SÉminaire de probabilités (Strasbourg)

Shizan Fang
 JacQues Franchi
 A differentiable isomorphism between Wiener space and path group

Séminaire de probabilités (Strasbourg), tome 31 (1997), p. 54-61
http://www.numdam.org/item?id=SPS_1997__31__54_0
© Springer-Verlag, Berlin Heidelberg New York, 1997, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Article numérisé dans le cadre du programme

| A DIFFERENTIABLE
 WIENER | SPACE
 ISOMORPHISM
 AND | BETWEEN
 SROUP | |
| ---: | :--- | :--- | :--- | :--- |
| Shizan FANG | and | Jacques | FRANCHI |

Abstract

Given a compact Lie group G endowed with its left invariant Cartan connection, we consider the path space \mathcal{P} over G and its Wiener measure \mathbb{P}. It is known that there exists a differentiable measurable isomorphism I between the classical Wiener space (W, μ) and (\mathcal{P}, \mathbb{P}). See [A], [D], [S2], [PU], [G].

In this article, using the pull-back by I we establish the De Rham-Hodge-Kodaira decomposition theorem on ($\Lambda(\mathcal{P}), \mathbb{P})$.

I. Introduction and Main Result

Ten years ago Shigekawa [S1] proved on an abstract Wiener space an infinite dimensional analog of the de Rham-Hodge-Kodaira theorem. The key point for that is to get an expression of the de Rham-Hodge-Kodaira operator $d^{*}+d^{*} d$ acting on n-forms in terms of the Ornstein-Uhlenbeck operator $\nabla^{*} \nabla$, expression that we may call Shigekawa identity. This expression in particular supplies spectral gap and de Rham-Hodge-Kodaira decomposition.

Our first aim in the present article was to extend the Shigekawa identity (and then the de Rham-Hodge-Kodaira theorem) to the path group over a compact Lie group.

To reach this end, we use the pull back I* by the Itô map I. It is well known that I realizes a measurable isomorphism between Wiener space (W, μ) and path group (\mathcal{P}, \mathbb{P}); now there is something more: having noticed the flatness of \mathcal{P}, we show that I* indeed supplies a diffeomorphism between the differentiable structures of the exterior algebras $\Lambda(\mathrm{W})$ and $\Lambda(\mathcal{P})$.

Take the group \mathcal{P} of continuous paths over a compact (or compact \mathbf{x} \mathbb{R}^{N}) Lie group G, endow it with its Wiener measure \mathbb{P} (induced by the Brownian motion on G), and consider its Cameron-Martin space \mathbb{H} as its universal tangent space; the exterior algebra $\Lambda(\mathcal{P})$ is then the space of step functions from \mathcal{P} into $\Lambda(H)$.

Following [A], [D], [S2], we introduce on $\Lambda(\mathcal{P})$ the Levi-Civita connection ∇, that we show to be flat.

We define in a classical way Hilbert-Schmidt norm | | , covariant derivative ∇, and coboundary d on $\Lambda(\mathcal{P})$.

Let I denote the Itô map from the classical Wiener space (W, μ) onto $(\mathcal{P}, \mathbb{P})$. We consider the pull back by I : I* pulls $\Lambda(\mathcal{P})$ towards $\Lambda(\mathrm{W})$, and we show that this I^{*} is in fact an isomorphism between these two differentiable (in the sense of Malliavin) structures.
More precisely, we get:

Theorem We have for any $\omega \in \Lambda(\mathcal{P})$ and any $\mathbf{z} \in \mathbb{H}, \mu-\mathrm{a} . \mathrm{s}$: :
a) $\quad \mathrm{I}^{*}\left(\nabla_{\mathrm{z}}^{\mathcal{P}} \omega\right)=\nabla_{\mathrm{I}}{ }^{\mathrm{W}} \mathrm{Z}\left(\mathrm{I}^{*} \omega\right)$;
b) $\quad\left|\nabla^{\mathcal{P}} \omega\right| \circ \mathrm{I}=\left|\nabla^{\mathrm{W}}{ }_{\mathrm{I}}{ }^{*} \omega\right|$;
c) $\mathrm{I}^{*}(\mathrm{~d} \omega)=\mathrm{d}\left(\mathrm{I}^{*} \omega\right)$ and $\mathrm{I}^{*}\left(\mathrm{~d}^{*} \omega\right)=\mathrm{d}^{*}\left(\mathrm{I}^{*} \omega\right)$.

This allows for example to transport the Shigekawa identity ([S1]) on $\Lambda(\mathcal{P})$:

Corollary We have on $\Lambda_{\mathrm{n}}(\mathcal{P}): \quad \mathrm{dd}^{*}+\mathrm{d}^{*} \mathrm{~d}=\nabla^{*} \nabla+\mathrm{n}$ Id.
[FF2] gives a direct complete proof of Shigekawa's identity on $\Lambda(\mathcal{P})$, different from Shigekawa's proof (that is valid only on $\mathbb{R}^{\mathbb{N}}$), and not using I^{*}.

