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Some remarks about the joint law of Brownian motion and its supremum

Marc Yor

Laboratoire de Probabilités - Université Paris VI - 4, Place Jussieu - Tour 56

3eme Etage - 75252 PARIS CEDEX 05

Introduction.

Let (Bt,t >- 0) be a standard 1-dimensional Brownian motion starting from 0,

and denote by S = sup B t >- 0, its one-sided supremum.
~ 

s~t 
~

The aim of this Note is to give a simple proof, and equivalent formulations of

a striking remark due to Seshadri [7] (see also Lepingle [S1).

No novelty claim is made, but Seshadri’s remark probably deserves to be more

widely known (see, e.g., Rogers-Satchell [6] for some consequences) ; ;

moreover, the arguments developed below are very dif f erent f rom those in [7],

which hinge on some "foliation" property of certain exponential families.

Theorem I (Seshadri) : Let t > 0 be fixed.

Then, the two variabLes St(St-Bt) and Bt are independent, and, moreover :

(1) e,

where e is a standard exponential variable (i.e. : : Pee Edt) = dt e t).
Obviously, this result may be immediately derived f rom the well-known formula

for the joint law of (St,Bt), which we present as follows :

(2) P(S E dx ; S -B E dy) = (x+y) exp - dy.

However, we f ind it more interesting to derive the Theorem as a consequence of
some elementary considerations about the supremum of a Brownian bridge ; ; this

is done in Section 1.

In Section 2, we show how, using some algebraic relations between beta and

gamma variables, Seshadri’s remark may be deduced from the uniform distri-

bution on [O,Rt == 2St - Bt] of either St or St-Bt. Finally, in Section 3,
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we show how Denisov’s path decomposition [1] of (Bu,u - 1) before and after

the unique time 9+ ( 1) at which = sup B also allows to recover (I).
° 

1. The distribution of the suprema of Brownian bridges.

To start with, we give an easy, although helpful, criterion of independence

between a Brownian functional F and B. .
i

Proposition : : Let F : : C[O,ll -~ ~ be a continuous functional on the canoni-

cal space C(0,11, endowed with the topology of uniform convergence on [0,11.

Then, the following properties are equivalent :

i) 1) and B i are independent ;

ii) The law of F(Bu + cu ; ; u ~ 1) does not depend on c, as c varies

in IR ;

iii) The law of F(bu + xu ; ; u ~ 1) does not depend on x, as x varies

in R, and (b u ,u * 1) denotes the standard brownian bridge.

Proof : : The equivalence between i) and ii) follows easily from the Cameron-

Martin relationship between the laws of 1) and (Bu + cu ; ; u ~ 1).

The equivalence between i) and iii) follows from the well-known represen-

tation : : B - b u + uBI’ , u ~ 1, where 1) is a Brownian bridge

independent from B . o

In order to prove the Theorem, we need only show, using the equivalence

between i) and iii) in the Proposition, that : :

(3) S (S -x) (law) 2 1 e, where : : S = sup(b + xu).

[For x = 0, (3)0 is the well-known fact that (So) = 2: e ; ;

note also that (bu + xu,u ~ 1) is the brownian bridge 0 -+ x on the time-

interval [O,11J.

It is immediate that (3)x is equivalent to : :

S x (law) x 2 + x2 4 + 2 e 
u2 

’
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Using (b u ,u  1) f(l-u) , u  I > we obtain : :

(5) S Bt+tx (law) Bu+x
where, for the last equality in law, we have used the fact that (uBI/ ,u > 0)

u

is also a Brownian motion.

Thus, f or any a > x, we have : :

P(S  a) = P sup 1 +u  a - 0, Bu + x  a(l+u»
~ ~ ~ ~

(6) = P sup (B -au)  a-x .~ ~
We now use the well-known

Lemma I : If (Mt,t ~ 0) is a continuous, R + valued martingale such that

M t 0 , ’ and M - o l, then : sup M t 1/U , where U is uni f orm

on [0,11.

as well as the f ollowing consequence, which goes back to Doob.

