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1 Introduction

In previous articles [3] [4] we were interested in SDE’s on manifolds driven by non
continuous semimartingales; we got an extension of Meyer-Schwartz second order
calculus [16], [19]. The main idea to deal with macroscopic jumps was to substitute
2-jets at x (only local behaviour is needed in the continuous case) by functions that
are twice differentiable at x . In this setting a typical coefficient of SDE is a function
~ from V x W x V to W that describes how the solution Y jumps when the driving
semimartingale X has a jump, we write :

Y = cp(Xt-, Y-, Xt) if Xt.

In [3] the existence and uniqueness of a strong solution are obtained for such SDE’s
with locally Lipschitz coefficients, and the stochastic development of a cadlag semi-
martingale in the tangent space of a Riemannian manifold was presented as an example
of a SDE with jumps in [4]. Here we will be concerned with Markov properties of
solutions, when the driving process is a Levy process living in R", more precisely we
will compute their infinitesimal generator. This type of processes was already studied
by Fujiwara, Applebaum [8] [1] but the techniques used were completely different;
they construct Levy flows on manifolds. Since we have not studied flows for SDE’s
with jumps we will not go further in this direction. In [18] Rogerson has defined
the a-stable process with values in a Riemannian manifold M as a Brownian motion

time-changed by a suitable subordinator; he has also constructed another process,
called pseudo a-stable, as the stochastic development in M of a vector valued a-
stable process in These definitions agree when M is a Euclidean vector space
but not in general. We will apply results on SDE’s with jumps to compare pseudo
and a-stable processes. In Section 2 we recall the existence and uniqueness theorem,
and its application to stochastic development. Then we exhibit sufficient conditions
for the solution to be Markovian, and compute its infinitesimal generator. In sec-
tion 4 we give a probabilistic proof that pseudo a-stable and a-stable processes do
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not have the same law if the manifold is Riemannian with a pole and a rotationally
invariant metric. We have to assume that Ar  ( respectively > ) where
r represents the distance from the pole because we are studying the radial part of a
Brownian motion. ’This evidently includes sphere in all dimensions. On the sphere in
dimension 2, it is worth mentioning that A/2 and the infinitesimal generator of the
pseudo 1-stable process are linked via a formula involving a concave, piecewise affine
function. As a consequence of this remark the pseudo 1-stable process on the 2-sphere
is not a Brownian motion time-changed by a subordinator.

2 Summary on SDE’s with jumps.
All filtered spaces (H, will verify the so called "usual conditions". If H is a
real valued process, a new process starting at zero is defined by :

E ~

if the sum is absolutely convergent, otherwise S H = oo.
All manifolds will possess a countable atlas and we will use Einstein’s convention

for summation.
To introduce SDE’s with jumps we define first constrained coefficients of SDE’s

with jumps.

Definition 1 Suppose that C is a closed submanifold of V x W, such that the projec-
tion pi from C to V be onto and submersive. A measurable application p from C x V
to W will be called a constrained coefficient of SDE’s with jumps if

. for each z = (x, y) in C, p(z, x) = y

. p is C3 in a neighborhood of {(z,pl(z)) /z E C~

. (x, cp(z, x)) E C.

Remark 1 The particular case when C = V x W can be interpreted as the uncon-
strained case .

The following existence and uniqueness result was shown in [3].

Theorem 1 Take a constrained coefficient 03C6 from C on to V, a semimartingale X
living on V. . We will note a SDE with jumps

0 0

f dY = (1)Yo = v0 ,

Equation (1~ admits a unique solution ~), where rt is the previsible stopping time
of explosion of with the meaning that if to ", to w are two C2
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imbeddings from V to R", respectively from W to R*"

Va = 1 to w V + ~03C603B1 ~xi((X-,Y-),X-)dXi
+ 1/2 / 
+S(~((X-,~),X)-y--~((X-,~),~-)AX’). ~ ( (x- ’ Y- I ’ x- ) Ax) ° 

(2)

Remark 2 Because of equation clear that the solution jumps only when
X has a jump, and Yt = Xt, which gives an intuitive
interpretation of the coefficient p.