In the loop group case, the Levi-Civita connection is no longer flat, so there exists no differentiable isomorphism with the Wiener space. A direct approach is worked out in [FF3], in the same vein as in [FF2].
[L] and [LR] also deal with connections, de Rham-Hodge-Kodaira operator and Ornstein-Uhlenbeck operator, on path space and on free loop space, but over a compact manifold and with different preoccupations.
II. Notations, and Flatness of the Path Group

Let G be a compact Lie group, with unit e and Lie algebra $\mathscr{G}=\mathrm{T}_{\mathrm{e}} \mathrm{G}$, endowed with an Ad-invariant inner product < , > and its Lie bracket [,].

Let \mathcal{P} be the group of continuous paths with values in G, defined on [0,1] and started from e ; let \mathbb{H} be the corresponding Cameron-Martin space, that is to say:

$$
\mathbb{H}=\left\{\mathrm{h}:[0,1] \rightarrow \xi \mid \int_{0}^{1}\langle\mathrm{~h}(\mathrm{~s}), \dot{\mathrm{h}}(\mathrm{~s})\rangle \mathrm{ds}\langle\infty \quad \text { and } \mathrm{h}(0)=0\} ;\right.
$$

we denote (,) the inner product of $H:\left(h_{1}, h_{2}\right)=\int_{0}^{1}\left\langle\dot{h}_{1}(s), \dot{h}_{2}(s)\right\rangle d s$, and we identify $h \in \mathbb{H}$ with $(h,.) \in \mathbb{H}^{*}$.

Let $W=\mathscr{C}_{0}([0,1], \mathscr{\xi})$ be the classical Wiener space, endowed with its Wiener measure μ. Denote I the one-to-one Itô application from W onto \mathcal{P}, defined by the following Stratonovitch stochastic differential equation :
$\mathrm{dI}(\mathrm{w})(\mathrm{s})=\partial \mathrm{w}(\mathrm{s}) \mathrm{I}(\mathrm{w})(\mathrm{s})$, for $\mathrm{w} \in \mathrm{W}$ and $\mathrm{s} \in[0,1]$.
The Wiener measure \mathbb{P} on \mathcal{P} is the law of I under μ.
A functional $\mathrm{F} \in \mathrm{L}^{\infty-}(\mathcal{P}, \mathrm{K})$, taking its values in some Hilbert space $\mathrm{K}_{6_{0}-}$ is said to be strongly differentiable when there exists DF belonging to $\mathrm{L}^{\mathrm{bon}^{-}}(\mathcal{P}, \mathrm{K} \otimes H)$ such that for all $h \in H$ and $\gamma \in \mathcal{P}$:
the derivative $D_{h} F(\gamma)$ at 0 with respect to ε of $F\left(\gamma e^{\varepsilon h}\right)$ exists in $L^{\infty^{-}}(\mathcal{P}, K)$ and equals ($\mathrm{DF}(\gamma), \mathrm{h}$).

We denote $\mathscr{C}(\mathcal{P})$ the space of cylindrical functions on \mathcal{P}, that is to say of functions of the form $\gamma \rightarrow f\left(\gamma\left(s_{1}\right), \ldots, \gamma\left(s_{m}\right)\right), m$ being a variable integer, f being C^{∞} from G^{m} into \mathbb{R}, the s_{j} 's being in $[0,1]$.
Note that a cylindrical function is strongly differentiable .
We extend the Lie bracket from \mathcal{G} to \mathbb{H} in setting for h and k in \mathbb{H} and $s \in[0,1]: \quad[h, k](s)=[h(s), k(s)]=h(s) k(s)-k(s) h(s)$.

Viewing \mathbb{H} as the universal tangent space of \mathcal{P}, we define an affine connection $\boldsymbol{\nabla}$ on H , following [A], [D], [S2] :

Definition 1 For y and z in H, let $\nabla_{z} y$ be the unique element in H whose derivative $\left(\nabla_{z} y\right)^{\cdot}$ is $[z, \dot{y}]$.

The following proposition of [FF1] will not be used in the sequel, but explains why our theorem could be true.

Proposition 1∇ is the Levi-Civita connection on \mathcal{P}, and moreover it is flat; that is to say : for $\mathrm{h}, \mathrm{k}, \mathrm{y}, \mathrm{z}$ in \mathbb{H}, we have :
a) $\left(\nabla_{\mathrm{h}} \mathrm{y}, \mathrm{z}\right)=-\left(\mathrm{y}, \nabla_{\mathrm{h}} \mathrm{z}\right)$ ie ∇ preserves the metric ;
b) $\nabla_{\mathrm{h}} \mathrm{k}-\nabla_{\mathrm{k}} \mathrm{h}=[\mathrm{h}, \mathrm{k}]$ ie the torsion is null ;
c) $\left[\nabla_{h}, \nabla_{k}\right]=\nabla_{[h, k]}$ ie the curvature is null.