Corollary : : For a > 0, -au) 2a 1 e.

uo 
u 2a

Proof : : Apply the Lemma to : : M = exp(2a(Bu-au)). a

We then go back to (6) to end the proof of (4)x by writing : i

P(Sx  a) = P(1 2a e  a-x) = P(1 2 e  (a - x 2)2 - x2 4)
The proof of (4)x now follows. C

We now make a few comments on some of the assertions f ound 
above : :

a) in the statement of the Proposition, the hypothesis that F is continuous

on C([0,1D serves to ensure that the law of F(bu + xu,u :S 1) does not

depend on x, for every x e R.

b) A sufficient condition for iii) to be satisfied is, of course, that : ’

F(bu + xu,u ~ 1) = 1) , ,
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for some f unctional G independent of x. This is satisf ied if F, as defined

on the canonical space C[0,11, where w(u), u ~ 1, is measurable

with respect to = uXl ; ; u ~ 1}.

But, Seshadri’s remark shows that this condition is only sufficient, and not

necessary to ensure that F(Bu,u ~ 1) and B i be independent.

Furthermore, f rom Theorem 1, one can construct many other r. v’s which are

independent from B , , although they are not measurable with respect to
(b(u),u ~ 1). The following is a finite dimensional example : :

take 0 = to  t i  ...  = t ; ; then, the vector

(S (t~,t j+1) - (S (t j,t j+1) - ) ; j = 0,...,k, is independent from B . 1 .

(We use the notation = sup B )~ u~s~v ~

This assertion follows from Theorem 1, used together with the independence of

the increments of B.

c) Different applications of the Lemma are given in [41, where the following

consequences are shown :

for a > 0, ~0 ds exp(Bs - as 2) (law)2/Za,
where Za denotes a gamma variable with parameter a, i.e : :

P(Za ~ dt) = 
ta-1e-tdt 0393(a).

2. Going from (2St-Bt) to St(St-Bt).

It is easily shown, using formula (2) for instance, that the joint law of

(5t,St -8t) is a consequence of the following subproducts of Pitman’s

celebrated theorem : : R def 2S - B = S + (S - Bt), t ~ 0, is a

3-dimensional Bessel process, and, for every t, both St and (S -B ) are

uniformly distributed on (More generally, this holds whenever t is

replaced by any stopping time T w.r. to the natural f iltration of R).

Hence, we can write (2) in the random variables "algebraic" form : :
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(2’) 

where U is unif orm on [0,1], and independent f rom Vi ( I ~ , with
N a 3-dimensional Gaussian variable, the 3 components of which are in-

dependent N(0,1) variables.

We are now in a position to give another proof of Theorem 1 as well as

other remarks of the same ilk

Theorem 2 : (We keep the previous notation). Let t > 0.

Define the 3 "remainders" Pt’ , , and as follows :

Rt = pt = (St-Bt)2 + pt = pt. .

Obviousl y, one has :

(3St-Bt)(St-Bt) ; pt = (3St-2Bt)St ; pt 

Then, the following identities hold :

(S2 ~ p,) (law) ~(S -B ~2 ~ p") (law) (lgw) t(N2~(N’)2 + (N")2)

where N, N’ and N" are 3 independent N(0,1) variables.

Concerning the third pair , more precisely, the r.v’s Bt and

St(St-Bt) are independent.

Proof : : i) 1 We shall only prove the last assertion, since the two f irst ones,

which amount to : :

(S2~p, ) ((S ’ (N, )2 + (N")2?

may be obtained by using the same arguments.

ii) Our proof will consist in using the identity in law : :

(7) (Za ; Zb) (law) Za+b(Za,b ; 1-Za,b)
where Za and Zb are two independent gamma variables, with respective para-

meters a and b, and is a beta variable with parameters (a,b).