As an example of such SDE’s stochastic development of semimartingales with jumps
has been presented in [4]. For continuous processes this method had been used to
obtain a Brownian motion on a Riemannian manifold from a flat Brownian motion.
Stochastic development has been extended to discontinuous driving process in [18] [6].
We suppose that A4 is a complete connected Riemannian manifold with a C~ atlas
and dimension m, O(M) will be the orthonormal frame bundle, and x0 a reference
point of M. With these notations Ro 6 will be an isomorphism from Tx0M
to Two steps are necessary to develop a deterministic or random curve : solve
a SDE between V = R~ and W = O(M), then project the solution onto M. Let us
describe the coefficient we need for the first step when the driving process may have
jumps. The process is the driving semimartingale in and the coefficient
of this SDE is constructed with the Riemannian exponential. If z, ~ are two points
in R~ and if R belongs to C~(M) we define ~(~(~R)~) as the result of parallel
transporting R along the geodesic until time t = 1. In this example
no constraint is needed. The equation

= 03A6(Y, X)

~ 
has a solution Y until the explosion time ?y. We call this process Y the horizontal lift
of X and 7r(K) == ~ is the developed curve associated to X where 7r : O(M) ’2014~ M
is the trivial bundle projection. If X is smooth enough y is nothing else than the
usual developed curve of textbooks in Mechanics. This setting includes continuous
stochastic development of Brownian motions that leads to horizontal Brownian motion
as in [5]. In Section 4 we will study with some care what happens when X is the a-
stable process, extending results of [18].

3 Markov solutions to SDE’s with Jumps
In a vector space, the pair of the driving process and the solution is Markovian, when
the driving process is Markovian. But if you want the solution alone to be Markovian
we "practically" have to suppose that the driving process is a Levy process. A precise
formulation of this is given by Theorem 32 in [17], and by [14] for the converse.
Therefore in this geometric setting we will suppose that the driving Levy process
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lives in a vector space. Actually only the group structure is needed. Furthermore if
X jumps from Xt- to Xt, solution will not explicitly depend on Xt- but on jumps
Xt - 

Let us introduce classical notations for Markov processes. Consider an homoge-
neous Markov V-valued process Xt and its filtration = s  t). Suppose the
existence of a family of transition probabilities P(t, x, A) defined for all x, 0  s  t,
and Borel sets A such that

E(Xt E = E = P(t - P ps

for all s, t 0  s  t and Borel sets A. Usual hypothesis is assumed for transition
probabilities. Because of the possible explosion of solutions of SDE’s we have to
consider submarkov transition probabilities. Adding to V a cemetery point is the
usual trick to deal with such problem. Last we state the classical representation for
Levy processes see [15].
Theorem 2 Let X be a càdlàg Levy process living in R" then X has a decomposition

Xt = at + 03C3Bt + {|x|1} [0tr{v(dx,ds)-03C0(dx)ds}+St(0394X1{|0394X|~1}) (3)

where a is a vector in Rv, 03C3 belongs to £(R~, R~), B is a R" Brownian motion;
v(dx, ds) a vector Poisson measure and 03C0 a measure on Rv such that

E(v(A x (0, t])) = avec A E ~i(R~).
In the next proposition we exhibit sufficient conditions for the solution of a SDE to
be a Markov process. The emphasis is put on the non-linear treatment of jumps in
the infinitesimal generator.

Proposition 1 Consider a unconstrained coefficient 03C6. Suppose that the driving pro-
cess lives in Rv, yo is a random variable on W, p is a function of the increment
cp(x, y, z) = z - x), and the driving semimartingale is a Levy process with a
decomposition as in Theorem ~. The solution of

0 0

dY = dX )
Yo = yo

is an homogeneous Markov process with transition probability

P(t, x, C) = E C)
where y E W and YY verifies

0 0
_ ~(Y~~ dX )

Yo = y.