Proof a) is due to the skew-symmetry of ad () in \mathscr{G} with respect to <, > ;
$\left(\nabla_{\mathrm{h}} \mathrm{k}\right)^{\cdot}-\left(\nabla_{\mathrm{k}} \mathrm{h}\right)^{\cdot}=[\mathrm{h}, \mathrm{k}]-[\mathrm{k}, \mathrm{h}]=([\mathrm{h}, \mathrm{k}])^{\cdot}$ shows b) ;
finally c) is due to the Jacobi identity:
$\left(\nabla_{h} \nabla_{k} z\right)^{\cdot}-\left(\nabla_{k} \nabla_{h} z\right)^{\cdot}-\left(\nabla_{[h, k}\right]^{\cdot}=[h,[k, \dot{z}]]+[k,[\dot{z}, h]]+[\dot{z},[h, k]]=0 . \square$

III. Exterior Algebra $\Lambda(\mathcal{P})$

X will denote either W or \mathcal{P}, and for each $n \in \mathbb{N} \quad \Lambda_{n}=\Lambda_{n}$ (X) will denote the space of step n-forms on X, that is to say the vector space spanned by the elementary n-forms : $F h_{1} \wedge . . \wedge h_{n}$, where $F \in \mathscr{C}(X)$ is cylindrical and h_{1}, \ldots, h_{n} are in H.

The Malliavin derivative D_{h} defined in II above is indeed $\mathrm{D}_{\mathrm{h}}^{\mathcal{P}}$, whereas $D_{h}^{W} F(w)$ will be the derivative at $\varepsilon=0$ of $F(w+\varepsilon h)$.

We now extend $\nabla=\nabla^{X}$ to $\Lambda=\Lambda(X):=\sum_{n \in \mathbb{N}} \Lambda_{n}$, following Aida ([A]) :
Definition 2 For $\omega \in \Lambda_{n}$ and z, h_{1}, \ldots, h_{n} in H, set :
a) $\partial_{z} \omega\left(h_{1}, \ldots, h_{n}\right)=-\sum_{j=1}^{n} \omega\left(h_{1}, \ldots, \nabla_{z} h_{j}, . . h_{n}\right)$;
b) $\nabla_{z} \omega=D_{z} \omega+\partial_{z} \omega$, where $D_{z}\left(F h_{1} \wedge . . \wedge h_{n}\right)=\left(D_{z} F\right) h_{1} \wedge . . \wedge h_{n}$.

Remarks 1 For $\omega \in \Lambda_{n}, \omega^{\prime} \in \Lambda_{m}$, and $z \in \mathbb{H}$, we have :
a) $\nabla_{z} \omega \in \Lambda_{n}$;
b) $\nabla_{z}\left(\omega \wedge \omega^{\prime}\right)=\left(\nabla_{z} \omega\right) \wedge \omega^{\prime}+\omega \wedge\left(\nabla_{z} \omega^{\prime}\right)$;
c) $\nabla_{z}\left(F h_{1} \wedge . . \wedge h_{n}\right)=\left(D_{z} F\right) h_{1} \wedge . . \wedge h_{n}+\sum_{j=1} F h_{1} \wedge . . \wedge \nabla_{z} h_{j} \wedge . . \wedge h_{n}$;
d) For $X=W$, we have of course $\nabla_{z} h_{j}=\left[z, \hat{h}_{j}\right]=0$, and hence $\nabla_{z}^{W}=D_{z}^{W}$.

Indeed, the verifications are straightforward from the definition; so ∇_{z} is determined by definition 1 , remark ($1, b$), and : $\nabla_{z}=D_{z}$ on Λ_{0}.
We now introduce the gradient on Λ and the normalized Hilbert-Schmidt norms :
Definition 3 For $\omega \in \Lambda_{n}, \nabla \omega$ is the one element of $\Lambda_{n} \otimes H$ defined by :
$\left(\nabla \omega\left(z_{1}, \ldots, z_{n}\right), h\right)=\nabla_{h} \omega\left(z_{1}, \ldots, z_{n}\right)$, for all h, z_{1}, \ldots, z_{n} in \mathbb{H}.

Definition $4 \mathcal{B}$ being any Hilbertian basis of H and ω being in Λ_{n} : $|\omega|^{2}=(n!)^{-1} \times \sum_{z_{1}, \ldots, z_{n} \in \mathcal{B}} \omega\left(z_{1}, \ldots, z_{n}\right)^{2}$ and $|\nabla \omega|^{2}=\sum_{h \in \mathcal{B}}\left|\nabla_{h} \omega\right|^{2}$.

