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Chaoticity on a stochastic interval [0, T]
A. Dermoune, Universite du Maine,

Laboratoire de Statistique et Processus, B.P.535, 72017 Le Mans cedex, France.

Abstract

The chaotic representation property is given a meaning and established for a class
of martingales X defined on some stochastic interval [0, T] and having only finitely
many jumps before T - ê.

1.Introduction

Let X be a martingale with predictable bracket  X, X >t= t, be its filtration
and ,~’ = We say that the martingale X has the chaotic representation
property (C.R.P) or is chaotic, if for all F E L2(S~,,F), there exists a sequence ( fk)
with fk E L2(IR+, dt~k), such that

00

k=o

where Fo = E[ F~ and for k > 0

Fk = fk(tl, ..., tk) 

(For the definition of the latter multiple stochastic integral, see [7].)
The random variables Fk, k E N, are such that

IE[ l’kl’j ] " 6j(k) f§/(t1> ...> lk) dtl...dtk) >

where ~(A;) = 0 and ~(~) = 1.
It is interesting to express the chaotic representation property as an isomorphism

between and the symmetric Fock space over H = dt), defined by

Fock(H) = 

For, k E IN*, the space H0k = dtl...dtk) is the set of the class of square
integrable functions with respect to dtl...dtk, which are symmetric with respect to the
k parameters (ti ..., tk). The scalar product over H~k is defined by

 f , 9 >= 0tl...tk f(tl ..., tk)g(t,, ..., tk) dtl...dtk,
and 

The well known examples of martingales having the chaotic representation prop-
erty are the Brownian motion and the standard Poisson process [6].

Moreover, He and Wang [5] have characterized the Levy processes which have the
predictable representation property but until 1987 we did not know if these processes
have the chaotic representation property.
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In 1987, the author [2] proved that for the Levy processes the chaotic representa-
tion property and the predictable representation property are equivalent.

In 1988, Emery [3] showed that a martingale earlier discovered by Azema [1] has
the chaotic representation property, introducing at the same time other examples
which satisfy the "structure equation" of the form

d[X, X]t = dt + Xo = x.

He later proved in [4] that if the predictable process ~(t) is such that the integral
At = fo is a.s. finite for all t, then the predictable representation property
implies the chaotic representation property. This applies to structure equations with
~ of the form

+ E ..., ~ 

n>2 

where 03C6n are deterministic and the Tn’s are the successive jumps of the solution X to
the structure equation

d[X, X]t = dt + Xo = ~.

The hypothesis At  oo implies that there are only finitely many jumps on finite
intervals since At is the predictable compensator of the number of jumps

Ct == E 
n> ~

The aim of this work is to study the following problem : Dropping the finiteness
assumption for At and putting Too = supn Tn, we will allow Too to be finite. The above
formulas define (in law) the martingale X only on the interval [0,Too]. We will prove
that X still has the chaotic representation property, in the following sense : If M is

a chaotic martingale independent of X(possibly defined on an enlargement of H), the
martingale

Yt = { Xt for t~T~1 Xt for t > Too
has the chaotic representation property (we will see in Lemma 2.2. that this does not
depend on the choice of M).

2.Chaoticity before a stopping time

This section is devoted to giving a rigorous meaning to the chaotic representation
property for a martingale defined only up to some stopping time.

Definition. Let (Xt)t>o be a martingale such that  X, X >t is equal to t, (Ft)
be its filtration and T be a stopping time of . We say that X is chaotic on [0, T] if

is included in the chaotic space of X, i.e. if each F E has an expansion
F = with Fo = and for k > 0

Fk = 0t1...tk fk(t1, ...., ...dXtk

with Fock(H).
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Lemma 2.1. If the martingale chaotic on (O, T] and if a martingale
verifies  Y, Y >t= t and X = Y on (o, T~, then T is a stopping time for the

filtration generated by Y and Y is also chaotic on (o, T~.
Proof. By proposition (1, ii) of [4], each element of is a sum of multiple

integrals with respect to Y; so it only remains to prove that T is a stopping time for
Y. For each t > 0 , the indicator of the event ~T  t} is in both and 
so it is of the form

IP(T ~ t) + 0t1...tktfk(t1,...,tk)dXt1...dXtk .

By proposition (1, ii) of [4] again, it is also equal to

IP(T  t) fk(t1, ..., tk)dYt,...dYk

and this shows that T is a stopping time for Y.
Lemma 2.2. Let T be a stopping time and X be a martingale defined on the inter-

val (0, T] only and verifying  X, X >t= t on this interval. The following conditions
are equivalent.