We shall use (7) for a = 1, and b = 1/2 , , in the following form : :
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if U is uniform on (0,11, then V = 1-2U is uniform on (-l,ll, and

moreover:

4U(1-U) = 1-V2 Z 1 .

1’ 2
Consequently, from (4’), we deduce:

(St(St-Bt),Bt) - (R2t U(1-U) , RtU - Rt(1-U))
R2

- (4t) 4U(1-U), Rt(2U-1)
R2

- (4t) (1-VZ)~ -RtV .
To f inish the proof, we take t = 1, and we obtain:

(8) (R21 2 (1-V2) , R21 2 V2)(law) (Z3/2 Z1,1/2 , Z3/2 (1-Z1,1/2))
2 ’2 2 2 2 2

where on the r.h.s, the beta and gamma variables are assumed to be indepen-

dent.

Finally, reading (?) from right to left, the joint law found in (8) is that of

(Z1,Z1~ ) , which ends the proof. o

2

3. Karatzas-Shreve trivariate identity and Denisov’s decomposition.

3.1. Using Lévy’s equivalence theorem:

(St,St-Bt ; t ~ 0) (law) (Lt, |Bt | ; t ~ 0),

where (Lt,t >- 0) denotes the local time of 0) at 0, one may

immediately translate Theorem 1 as follows:

f ix t > 0 ; then, LtBt is a bilateral exponential variable, which is

independent of Lt ’ 

3.2. Another relation between the joint laws of (Bi,.LI) and (B1,S1) was

noticed by Karatzas and Shreve ([31, p. 425, Remark 3.12) :

(9) (B+1 + 
1 2 L1 , 

B-1 + 
1 2 L1 , A+0 

(law) (S1 ,S1 -B1 ,03B8+o ).
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where = 10 ds and 8o is the unique time t  1 at which Bt
0 

s )

equals Sl. .

This trivariate identity is shown in [21 to be a particular consequence of

Bertoin’s rearrangement of positive and negative excursions for Brownian

motion (with or without drift).

Karatzas and Shreve I4] also explained (9) via a Sparre-Andersen type trans-

formation.

We now remark that, using (9), Theorem 1 may be translated as follows :

(Bi + 1 2 L ) i + 1 2 L ) i is independent of g 
1’

or, equivalently :

(10) 1 L i ( ~ B ~ ] + 1 L ) is independent of B . .

Now, using again Lévy’s equivalence theorem recalled in 3.1 above, (10) is

equivalent to :

(11) + 1 S ) is independent of (S -B ) , ,

which is precisely trie result in Theorem 2 concerning the "second remainder",

3.3. Finally, we also remark that Denisov’s path decomposition (11 of

1) before and after time eo also yields at least a part of Theorem

1, in particular the identity in law (I).

Indeed, from [11, one deduces :

(S ,S -B ~e+) (~ , ~ m’,A)

where A, m i and m’ i are independent, A is arc sine distributed, and 
’

m m, 
1 1

Hence, S1 (S1 -B1) (law) (A( 1-A )4 ee’ )1/2, where on the r. h. s., A, e and e’

are independent.

Since A with e uniform on [0,2n[, it follows that :
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A( 1-A ) (law) 4 1 A, hence:

(12) S 1 {S 1-B1) (law) (A ee’)1/2 .

Next, we shall use

Lemma 2 : For any r > 0, the foiiowing identity in iaw holds :

~ 13~ 1 Z (law) ~Z Z 
+ Z. + ~ 

1/2

2 2r r,1/2 r 1/2 r 1/2

and, tn particular :

(14) 2 1 e ( law) ~A 
where on the r.h. sides, the three r.v’s are independent.

Proof : From the duplication formula for the gamma function, one deduces:

Z2 (law) 4 Z Z
2r r+1/2 r

(see [9~, p. 112, Lemma 8.1. ).

Then, (I3) follows as a consequence of (?). Finaily, (I4~ follows from (I3),

for r = 1/2 . o

Now, from (12) and (I4~, we recover the identity in law (I).
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