Remark 2 This norm on Λ_{n} extends the norm of H, and we have:
$\left|F h_{1} \wedge . \wedge h_{n}\right|^{2}=F^{2} \sum_{\sigma \in \varphi} \varepsilon(\sigma) \prod_{j=1}^{n}\left(h_{j}, h_{\sigma_{j}}\right)=F^{2} h_{1} \wedge . . \wedge h_{n}\left(h_{1}, \ldots, h_{n}\right)$.
We now classically skew-symmetrize the gradient to get the coboundary :
Definition 5 For $\omega \in \Lambda_{n}$ and $z_{0}, . ., z_{n}$ in H, set :
$d \omega\left(z_{0}, \ldots, z_{n}\right)=\sum_{j=0}^{n}(-1)^{j} \nabla_{z_{j}} \omega\left(z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n}\right) \quad$,
where \hat{z}_{j} means that z_{j} is absent.
Remark 3 Using proposition (1,b), we easily get :

$$
\begin{aligned}
& d \omega\left(z_{0}, \ldots, z_{n}\right)=\sum_{j=0}^{n}(-1)^{j} D_{z_{j}} \omega\left(z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n}\right)+ \\
& \sum_{0 \leq i<j \leq n}(-1)^{i+j} \omega\left(\left[z_{i}, z_{j}\right], z_{0}, \ldots, \hat{z}_{i}, \ldots, \hat{z}_{j}, \ldots, z_{n}\right) .
\end{aligned}
$$

Lemma 2 For any $\omega \in \Lambda$ and any Hilbertian basis \mathcal{B} of $H: d \omega=\sum_{h \in \mathcal{B}} h \wedge \nabla_{h} \omega$.
Proof Remarking that for $h, h_{1}, \ldots, h_{n}, z_{0}, \ldots, z_{n}$ in H :
$h \wedge h_{1} \wedge . . \wedge h_{n}\left(z_{0}, . ., z_{n}\right)=\sum_{j=0}^{n}(-1)^{j} h\left(z_{j}\right) h_{1} \wedge . . \wedge h_{n}\left(z_{0}, \ldots, \hat{z}_{j}, . ., z_{n}\right)$, we get:
$d \omega\left(z_{0}, \ldots, z_{n}\right)=\sum_{h \in \mathcal{B}} \sum_{j=0}^{n}(-1)^{j}\left(h, z_{j}\right) \nabla_{h} \omega\left(z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n}\right)=\sum_{h \in \mathcal{B}} h \wedge \nabla_{h} \omega\left(z_{0}, \ldots, z_{n}\right) \cdot$.
Let $\bar{\Lambda}_{\mathrm{n}}$ be the completion of Λ_{n} with respect to the norm $\|\omega\|_{r}^{2}=\mathbb{E}\left(\sum_{k=0}^{r}\left|\nabla^{k} \omega\right|^{2}\right)$, for $r \in \mathbb{N}$, and set $\quad \bar{\Lambda}^{r}=\sum_{n \in \mathbb{N}} \bar{\Lambda}_{n}^{r}$.

Remark $4 \quad \nabla_{h}, \nabla$, d clearly extend continuously to $\bar{\Lambda}^{-r}$ for $r \in \mathbb{N}^{*}$. D_{h} and ∇_{h} still make sense for h depending on w, for example $\mathrm{h} \in \bar{\Lambda}_{1}^{0}$.
Corollary 1 For $\omega \in \bar{\Lambda}_{\mathrm{n}}^{\mathrm{r}}$ and $\omega^{\prime} \in \bar{\Lambda}_{\mathrm{m}}^{\mathrm{r}}$, we have $\mathrm{d} \omega \in \bar{\Lambda}_{\mathrm{n}+1}^{\mathrm{r}-1} \quad$ and $\mathrm{d}\left(\omega \wedge \omega^{\prime}\right)=(\mathrm{d} \omega) \wedge \omega^{\prime}+{ }_{\mathrm{n}}(-1)^{\mathrm{n}} \omega \wedge\left(\mathrm{d} \omega^{\prime}\right)$, whence
$d\left(F h_{1} \wedge . . \wedge h_{n}\right)=D F \wedge h_{1} \wedge . . \wedge h_{n}-F \sum_{j=1}^{n}(-1)^{j} h_{h_{1}} \wedge . . \wedge\left(d h_{j}\right) \wedge . . \wedge h_{n}$.
Proof $d\left(\omega \wedge \omega^{\prime}\right)=\sum_{h \in \mathcal{B}} h \wedge \nabla_{h}\left(\omega \wedge \omega^{\prime}\right)=\sum_{h \in \mathcal{B}} h \wedge\left(\nabla_{h} \omega\right) \wedge \omega^{\prime}+\sum_{h \in \mathcal{B}} h \wedge \omega \wedge \nabla_{h} \omega^{\prime}$

IV. The isomorphism I* between $\Lambda(\mathcal{P})$ and $\Lambda(W)$

Lemma 3 (Malliavin [M],[MM]) For h $\in \mathbb{H}$, we have :

$$
\mathrm{D}_{\mathrm{h}}^{\mathrm{W}} \mathrm{I}(\mathrm{w})(\mathrm{t})=\mathrm{I}(\mathrm{w})(\mathrm{t}) \int_{0}^{\mathrm{t}} \operatorname{Ad}\left(\mathrm{I}(\mathrm{w})(\mathrm{s})^{-1}\right) \dot{\mathrm{h}}(\mathrm{~s}) \mathrm{ds} \quad \text { in } \mathrm{L}^{\infty-}(\mathrm{W})
$$