1) For some chaotic martingale M independent of X (and possibly defined on an
enlargement of ~), the martingale

’ 

y f , 
Xt for t  T

~’ 

XT + Mt-T - Mo for t > T

has the chaotic representation property.
2 ) Same statement as 1~, with "for every M" instead of "for some M".
3) There exists a martingale (possibly defined on an enlargement of 5~~,

verifying  X’, X’ ‘ >t= t, chaotic on ~0, T~, with restriction X to (o, T~.
4) Every martingale (possibly defined on an enlargement of verifying

 X’, X’ >t= t, with restriction X to (o, T], is chaotic on (o, T].
Proof. The implications 2) =~ 1) =~ 3) are trivial and 3) is equivalent to 4) by

Lemma 2.1. So it suffices to prove 3) =~ 2). The proof is completely similar to the
proof of Proposition (1, iii) of [4] and Corollary 2 of [4] except for one detail: With
the notations of [4], X is no longer supposed to have the C.R.P but only to be chaotic
on (o, T]. So in the proof of (l, iii), page 14, it is not obvious that there exists an
element g in Fock(H) such that

U = g(A)dXA v= o  t 1 . .. tk gk(t1, ..., 

But we know that U = f(A)dXA, so for almost every A, is
finite, and the chaoticity of X on [0, T] implies that there exists h(B, A) such that
f h(B, A)dXB is equal to Since E then h(B, A)
is null if sup B > inf A and the existence of g is obtained by putting

k+1
= E ..., ..., tk})

this proves the lemma.
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Definition. Let T be a stopping time and X be a martingale defined only on the
interval ~0, T] and verifying  X, X >t= t on this interval. We say that X is chaotic
on [0, T] if the four conditions of Lemma 2.2 are met.
Lemma 2.3. Let be a non-decreasing sequence of stopping times and

Too its limit.

1)If a martin gale (Xt)t~0 velifying  X, X >t= t is chaotic on each interval [0, Tn],

it is also chaotic on ~0, 
2)Let X be a martingale defined only on (o, and verifying  X, X >t= t. If

for each n the restriction of X to ~O, Tn] is chaotic on ~O, Tn], then X is chaotic on
[0, T~]

Proof. 1) For each n, we know that is included in the chaotic space of

X. As this chaotic space is closed and as, by the martingale convergence theorem,
Un is dense in the latter is also included in the chaotic space of X.

2) Using Lemma 2.2, it suffices to apply 1) to the martingale

Yt = { Xt for t ~ T~
" 1 XT~ + Bo for t > Too

where B is a Brownian motion independent of X. .

3.Construction of the martingale

This section is devoted to constructing the martingale X announced in the intro-
duction.

The set n = is the set of the sequences w = (Sn, n E IN) with So equal to
zero and Sn E R+ for all n E W.

The sequence w defines the following increasing sequence :
n

for n E ~V.
i=0

Let To = Tn.
For i E ~V, let be a measurable R* valued function defined on IRs+ ~ . We

define the point process Pt by

Pt = { 0 for t ~ [0,T1 [
ij=1 03C6j(Tj,...,T1) for t E 

The process (pt) generates the increasing family of u-fields ~ defined by

~° _ S ~ t), ~o = S > 0).

We use the following notations:

~i+1(t) _ T~, ..., Tl) for i > 1,

= if t E]T;, 
We suppose that, for all i E~ W, there exists a ~~ measurable positive function
> T~, such that 

’

/"  +~ for t E [ and 
T, 

= oo.
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The probability measure IP on (5~,.~°) is defined by the law of T1, with density
t

- 0 ~i 2(s) ds ~ 
and the conditional law of T~+1, with density

03A6-2i+1(t)exp {- c 
t 

03A6-2i+1 (s) ds} 1]Ti,i+1[(t)dt.

The 03C3-fields F0t are augmented with all subsets of IP-null sets of F0 and denoted
by .~t. For all i E ~V, Ti is a stopping time of 

Proposition 3.l.Let N(dt, dx) be the random measure on
IR+ x lR* defined for t > 0 and A a measurable set of IR* by

tJ x A) _ ~ lA( ).
Tnt

The predictable projection of N (dt ,dx) with respect to the probability IP is given
by

v(dt, dx) _ dt 

Proof. Let n E f be a bounded measurable function on IRn+ and g be a
bounded measurable function on IR.

