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Abstract

A counterexample is exibited showing that the condition of Ogawa inte-

grability introduced in [3] is not satisfied by any complete orthonormal

system.
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Introduction

In the past twenty years Ito’s integral has been variously generalized by
several authors. A very attractive notion has been suggested by Ogawa, who
in [5] gave a definition of a stochastic integral linked to the results of Ito-Nisio

concerning the uniform convergence to the Wiener process of a suitable random
walk. To describe it more fully, let W = ,1] be a Brownian motion on

the probability space (03A9, A, P), and let 03BB be the Lebesgue measure on [0, 1]. A

process H belonging to 0 P) is said to be Ogawa integrable, with respect
to a given orthonormal system (e,) of the space L2(a), if the series

1ei(s)dWs tei(s)Hsds
~1~0 0

converges in probability for any t in [0,1].
Such an integral may depend on the particular orthonormal system chosen.

In [6] Ogawa studies the integrability of the continuous quasi-martingales and
shows their integrability relatively to the trigonometric system. Later on, in

[7], he proves that the integrability with respect to the trigonometric system
implies the integrability with respect to the Haar system. Lastly, in [8], the
orthonormal systems which make integrable every continuous quasi-martingale
are characterized as the ones satisfying the following condition
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sup 

10 

( ei(t) t0ei(s)ds) 2 dt  ~ . (1)

The trigonometric system as well as Haar system are easily seen to verify condition

( 1 ) . However, the problem of deciding if ( 1 ) holds for any orthonormal system of

L~(A) is left open (see [3]).

More recently some authors investigated Ogawa integrability independently
from the base by restricting the class of integrands (e.g., to those processes which

are regular in the sense of Malliavin derivative, as in [3] [4], or to multiple
Ito-Wiener integrals, as in [9]). Nevertheless these classes do not contain all

continuous quasi-martingales (see the counter-example in (1~ ), so that it is still

interesting to decide whether or not condition ( 1 ) holds for any orthonormal

system. In the present note we give a negative answer to this question by exibiting

a counter-example.

In order to construct a complete orthonormal system verifying

~i n t 2

sup y~()/ e,(s)ds (2)
n 0 i-1 /o /

we consider as a starting point the easier problem (Lemma 2) of finding, for a

given real number M, a finite orthogonal family of simple functions ul, ... , un
such that

10 (ui(t) t0ui(s)ds )2 dt ~ M.

In Lemma 1 the latter problem, which has a finite-dimensional nature, turns into

the spectral analysis of a suitable matrix. Iterating the above construction on

each interval of some countable partition of [0,1] gives rise to an orthonormal

system (ei) of L (A) satisfying (2). The system (et) can then be completed into
an orthonormal base, and, if the latter is conveniently ordered, there results that

property (2) still holds.

1. Preliminaries

In this section we shall briefly sketch the proof of Ogawa integrability for

continuous quasi-martingales so as to emphasize the necessity of condition ( 1 ).

Let H be a continuous quasi-martingale of the form A + K. W, where A

is an adapted process having bounded variation trajectories, K is a bounded

predictable process, and denotes the Ito integral of the process K. Since
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bounded variation processes are Ogawa integrable with respect to any orthonor-
mal system, as it is readily seen by means of a simple integration by parts, we
can restrict ourselves to the processes of the form H = .

Given an orthonormal system (ei) of L2(~), for any i > 1 and any t in ~0,1~,
we denote Ei(t) the function f~ ei(s)ds. We have to prove that the series

" I t

£ ei(s)dWs Hgei(s)ds
i=1 0 0

converges in probability for any t in ~0 ,1~ .
Due to the integration by parts formula, there holds

t t

t0 Hsei(s)ds = Ei(t)Ht - t0 Ei(s)H9dWg.
Applying the Ito formula gives

n 1 t

£ ei(s)dW9 = S1(n) + S2(n) + S3(n)
i=1 0 0

where

n 1 t 8

S1(n) _ 03A3{ HtEi(t) ei(s)dWs - Ei(s)KsdWsei(s’)dWs’} ,i=1 0 0 0 
n 1 t

52 _ - ~ ei(s)dW9 
i=1 0 0
n t

S3(n) _ - ~ Ei(s)eE(s)Ksds.
i=1 0

Hence one easily verifies that S1(n) and S3(n) converge in probability. Moreover,
if the system (ei) verifies condition (1), then S2(n) converges in probability to
- 2 fo 