Proof Set $I_{\varepsilon}(w)=I(w+\varepsilon h)$; we have :

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{I}^{-1} \mathrm{I}_{\varepsilon}\right) & =-\mathrm{I}^{-1} \partial \mathrm{I}^{-1} \mathrm{I}_{\varepsilon}+\mathrm{I}^{-1} \partial \mathrm{I}_{\varepsilon}=-\mathrm{I}^{-1} \partial \mathrm{w} \mathrm{I}_{\varepsilon}+\mathrm{I}^{-1}(\partial \mathrm{w}+\varepsilon \mathrm{dh}) \mathrm{I}_{\varepsilon} \\
& =\varepsilon \mathrm{I}^{-1} \mathrm{dh} \mathrm{I}_{\varepsilon}, \text { whence }\left(\mathrm{I}^{-1} \mathrm{D}_{\mathrm{h}}^{\mathrm{W}}\right)^{\cdot}=\operatorname{Ad}\left(\mathrm{I}^{-1}\right) \mathrm{h} \quad \text { by derivation at } \varepsilon=0 .
\end{aligned}
$$

We now introduce our pull back by I :

Definition 6

a) For $h \in H$ and $w \in W$: $\tilde{\mathrm{I}} \mathrm{h}(\mathrm{w})=\mathrm{I}(\mathrm{w})^{-1} \mathrm{D}_{\mathrm{h}}^{\mathrm{W}} \mathrm{I}(\mathrm{w})$, or : $(\tilde{\mathrm{I}} \mathrm{h}(\mathrm{w}))^{\cdot}=\operatorname{Ad}\left(\mathrm{I}(\mathrm{w})^{-1}\right) \mathrm{h}$;
b) For $\omega \in \Lambda_{n}(\mathcal{P})$ and h_{1}, \ldots, h_{n} in $\mathbb{H}:\left(I^{*} \omega\right)\left(h_{1}, \ldots, h_{n}\right)=(\omega \circ I)\left(\tilde{I}_{h_{1}}, \ldots, \tilde{I}_{n}\right)$.

Remarks 5

a) Ĩh maps W into H, and I* maps $\Lambda_{n}(\mathcal{P})$ into $\bar{\Lambda}_{n}(W)$;
definition ($6, b$) agrees with the usual one in finite dimensions.
b) $\left(\tilde{I} h_{1}, \tilde{I} h_{2}\right)=\left(h_{1}, h_{2}\right) \mu$-a.s. for all h_{1}, h_{2} in $H: \tilde{I}$ is an isometry.
c) I* is invertible from $\bar{\Lambda}_{\mathrm{n}}(\mathcal{P})$ onto $\bar{\Lambda}_{\mathrm{n}}(\mathrm{W})$.
d) $I^{*} h(k)=(h, \tilde{I} k)=\left(\tilde{I}^{-1} h, k\right) \quad \mu$-a.s. for all h, k in \mathbb{H}, whence $I^{*} h=\tilde{I}^{-1} h=\int_{0}^{*} \operatorname{Ad}(I().) \dot{h}, \mu-$ a.s. for all h in H.
e) $I^{*}\left(F h_{1} \wedge . . \wedge h_{n}\right)=F \circ I\left(I^{*} h_{1}\right) \wedge . . \wedge\left(I^{*} h_{n}\right)$, whence $I *\left(\omega \wedge \omega^{\prime}\right)=(I * \omega) \wedge\left(I^{*} \omega^{\prime}\right)$.

Lemma 4
a) $\mathrm{I}^{*}\left(\nabla_{\mathrm{z}}^{\mathcal{P}} \mathrm{h}\right)=\nabla_{\mathrm{I}}^{\mathrm{W}} \mathrm{z}^{\mathrm{W}}(\mathrm{I} \mathrm{h}) \quad \mu$-a.s. , for all z, h in \mathbb{H};
b) $\left|I^{*} \omega\right|=|\omega| \circ \mathrm{I} \quad \mu$-a.s., for each ω in $\Lambda(\mathcal{P})$.

Proof a) We use remarks (1,d), $(5, d)$, definition 6 and lemma 3 to get :

$$
\begin{aligned}
& \left(\nabla_{z} \mathrm{~W}_{\mathrm{I} * \mathrm{~h}}\right)^{\cdot}=\mathrm{D}_{\mathrm{z}}^{\mathrm{W}}(\operatorname{Ad}(\mathrm{I}) \dot{\mathrm{h}})=\left(\mathrm{D}_{\mathrm{z}} \mathrm{I}_{\mathrm{I})} \dot{\mathrm{h}}^{-1}-\dot{\operatorname{IhI}}^{-1}\left(\mathrm{D}_{\mathrm{z}} \mathrm{~W}_{\mathrm{I}}\right) \mathrm{I}^{-1}\right.
\end{aligned}
$$