Let us consider the predictable process

x) - IJTmTn+1J(t)f (Tl, ..., Tn)9(x).
We have to prove that

IE~ ~ / Z(t, x)N(dt, dx) J = lE ~ Z t, ~-2 t dt .0 R* 0

From the equality

/ 
oJ 

/ x)N(dt, dx) = f (Ti, ..., Tn)g( ~n+i(T,~+1) )~o R*

and using the conditional law of Tn+1, with respect to (Tr, ..., Tn), we obtain

IE~ o 
oJ 

R* Z(t, x)N(dt, dx) J
- ~’ 

..., Tn) 9(~n+llt~+1)) tn+I )

exp ( - tn+1 03A6-2n+1 (s) ds) dtn+1].exp - Tn (s)ds 
An integration by parts gives
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T n T n g (03A6n+1 ’t" Bt) dt

{03A6-2n+1 (tn+1) exp (- tn+1Tn03A6-2n+1 (s )ds 

, n g ( )) ) exp B / 

°

Thus,

~~ ..., Tn) 1 9 ~n+1 (t))) (t) dt ~

- 

which is exactly what was to be proved.
Proposition 3.2. Let m E R.
1) The process (Xt) defined on the predictable interval ~0, T~~ by

Xt = m + pt - 
is a square integrable martingale with  X, X >t= t, it verifies the structure

equation
d[X, X]t = dt + = m.

2) When the definition of X is extended to [0, Too] by
XToo = limn~~ XTn on Too  oo, the martingale X has the chaotic representation
property on ~0, 

In the case when Too = oo a.s., the chaotic property 2) is a consequence of the

Theorem 5 of [4].
Proof. 1 ) Since Xt is also equal to

Xt = m + / 
t 

/ xp(dx, dt) - / o 
t 

/ n* xv( dx, dt)
by Proposition 3.1, X is a martingale with predictable bracket
 X, X Too and satisfies the structure equation

d[X, = dt + ~(t)dXt, Xo = m.

2)By Lemma 2.3, it suffices to verify that, for each finite n, X is chaotic on [0, 
Define a martingale xn by the same construction as X, but with §; * 1 for i > n.
The martingale M’~ is identical in law to X on [0, Tn] and is a compensated standard
Poisson process after Tn. It has the chaotic representation property by Theorem 5 of

[4]; this implies in particular that it is chaotic on [0, Tn~. So the restriction of X to
~0, Tn] is chaotic by Lemma 2.2, and X is chaotic on [0, by Lemma 2.3.

4.Examples

Let (~,1, n E IIV*) be a sequence of strictly positive real numbers and n E

be the successive jumps such that the sojourn times Tn, n E ~) being
independent exponentially distributed variables. The density of Tn - is

.
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When 

n=1

Too is finite almost surely; or else, it is infinite almost surely. For t E Tn~ The
predictable process ~ is given by
03A6(t) = anl and the martingale X by

Xt = -03BBn(t - Tn-1) +  ( 03BB-1i - 03BBi(Ti - Ti-1)) .

It is chaotic on [0, Too] by the preceding proposition.
Another example is given by the structure equation

d~X, X~t = dt + f (Xt-)dXt, Xo = m

with m is such that 0 and f is a deterministic continuous function. Let Too =

inf {t > 0, Xt = 0~, for t  Too Xt can be constructed as follows: let (Tn, n E IN*) be
the jump times of Xt, and suppose that the integral equation

xt = f(XTn - /’ t > Tn,

has a unique solution t -+ on the widest interval [Tn, Tn+1 [ of [Tn, ~[
where xt is defined.

If x~ is such that

for t E [Tn,n+1 [ and Tn+1 x-2sds = oo,
then we can see that = is the jump size at 

. 

XTn+1 = XTn + 

and for t E [Tn, Tn+1 (,

Xt = XTn - 
tTn n 

03A6-1n+1 (s, XTn, n+1 )ds.

If we put To = 0, then for all n E W the law of with respect to (To, ..., Tn),
is supported by ]Tn, n+1 [ and has the density

03A6-2n+1 (t, XTW Tn+1 )exp {- hn 03A6-2n+1 (s, XTn, Tn+1 ) dS } .

By Proposition 3.2, X is chaotic on [0, 
If f(x) = f3x we find again the Azema martingale with parameter ~ ~ ~-l, 0}

on the interval [0, Too], where Too is the first time when X = 0 (Too is also the first
accumulation point of jump times of X).



124

Remark.
The solution of the differential equation Xt = f (a - f o allows us to construct

the martingale X on [0, the existence and the uniqueness of the solution of this
equation implies the existence and the uniqueness in law of X on ~0, 
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