2. Construction of a counterexample

Theorem. There exists a complete orthonormal system of L2(a) such
that 

1 n t 
2

sup / ~ ei(t) / ei(s)ds dt = oo .
nEN 0 i=1 0 

We need some lemmas.
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Lemma 1. . Let n ~ N and let V be the n x n matrix with coefficients

" 1~J~ . . (3)

Then, letting 8k =: ~y for k = 1,2,...~, the eigenvalues A~ ofV and the

associated eigenvectors uk = (uk1,..., ukn) are

03BBk = (-1)n 2sec(203B8k)
uk = 03C1k (- sin 03B8k, - sin(303B8k), sin(503B8k),..., (-1)[n+1 2] sin((2n - 1)03B8k)) (4)

03C1k = (n 2 + 1 4 tan 03B8k)-1 2
Proof. First, let us observe that the inverse matrix of V writes

r ... 1 0 i’"’ ’-i i

: ’. : : : 1 0 -i

i ..’. i o i =(-ir ~ ~

0 ... 0 0 1 ’’. ±1

.1 ... 1 1 1.. ±1 0

or, in shorter notation, V’~ = where D and J are the n x n matrices

with coefficients respectively D,j =: (20141)~ ~ ~tj and J~ =: + ,

that is

- -1 
’ 

’-1 1
- 1 1 0 1

D= +1 
, J = 1 0 

1 
.

+1 1

1 0

Therefore, if u G is an eigenvector of V corresponding to the eigenvalue A,

then ~ =: (-l)~A"~ is the eigenvalue of J relative to eigenvector v =: Du . Now
a base of eigenvectors of J, together with eigenvectors is