whence

$$
\nabla_{\mathrm{I}}{ }^{\mathrm{W}} \mathrm{I} \mathrm{I}^{*} \mathrm{~h}=\int_{0}^{\cdot} \operatorname{Ad}(\mathrm{I})\left(\nabla_{\mathrm{z}}^{\mathcal{P}} \mathrm{h}\right)^{\cdot}=\mathrm{I}^{*}\left(\nabla_{\mathrm{z}}^{\mathcal{P}} \mathrm{h}\right)
$$

b) For $\omega=F h_{1} \wedge . . \wedge h_{n}$, we have after remark 2 and remark ($5, b, d$):

$$
\begin{aligned}
|I * \omega|^{2} & =F^{2} \circ I \sum_{\sigma \in \varphi} \varepsilon(\sigma) \prod_{j=1}^{n}\left(I^{*} h_{j} I I^{*} h_{\sigma}\right)=F^{2} \circ I \sum_{\sigma \in \varphi} \varepsilon(\sigma) \prod_{j=1}^{n}\left(h_{j}, h_{\sigma}\right) \\
& =|\omega|^{2} \circ I \quad \mu-a . s . .
\end{aligned}
$$

In finite dimensions the pull back of Levi-Civita connection by an isometry classically is still Levi-Civita connection. Lemma 4 in fact shows that we have the same situation in our infinite dimensional setting. The following proposition proves that this invariance property extends to n -forms.
$\underline{\text { Proposition } 2} \quad \mathrm{I}^{*}\left(\nabla_{\mathrm{z}}^{\mathcal{P}} \omega\right)=\nabla_{\mathrm{I}}^{\mathrm{W}} \mathrm{Z}_{\mathrm{z}}\left(\mathrm{I}^{*} \omega\right) \quad \mu$-a.s. , for all z in \mathbb{H} and ω in $\Lambda(\mathcal{P})$.
Proof For $F(\gamma)=f\left(\gamma\left(s_{1}\right), \ldots, \gamma\left(s_{m}\right)\right)$ in $\mathscr{C}(\mathcal{P})$ and w in W, we have :
$D_{I * z}(F \circ I)(w)=\sum_{j=1}^{m} \partial_{j} f\left(I(w)\left(s_{1}\right), \ldots, I(w)\left(s_{m}\right)\right)\left(D_{I *} Z^{\left.I(w)\left(s_{j}\right)\right)}\right.$

$$
\begin{aligned}
& =\sum_{j=1}^{m} \partial_{j} f\left(I(w)\left(s_{1}\right), \ldots, I(w)\left(s_{m}\right)\right)\left(I(w)\left(s_{j}\right) z\left(s_{j}\right)\right) \quad \text { by remark }(5, d) \text { and lemma } 3 \\
& =\left(D_{z} F\right) \circ I(w)
\end{aligned}
$$

then for $\omega=\mathrm{Fh}_{1} \wedge . . \wedge \mathrm{h}_{\mathrm{n}}$ we have by remarks $(1, \mathrm{c})$ and $(5, \mathrm{e})$ and lemma 4 :

$$
\begin{aligned}
& =D_{I * z}(F \circ I)\left(I *_{1}\right) \wedge . . \wedge\left(I H_{n}\right)+F \circ I \sum_{j=1}^{n}\left(I H_{1}\right) \wedge . . \wedge \nabla_{I}{ }^{W} *_{z}\left(I H_{j}\right) \wedge . . \wedge\left(I H_{n}\right) \\
& =\nabla_{I}^{W} z_{z}\left(F \circ I\left(I H_{1}\right) \wedge . . \wedge\left(I^{*} h_{n}\right)\right)=\nabla_{I * z}^{W}(I * \omega)
\end{aligned}
$$

We can now precise in which sense I* really is a differentiable isomorphism from $\Lambda(\mathcal{P})$ onto $\Lambda(W)$:

Theorem For each ω in $\Lambda(\mathcal{P})$, we have μ-a.s. :
a) $\left|\nabla^{\mathcal{P}} \omega\right| \circ \mathrm{I}=\left|\nabla^{\mathrm{W}_{\mathrm{I}}}{ }^{*} \omega\right|$;
b) $\mathrm{I}^{*} \mathrm{~d} \omega=\mathrm{dI}{ }^{*} \omega$;
c) $I * d * \omega=d * I * \omega$.

Proof We fix an Hilbertian basis \mathcal{B} of \mathbb{H}, and use the fact that, after remark ($5, \mathrm{~b}, \mathrm{~d}$), $\mathrm{I}^{*} \mathcal{B}$ is μ-a.s. an Hilbertian basis of \mathbb{H} also.
a) $\left|\nabla^{\mathcal{P}} \omega\right|^{2} \circ \mathrm{I}=\sum_{\mathrm{z} \in \mathcal{B}}\left|\nabla_{\mathrm{z}}^{\mathcal{P}} \omega\right|^{2} \circ \mathrm{I}=\sum_{\mathrm{z} \in \mathcal{B}}\left|\mathrm{I}^{*} \nabla_{\mathrm{z}}^{\mathcal{P}} \omega\right|^{2} \quad$ by definition 4 and lemma (4,b)