Furthermore if f E CZ(W ), f(Y) - f (Yo) - fo is a local martingale and A

is defined by

where stands for and maps Rv to V. .
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Proof : Choose an imbedding recall the system (2). For all a =

1 to w on [[0,7;[[weget

Replace ~ by its decomposition to obtain

on[[0~[[

~ = ~ + ~ ~~-.~~ + ~ ~(~-,o)(~):
- "~ ~~7~-’~~~~
+[0,.] {|x|1}~03C803B1 ~xi(Ys-,0)xi{v(dx,ds)-03C0(dx)ds}
+S(~03C803B1 ~xi(Y_,0)0394Xi1|0394X|~1)
Q 

~’ 

9~"+0(~(~,0)-~--~-(~,0)AX’). (6)

We can write this expression with Poisson measures

~ = ~ + ~ ~~-’o)~ + ~ 
- "~ ~~7~-’~~~~
+~.MH~~-’~’~’~-~~ ’

+~,~H~~~-’") - ~ - ~(~0)AX.)M~). . (7)

SDE’s with jumps are translated in Rogerson’s language, they become SDE’s with
Poisson jumps, and Rogerson [18] proves in theorem 3 p 4.4 that the solution is a
homogeneous Markov process. He proceeds as in the classical Gihman Skorokhod’s
demonstration [10], the main steps are similar to those for diffusions : first verify the
measurability of Yyt with respect to (y,t), and conclude using the now property of
the solution. However there is an additional technical problem with the explosion.
The computation of the infinitesimal generator is an immediate consequence of Itô’s
formula, o

4 Pseudo a-stable and a-stable processes

Stochastic development of jump processes was presented in Section 2 . Rogerson in
[18] tried to develop symmetric a-stable processes in order to find a Markov pro-
cess with infinitesimal generator 20141/2 (2014A)~ on the Riemannian manifold. But
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what works for continuous processes like Brownian motion fails when a jump occurs.
Rogerson has depicted the situation with a non-commutative diagram : the vertical
arrows correspond to the stochastic development, the horizontal one to subordina-
tion. A classical construction of a Markov process with the infinitesimal generator
- 1/2 (-~)"~2 a E]O, 2[ is achieved in [7] with a pair of independent processes ( B, T"),
where B is a Brownian motion, and T" a one sided a/2- stable R+-valued process.
The subordination is simply the time-change consisting in taking B at random time
Tt , and it works on any state space whatsoever as soon as a Laplacian is defined on
it.

Figure 1: non commutative diagram

The framework of SDE’s with jumps explains that the laws of pseudo a-stables
and a-stables processes differ because of the curvature effect. When the driving
semimartingale jumps, the stochastic development uses the interpolation between
BTa and BTt instead of the Brownian curve from time T~L until But one knows

that two curves that possess the same ending points are not necessarily mapped to
curves with the same ending points. We can state this claim precisely as soon as we
can compare how fast the Brownian motion goes to infinity in a vector space and on
the particular Riemannian manifold. The radial part of the Brownian motion will be
the basic tool of the next result.

Theorem 3 Take a Riemannian connected manifold V with dimension v > 1. . Sup-
pose that V has a pole x0 : in polar geodesic coordinates centered at xo, the metric
has the form ds2 = dr2 + suppose also that y)  for all x, y in a
normal neighborhood of xo (respectively > ~. The laws of pseudo a-stable and a-stable
processes are distinct.
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Proof : Assume that expx0 is a diffeomorphism from the ball with center

xo and diameter p  o0 onto V, we will choose p small enough such that there exists no
(x, y) belonging to V and y conjugate to x. A Brownian motion By living on V with
a starting point xo is constructed with a stochastic development, and we call T the
first exit time of Bv out of V . . Taking a one-sided a-stable process T" independent
of By, we define a sequence of stopping times

Tn = inf{t ~ 0/dV (BVT03B1t- , BVT03B1t ) > 1/n},
where dy is the geodesic distance on V. The limit of Tn is almost surely 0, the
sequence of events An = ~T > TTn} is non decreasing, and An) = 1. Applying
the Ito formula to the function x) when s > leads to

drVs = dWs + 1/2(v- 1)g’(rVs) g(rVs) ds (8)

if  s  T and ra = Ba ). In equation (8) W is a real valued Brow-
nian motion, and one can construct a TxoV Brownian motion, with ra = B8)
satisfying 

drs = dWs + 1 /2(v - 1 rs ds. (9)

Therefore thanks to the comparison Theorem of solutions of SDE’s, we know that

 B.)

on and

 ) on An.