the one defined by letting 8k =: 2~T and

k = 2 cos(203B8k)
t;~ = sin(5~),... , 

~~~

as can be shown by direct computation (or using the argument developed in the
next Remark 1). Letting pk =: one obtains

03C12k = (sin(2j - 1)03B8k)2 = n 2 + 1 4 tan03B8k ,
j=i

whence equations (4) follow letting Ajb = uk = 03C1kD03BDk.
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Remark 1. For a more euristic computation of the spectrum of J, let us observe
that equation Jv = with v in l~n, ~ in R, is equivalent to:

where the Wk(X), for k E N U ~0}, are polynomials verifying the linear recurrence
formula

W0(x) = 1

W1 (x) = 2x + 1 (6)
Wk+1(x) + Wk-1(x) = 2xWk(x) 

.

Hence one recognizes the orthogonal Jacobi polynomials for

a = 2 , ~ _ - 2 ; these admit the representation in the following closed formula,
which one obtains smoothly from equations (6) (see e.g. [2])

Wm(x) = sin(m+1 2)03B8, x = cos03B8 (7)
sm(2)

and one finds again equations (5), taking account that the roots of Wn are, thanks
to (7), xk = 1  k  n .

The theorem follows smoothly from a slightly weaker preliminar result, which
we now state with the same notations as Lemma 1. .

Lemma 2. Let n be even and, for 1  k  n, let f k be the simple functions
defined by

n

fk(t) _ u~ .

j=1 
~ 

Then fk are orthonormal in L2(a) and one has

10 
(

fk(t) t0 
fk(s)ds)

2 

dt ~ Cn =: 1 2(log n 203C0 )2. (8)

Proof. Since the vectors uk defined by equations (4) are orthonormal in ]Rn, the
functions fk are immediately seen to be orthonormal in L2(À). So we are left

with the L2 estimate of the function

s(t) = ~ h(t) / fk(s)ds .

1k 2 "°
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To this end let us consider the test function

~) = n 1-f- (_1)n+~ Xf .,L, n l (t) ’ ° (9)
j=i 

2

There results [[ §[[2 = 1, whence

1 t

(~~) = / .!/ L fk(t) / ~ ~ Bi~~ 2 0 /
1 t

= ~ / (10)

- - 1 ,

21k 2 0 0 0

where the latter inequality follows from the symmetry of the integrands
with respect to the pair (t, s).

Let us notice that the function s)), using equations (3) and (9), can also
be written as

i, j

whence

Thus equalities (10) yield

1 2n 03BBk = 

1 8n 1 cos(2k03C0 2n+1)

= 2n+1 28n03C01 cos(2k03C0 2n+1) 203C0 2n+1 ~ 2n+1 28n03C0 2n+10 1 cos tdt (11)

Indeed, the sum in the left side of equation (11) is an upper Riemann estimate
for the integral in the right side .

On the other hand

2n+1 28n03C0 n03C0 2n+10 1 cos tdt ~ 1 803C0 03C0 2-03C0 4n0 1 cos tdt

= 1 803C0log cot(03C0 8n) ~ 1 803C0log n .
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Therefore one concludes

j j ~ jj 2 ~ 
1 log n ~S~22 ~ 1 2 (log n 203C0 )2 .

Remark 2. In the summation shown in (8) we took only the first 2 functions
fk, that is, the ones corresponding to the positive eigenvalues ~~ of the matrix
V. This is due to the fact that, as it is shown in equations (11), the arithmetic
mean of the positive eigenvalues of V, n 03A31~k~ Z 03BBk, is of the order (at least) of
log n, whereas the mean value extended to the whole spectrum is 1 n 03A31kn 03BBk =

n Tr(V) - 2 . 
_ _

Remark 3. For any given subinterval [a, b~ of [o ,1~, one can also choose the
functions of Lemma 2 with supports in [a, b~. Actually, it is sufficient to consider
f k(t) _: (b- a)- z f k b-a if t E [a, b~, and f k(t) = 0 if t ~ [a, b~. Then inequality
N

(7) holds for f,~ relatively to the constant Cn =: (b - .

Lemma 3. Let gl, ... , gp be orthonormal functions in L2(a). There holds

1 P t 
2

~ gs(t) g=(s)ds alt  p .o ==1 0 
Proof. The Fourier coefficients of X[o ,t] with respect to ga is f o Then

it follows, using Schwarz inequality and Bessel inequality
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Proof of the Theorem. Let be a countable family of disjoint subintervals

of [0,1] . For any index i e N, applying Lemma 2 and Remark 3, we can find n;

simple functions such that

(fij,fik) - 1 ~ ~a (12)

Ii (13)

/ fij(t) t fij(s)ds)2 dt > 4 (14)
o 0 

The family { f i j, i ~ N, 1  ~  is clearly orthonormal, since and f ~k

verify (12) whenever i = l, while have disjoint supports if i ~ 1, thanks to (13).
Next let us consider an orthonormal base {fi0}i~N which completes system
i E N, 1 _ j _ n~~ to an orthonormal base i E N, 0  j  then

re-indicize the latter by means of the position

ek = fij if and only if k = i + j + and 0  j  n; . .

(This amounts to give the set of pairs (i, j) its lexicographic order.) For any

p E N, let m =: p + nl~ Thus one gets

m t p ni ~ t
ei(s)ds ~ ~ 1 

= fi0(t) t0 fi0(s)ds + fij(t) t0 fij(s)ds .

There follows, using the elementary inequality (a + b)2 ~ a2 2 - b2, ,

/ ei(t)tei(s)ds)2dt (15)0 i=1 dt (15)

~ 1 210(fij(t)t0fij(s)ds)
2dt-10(fi0(t)t0fi0(s)ds)2dt

= 1 2 10(fij(t) t0 fij(s)ds)
2dt-

10(fi0(t)t0fi0(s)ds)
2

dt,
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where the latter equality is a consequence of the fact that the functions /~ with
different indices z have disjoint support, as we remarked above. Due to inequality
(14) and to Lemma 3 one has respectively

1 2 10 ( fij (t) t0 fij (s)ds)2 dt ~ 2p

10 ( fi0 (t) t0 fi0 (s)ds)2 dt ~ p,

and we conclude from (15)

10 ( ei (t) t0 ei (s )ds)2 dt ~ p.

The claim follows for p being arbitrary.
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