$$
=\sum_{z \in \mathcal{B}}\left|\nabla_{\mathrm{I} * \mathrm{z}}^{\mathrm{W}} \mathrm{I}^{*} \omega\right|^{2}=\left|\nabla_{\mathrm{I}} \mathrm{~W}^{*} \omega\right|^{2} \quad \text { by proposition } 2 \text { and definition } 4 \text {; }
$$

b) $\mathrm{I}^{*} \mathrm{~d} \omega=\mathrm{I} \omega\left(\sum_{\mathrm{z} \in \mathcal{B}} \mathrm{z} \wedge \nabla_{\mathrm{z}}^{\mathcal{P}} \omega\right)=\sum_{\mathrm{z} \in \mathcal{B}}\left(\mathrm{I}^{*} \mathrm{z}\right) \wedge\left(\mathrm{I}^{*} \nabla_{\mathrm{z}}^{\mathcal{P}} \omega\right) \quad$ by lemma 2 and remark $(5, \mathrm{e})$

$$
=\sum_{\mathrm{z} \in \mathcal{B}}\left(\mathrm{I}^{*} \mathrm{z}\right) \wedge\left(\nabla_{\mathrm{I}} \mathrm{~W}^{\mathrm{W}} \mathrm{I} * \omega\right)=\mathrm{dI}{ }^{*} \omega \quad \text { by proposition } 2 \text { and lemma } 2 \text {; }
$$

c) $\mathbb{E}\left(\left(\mathrm{d} \omega^{\prime}, \omega\right)\right)=\int_{\mathrm{W}}\left(\mathrm{I}^{*} \mathrm{~d} \omega^{\prime}, \mathrm{I}^{*} \omega\right) \mathrm{d} \mu=\int_{\mathrm{W}}\left(\mathrm{dI}{ }^{*} \omega^{\prime}, \mathrm{I}^{*} \omega\right) \mathrm{d} \mu=\int_{\mathrm{W}}\left(\mathrm{I}^{*} \omega^{\prime}, \mathrm{d}^{*} \mathrm{I}^{*} \omega\right) \mathrm{d} \mu$

$$
=\mathbb{E}\left(\left(\omega^{\prime}, \mathrm{I}^{*-1} \mathrm{~d}^{*} \mathrm{I}^{*} \omega\right)\right) \text { for any } \omega^{\prime} \text { in } \Lambda(\mathcal{P})
$$

Corollary $2 \quad d^{2}=0=d^{*}$ on $\Lambda(\mathcal{P})$.
Remark that this is not immediate, since d and d^{*} are not local on $\Lambda(\mathcal{P})$.
Corollary 3 The (Shigekawa) identity of [S1]: dd* $+\mathrm{d}^{*} \mathrm{~d}=\nabla^{*} \nabla+\mathrm{n}$ Id is valid on $\Lambda_{\mathrm{n}}(\mathcal{P})$, for any n in \mathbb{N}.

Proof For any ω in $\Lambda_{n}(\mathcal{P})$, we have by lemma (4,b) and by the above theorem : $\mathbb{E}\left(\left|\mathrm{d}^{*} \omega\right|^{2}\right)+\mathbb{E}\left(|\mathrm{d} \omega|^{2}\right)-\mathbb{E}\left(|\nabla \omega|^{2}\right)-\mathrm{n} \mathbb{E}\left(|\omega|^{2}\right)=$

$$
=\int_{W}\left(\left|I^{*} d * \omega\right|^{2}+\left|I^{*} \mathrm{~d} \omega\right|^{2}-\left|\nabla I^{*} \omega\right|^{2}-\mathrm{n}\left|\mathrm{I}^{*} \omega\right|^{2}\right) \mathrm{d} \mu
$$

$$
\begin{aligned}
& =\int_{\mathrm{W}}\left(\left|\mathrm{~d} * \mathrm{I}^{*} \omega\right|^{2}+\left|\mathrm{dI}{ }^{*} \omega\right|^{2}-\left|\nabla I^{*} \omega\right|^{2}-\mathrm{n}\left|\mathrm{I}^{*} \omega\right|^{2}\right) \mathrm{d} \mu \\
& =\int_{\mathrm{W}}\left((\mathrm{dd} * \mathrm{~d} * \mathrm{~d}-\nabla * \nabla-\mathrm{nId}) \mathrm{I}^{*} \omega, \mathrm{I} * \omega\right) \mathrm{d} \mu \\
& =0 \quad \text { by }[\mathrm{S} 1] \text {, whence the result by polarization. }
\end{aligned}
$$

See [FF2] for another proof of this, not using [S1] nor I* , very different from Shigekawa's proof and valid directly on $\Lambda(\mathcal{P})$.