But when jumps, the pseudo a-stable process X" jumps too and remark 2
implies = Hence almost surely for n big enough

 

Consequently if Tn = inf{t > > 1/n}, we know that Tn  Tn and
when Tn = Tn then If E N, Tn  Tn) > 0
we take the conditional probability P( ~~n E N, Tn  Tn), BT and X" do not
have the same conditional law, since in is obtained with the same construction from
X" as Tn from BT4. But if we consider P2 = P( E N, Tn = Tn) assuming

EN, Tn = Tn) > 0, then BTa and X" do not have the same law on (S~, P2,,~)
because  So the laws of pseudo a-stable and a-
stable processes are distinct. The same proof works when inequalities are reversed.
0
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5 Spectral comparison between pseudo a-stable
and a-stable processes

Rogerson proved the same theorem in the special case of sphere in dimension 2, but
he used different techniques : he compared the spectra of the infinitesimal generator
of both processes. In this particular case the spherical harmonic functions are the
eigenfunctions for the pseudo a-stable infinitesimal generator Aa. This phenomenon
is quite general and it is a consequence of a geometrical remark. It is clear that both
processes have their law invariant under a rotation preserving the starting point. We
should consider this remark as a hint to study those processes on symmetric spaces.
As a conclusion we will exhibit a fairly strange geometrical property of the spectrum
of the pseudo a-stable process that prevents it to be a subordinated process of a
Brownian motion.

The next proposition computes the infinitesimal generator of the pseudo a-stable
process, it is a mere consequence of Proposition 1 applied to the first step in stochastic
development. For the second step we use the rotational invariance of the Levy measure
of an a-stable process to get the Markov property of the projected process from 0(V)
onto V.

Proposition 2 If f E 

Aaf(x) = TxV{f(expx(u)) - - (10)

uihere = is the Levy measure associated to a-stable symmetric process
in RV.

Geometers working on symmetric spaces usually introduce the spherical functions
as the eigenfunctions of all differential operators that are invariant by the action of
the isometry group. We can show that the spherical functions are also eigenfunctions
of Aa, although Aa is not a differential operator. We first have to recall basic facts
and notation for globally symmetric spaces.

Definition 2 Let V be an analytic Riemannian manifold; V is called a symmetric
space if each x E V is an isolated fixed point of an involutive isometry s~.

Symmetric spaces are analytically diffeomorph to the quotient of the connected com-
ponent G = Io(V) of the isometry group which contains the identity by the subgroup
K of G for which j’o is a fixed point of V

G/K - V
gI{ ’2014)’ g(xo).

On the other hand G acts on G/I~ by (g, hI~) where T(g) : H

and D(G/K) represents the space of differential operators on invariant

under the action of G. We get an easy example with the Laplace Beltrami operator
of V when it is identified to with its Riemannian structure.

If proj is the projection of G onto G / K recall the definition of spherical functions
in [13].
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Definition 3 Let p be a complex-valued function on G/K of class C°° which satisfies
cp(proj(e)) =1, ~ is called a spherical function if

(i) Vk E K.

(ii) VD e D(G/K).

Although Aa is not a differential operator, its law is invariant under the action of K,
and the spherical functions are still eigenfunctions.

Proposition 3 Let p be a spherical function which belongs to the domain of We

get
A«(T ) = 03BBA03B103C6.

Proof : Take .o = 

= 

thanks to symmetry of 03C0 we can write

A03B1(03C6)(x0) = 1/2 Tx0v{03C6(expx0(u)) +03C6(expx0(-u)) - 2}03C0(du).

We have then to solve the problem in G. Theorem 3.3 in [12] explains that Riemannian
exponential of a symmetric space may be expressed with Exponential of the Lie group
G. Take the notations of [12], 0 is the Lie algebra associated to G, T with K, and 
satisfies ~3 = ~ ~ ~3, moreover d(proj)eis an isomorphism from ~3 to Txo V. If we note
= p o proj, we express A«(cp)(xo) as an integral on  with

=1/2 + 

With a technical transformation it appears as

= 1/2 K + 

where dk stands for the Haar measure on K. If we want to compute where

x = proj(h), we apply an isometry h which maps xo onto x and we get

A«(cp)(x) =1/2 K + 

One knows that the spherical functions are solutions of the following functional equa-
tion (Proposition 2.2 [13])

Vg, h E G K = (11)

