r = ~, and :.p does not vanish. It follows that ; = ey’’ everywhere and, with
~"(’Y ) _ -^~’~’Y~ ,

~’(z’) ~y(’Y)~l’(’Y~-’) ~2’ E ~,  15)
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that is, we have (14). Since Ul is non-degenerate, 03C8 is not identically 0 and thus

~ 0. Note also that (c) is obvious from (14).
We always have that 0 and that ~r is even. Assume that = 0 for some

v > 0. Then (15) and (c) imply = 0 for all n E 7l. It follows that the

characteristic fonction of the symmetrized random variable U = ZI2 equals 1 for
all E TL, so U is supported by E for all n E ~L, which

implies that ~~ = 0 a.s., contradicting again the non-degeneracy assumption. Thus
(a) holds and (15) yields > 0.

Finally, it only remains to prove (d). If 03C6 is real-valued, it is even and (14) is

satisfied with -~y and G’(-~y) = C(~y). Suppose conversely that -~y~ E D, then (15)
gives ~(v) = while -~y E D yields = C(-~y)y(-~yv). Comparing
the real parts of these two equalities and using (a) we obtain C(-y) = C(~y). Then
~~ = y~ and cp is real-valued. D

Lemma 6. Wiih D+ = D n , one of the following three cases is satisfied:

(C+l) D+ _ ~l}.
(C+2) D+ = : n E 7l} for some r > 1. .

(C+3) D+ = .

Moreover, we are in case (C+3) if and only if either = for some a > 0

or = for some a > 0, p E (1,2), ~6~  

Proof. Due to the fact that 1 E D and to Lemma .5, if we are not in case (C’+1 ),
D+ contains at least > 0, 7 ~ 1, and then ’{) = e’~ satisfies ( 14). Indeed, D+ is
the set of all "1 > 0 such that (15) holds for some G’(~y) > 0. Then D+ is clearly a
multiplicative group, therefore it is closed since ~? is continuous and thus it is of the
form (C’+2) or (C’+3).

Assuming (C+3), for each, > 0 there is C~( ~~) > 0 such that, if f denotes either
the real or the imaginary part of ~:~, we have f(O) = 0 and

(z’) - ~’~(’Y).~(’Y2’) ) > 0.

Then f is either identically 0, or everywhere positive, or everywhere negative, on
(0, oc). In the last two cases, g(r) ) = log ( f f( (1)~ ] satisfies g( u + 
9(u) + g(log ~y) for all u E > 0, i.e., g(u + u’) = 9(u) + g(u’) for all u, u’ E R.

Since g is continuous, we obtain g(u) = Ku. Thus, in all cases we have f(03C5) = ~03C503C1 for
some ~, p E Dl, and furthermore = 1 for all 03B3 > 0 (hence p is the same for both
the real and imaginary parts We then deduce that ~~(z~) _ for some
a, ~3, p E R, if zJ > 0. By (a) of Lemma 5 we have 0  0 and since ~~(-v) _ ~~(v),
we also have 03C8(03C5) = (a - for v  0. Then 03C8(03C5) = + 
for a > 0, b E IR, p E IR. Conversely, each such y satisfies ( 15) for all, > 0, with

_ ~y-P, implying D+ = 

It remains to examine under which conditions on (a, b, p) the function ~ = E~’
with ~ as above is a chara,cteristic function. Observe that for all > 0 we have

~~(av)+~(a’v) _ ~~(a"r) with a"P = ap+a’P. Then, if it is the case, the corresponding
distribution will be strictly stable, with a first moment equal to 0. As is well known,
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this will be the case if and only if either p = 2 and b = 0 (normal case), or p E (1,2)
and tan( " ) D

Proof of Theorem 3. a) When Zh is symmetric, so is D, and (Cs-i) = (C+i).
Therefore Lemma 5 yields that one of (Cs-1), (Cs-2) or (Cs-3) is satisfied. Moreover,
(Cs-2) implies that ~ never vanishes (by Lemma 5), and (Cs-3) holds if and only if
(v) = (because here ~ is real-valued).

b) Now we suppose that III is not. symmetric. It suffices to prove that if D ~ ~ 1 ~,
then we are in one of the cases (Ca-i) for i=2,3,4,5.

First, by Lemma 4, -1 E D if and only if the necessary and sufficient condition
in (Ca-2) is satisfied. Then p vanishes somewhere, and D contains with (~y~ ~ 1
by Lemma 5. Thus -1 E D if and only if (Ca-2) holds.

Next, suppose that we are not in any of the cases (Ca-1) and (Ca-2). If D = D+,
we are then in cases (Ca-3) or (Ca-5) by Lemma 5. Otherwise there exists, > 0
with 03B3 ~ 1 and -03B3 ~ D. Then 03B32 E D 1 and by Lemma 5 either (C+2)
or (C+3) holds. However, under (C+3) we also have, E D, hence Lemma 5(d)
contradicts the assumption that Ui is non-symmetric and indeed we have (C+2) with
some r > 1. It then follows that ~y2 = r~ for some k E W, while Lemma 5(c) gives
C(r~) = C(r)~ and C(~y) = Cr(r)~~2. Furthermore if k were even we would ha,ve

rk/2 E D and -rk~2 = -~y E D, again a contradiction by Lemma 5(d), so k = 2p + 1
with p E 7L and 03B3 = rp+1/2. In order to obtain (Ca-4), it thus remains to prove that

for all n ~ Z. For this, a repeated use of ( 15) yields

~(~) = = = ~(r~~+i/2~’( rn+ll2 

and the result follows.

c) Since 03B4(1) = -1 and 03B4(-1) = 1 (Lemma 4), (c) is obvious in cases (Cs-1), (Ca-
1) and (Ca-2). Also, (c) with 8 = p follows from Lemma 5(b) and from a comparison
between (14) and the explicit form of ~a in cases (Cs-3) and (Ca-5).

Under (Ca-4) we have seen that = C"n and C~-rn+1~2) = C’n+1~2, where C =
C(r). Thus, for all , E D, = = with 9 = - log(C)/log(r)
(so b(~y) _ -~y~~~y~~). The same holds for (Cs-2) and (C~a-3). Now (15) yields ~’’(v) _

hence = (Cr)’~y’(z~) and since ~’’(0) = 0 and ~’(~u) ~ 0 for some
~~ ~ 0 we must have Cr  1 and thus e > 1.

Suppose that 8 > 2, i.e. A := Cr2  1. Then = and
if r-’~ there is m > n and v E (1/?"? 1] with ~ = or w = Therefore

~~’’(w)~w~  It follows that ~’’ is differentiable at 0,
with y"(0) = 0. Hence Ljl is square-integrable, with variance 0, which contradicts
once more the non-degeneracy assumption and therefore H  2. D
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