Corollary 4 The De Rham-Hodge-Kodaira operator on $\Lambda(\mathcal{P})$: \quad a $=d d^{*}+d^{*} d$ is hypoelliptic and selfadjoint on $\bar{\Lambda}^{2}(\mathcal{P})$, with eigenvalues $\geq \mathrm{n}$ on $\bar{\Lambda}_{\mathrm{n}}^{2}(\mathcal{P})$; moreover for any $\omega \in \bar{\Lambda}^{2}(\mathcal{P})$: $\quad \square \omega=0 \Leftrightarrow \mathrm{~d} \omega=\mathrm{d}^{*} \omega=0 \Leftrightarrow \omega \in \Lambda_{0}(\mathcal{P})$ is constant, and for any n in \mathbb{N}^{*} we have on $\bar{\Lambda}_{\mathrm{n}}^{0}(\mathcal{P})$ equivalence between closedness and exactness, and the De Rham decomposition : $\bar{\Lambda}_{\mathrm{n}}^{0}(\mathcal{P})=\operatorname{Im}(\mathrm{d}) \oplus \operatorname{Im}\left(\mathrm{d}^{*}\right)$.

Remark 6 It is also possible to consider an other Itô application, defined by: $\mathrm{dJ}(\mathrm{w})=\mathrm{J}(\mathrm{w}) \partial \mathrm{w}$; the results are the sames, once the definitions of $\mathrm{D}^{\mathcal{P}}$ and $\tilde{\mathrm{J}}$ are modified as follows: $\quad \mathrm{D}_{\mathrm{h}}^{\mathcal{P}} \mathrm{F}(\gamma)=\left.\frac{\mathrm{d}}{\mathrm{d} \varepsilon} \mathrm{F}\left(\mathrm{e}^{-\varepsilon \mathrm{h}} \gamma\right)\right|_{\varepsilon=0} \quad$ and $\quad(\tilde{\mathrm{J} h})^{\cdot}=-\operatorname{Ad}(\mathrm{J}) \dot{\mathrm{h}}$.

REFERENCES

[A] Aida S.
Sobolev spaces over loop groups.
J.F.A. 127, p. 155-172, 1995.
[AM] Arai A. and Mitoma I. De Rham-Hodge-Kodaira decomposition in infinite dimension. Math. Ann. 291, p. 51-73, 1991.
[D] Driver B.
The non-equivalence of Dirichlet forms on path spaces. Stochastic Analysis on Infinite Dimensional Spaces, p. 75-87, Proceedings Baton Rouge 1994, H. Kunita and H.H. Kuo ed.
[FF1] Fang S. and Franchi J. Platitude de la structure riemannienne sur les groupes de chemins et identité d'énergie pour les intégrales stochastiques. C.R.A.S. Paris, t. 321, S.1, p. 1371-1376, 1995.
[FF2] Fang S. and Franchi J. Flatness of the path group over a compact Lie group and Shigekawa identity. Prepublication $\mathrm{n}^{\circ} 310$ du laboratoire de probabilités de Paris VI, 1995.
[FF3] Fang S. and Franchi J. De Rham-Hodge-Kodaira operator on loop groups. Prepublication $\mathrm{n}^{\circ} 341$ du laboratoire de probabilités de Paris VI, 1996.
[G] Gross L.
Uniqueness of ground states for Schrödinger operators over loop groups. J.F.A. 112, p. 373-441, 1993.
[L] Leandre R.
Integration by parts formulas and rotationally invariant Sobolev calculus on free loop spaces. J. Geom. Phys. 11, p. 517-528, 1993.
[LR] Leandre R. and Roan S.S. A stochastic approach to the Euler-Poincaré number of the loop space over a developpable orbifold. J. Geom. Phys. 16, p. 71-98, 1995.
[M] Malliavin P. Hypoellipticity in infinite dimension.
Diffusion processes and related problems in Analysis, vol. 1, Progress in Probability 32, p. 17-33, M. Pinsky ed., Birkhäuser 1991.
[MM] Malliavin P. and M.P. Integration on loop groups I : Quasi invariant measures.
J.F.A. 93, p. 207-237, 1990.
[PU] Pontier M. and Ustunel A.S. Analyse stochastique sur l'espace de Lie-Wiener.
C.R.A.S. 313, p. 313-316, 1991.
[S1] Shigekawa I. De Rham-Hodge-Kodaira's decomposition on an abstract Wiener space.
J. Math. Kyoto Univ. 26-2, p. 191-202, 1986.
[S2] Shigekawa I. A quasi homeomorphism on the Wiener space.
Proceedings of symposia in pure mathematics 57,
Stochastic Analysis, p. 473-486, M. Cranston and M. Pinsky ed., 1995.
$\begin{array}{cl}\text { S. Fang } \quad \begin{array}{l}\text { Institut de Mathématiques, boîte 172, tour 46-0 } \\ \text { Université Paris VI } \\ \text { 4, place Jussieu, } 75232 \text { Paris cedex 05, France. }\end{array} \\ \text { J. Franchi } & \begin{array}{l}\text { Laboratoire de probabilités, tour } 56,3^{\circ} \text { étage } \\ \text { Université Paris VI }\end{array} \\ \text { et place Jussieu, 75232 Paris cedex 05, France; } \\ \begin{array}{l}\text { Université Paris XII, département de mathématiques, } \\ \text { 61, Avenue du général De Gaulle, 94010 Créteil cedex. }\end{array}\end{array}$