So we get
- 

as we claimed. o
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A probabilistic approach of this problem is related to. the study of semi groups
that are invariant under action of K as presented in [9] [11]. Let (Xf) be a Markov
process starting from x the law of X x is assumed to be invariant under the action of
the subgroup of isometries fixing x. The commutation property of the semi groups
(Pt) and (Q s) corresponding to another process YY of same type can be expressed as
follows :

= = Ew(EW~(f (Y~‘ ~~’)(W ))))~
But if G/K is put for V, the law of XYxst is nothing but the law of on G/K,
this law is called in [9] the convolution of Yx by Xf . The convolution commutes on the
symmetric spaces ( we can find the proof in [9] [11]), and it implies the commutation
of Pt Qs. It is the same phenomenon than in Proposition 3 expressed on the law of
random variables and not on infinitesimal generators.

Nevertheless more can be deduced from the spectral study of those processes.
We will show that there is no subordinator T such that the law of the pseudo 1-
stable process on the sphere in dimension 2 is the same as that of BT where B is a
S2-Brownian motion and (B, T) are independent. We will introduce the Bernstein
functions by considering the Laplace transform of subordinators.
Definition 4 If Tt is a real non decreasing càdlàg Levy process

= 

where 03C8 is a Bernstein function.
We get in [2] two other characterizations of the Bernstein functions.
Definition 5 A function ~ E oo[, R) is called a Bernstein function if

~ > 0, (-1)p~(P)  0 Vp > 1 ; i
but there is also an integral representation of these functions built on the same pattern
as the Levy Khintchine formula.

Definition 6 A function 03C8 is called a Bernstein function if and only if there exist
two positive constants a, b, and a positive measure  on ]0, ~[ with ~0 s 1+sd (s)  o0

such thatSUCh that 
= a + bx + / o (1 _ dx > 0 ;

the triple (a, b, ) is uniquely determined by 03C8.
The Bernstein functions give the correspondence between the eigenvalues of

(-A/2) and those of the infinitesimal generator of subordinated processes. Take

a process BT subordinated to a Brownian motion with a subordinator T, which cor-
responds to the Bernstein function ~. If ~? is a bounded spherical function for the
eigenvalue A with respect to (-A/2), it will be associated to the eigenvalue -~(a) as
eigenfunction of the infinitesimal generator of BT. Actually if Pt is the semi group of
BT

. 

= 

= = a))
= o 
= 
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Let us go back to the special case of the sphere in dimension 2. We can fix as
reference point the north pole with Cartesian coordinates PN = (0, 0,1), we write
(r, 0) for the polar geodesic coordinates from the north pole. The spherical functions
can be expressed with Legendre polynomials of first kind

= Pn(cos(r(x))) = n(n + 1) _ An°
On the other hand if A is the infinitesimal generator associated to the pseudo 1-stable
process, formula (10) leads to

A f n(PN) = 203C0 ~0Pn(cos(r))-1 r2C(1,2)dr = n.

But on the graph of (An, for n === 1 to 10 we remark that those points are aligned
three by three. Since Bernstein functions are either affine or strictly concave thanks
to definition 6, we know that there is no Bernstein function such that 
Hence

Proposition 4 The pseudo I-stable on the 2-sphere is not a Brownian motion time-
changed by a subordinator : more precisely it is not equal in law to BT where B is a
Brownian motion and T a subordinator independent of B.

6 Exact computation of eigenvalues
In this part we would like to present the computations of eigenvalues which allow us
to prove the last result. They have been obtained using MAPLE symbolic software.
It is the reason why we can claim that points (An, are aligned and not nearly
aligned as the answer given by classical numerical program. The same result could
have been obtained without a computer, but we are not sure that we would have tried
it because it is a lot of work, and you do not know at the beginning if it will be useful.
We first recall the expression of pn as

- 2~ 
~ -1 

C(l, 2) dr.
Jo r

In the next table we present on the first row the eigenvalue corresponding to -(A/2)
An = on second line -~n, and we can read that points are aligned
three by three since 6n = is printed on the third line.
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This phenomenon was first suggested by the graph where you put An on the X axis
and -~" on the Y axis. It can also be seen on the graph that the points are close to
the parabola

y = 

which is a graphic representation of the idea that the pseudo a-stable processes are
perturbated a-stable processes in a spectral sense.
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