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QUASI-EVERYWHERE UPPER FUNCTIONS

T.S. Mountford

Abstract: In this paper we find a good approximation for the capacitance of paths
with large deviations for the Omstein-Uhlenbeck process on Wiener space. We
use this result to obtain an integral test for a function to be an upper function
quasi-everywhere. The criterion differs from the necessary and sufficient condi-
tion for a function to be a.s. upper. We believe that this is a qualitatively new
result.

Introduction

This paper examines the Ornstein-Uhlenbeck process on one dimensional Wiener
space. This is a diffusion {Os ( ): s > 0 } on the space of real-valued continuous func-
tions on [0, with stationary measure equal to Wiener measure and such that the
increments are independent one-dimensional Ornstein-Uhlenbeck processes. More con-
cretely

- 

...... ~S(tn) - tl  t2  ...tn

vary as independent 0-U processes with stationary measures equal to the distributions
of

N (O,t 1 ), 1 ), ...... -tn _1 )
respectively.

Since the stationary measure of the 0-U process on Wiener space is the Wiener
measure, the statement that a path property holds for almost all Brownian paths is
equivalent to the property holding on 9y for Lebesgue a.a. times with probability one.
If the property holds for all times s, with probability one then the path property is said
to hold quasi-everywhere (or q.e.). While the converse is obviously true, it does not
follow that if a property holds (Wiener) a.s., then it holds q.e.. A simple and
illuminating example is the property that at time 1 the path has value different from 0.
This property clearly holds a.s., but since the process {OS ( 1 }: s >_ 0 } is a standard one
dimensional 0-U process, there are uncountably many times s at which = 0 and
so the property does not hold q.e..

However many a.s. properties do indeed hold q.e.. In fact most of the papers on
this subject have established results of this type, see e.g. Komatsu and Takashima
(1984), Penrose (1989) and Shigekawa (1984). One of the first papers on the subject,
Fukushima (1984), showed that as M tends to infinity 

Cap 1 ({(~: su~  M }) S (*)u E(U,lj ~ "

Since this is of the same exponential order as the Brownian probability of the set of
paths in question, many of the a.s. results for Brownian motion could be quickly
extended to q.e. results. In particular, Fukushima showed that the L.LL. held at fixed
points q.e.. Another approach to such problems was suggested by Meyer (1980) and
Walsh (1984). The process {Os ( ): s >_ 0} was identified with the process
{e $~W(es, }: s > 0~, where W( , ) is a Brownian sheet.
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Walsh showed that the L.I.L. had to hold q.e., since if it broke down, it had to stay
broken for a non-empty random interval of time. This contradicted the necessity of the
L.I.L. holding for Lebesgue a.a. times. In this paper we wish to show that the key
capacitory inequality (*) of Fukushima is (up to an order of magnitude) an equality.

Theorem One

For the 0-U process on Wiener space, the I-capacitance of the set of paths
{03C9: sup > M }, C(I ,M), satisfies

(1+0(1)) 1 203C0 Me-M2/2 ~ C(1,M) _ (1+0(1)) 2 

Our method of derivation is quite different from that of Fukushima. The above result
is then used to show

Theorem Two

Let f be a function on [0, oo) such that eventually f (t )It 
~~2 is increasing.

Then f is a q.e.

upper function if and only if ~ e _ f {,n" ), -12~n"  ~ where
n mn

n = .

The above condition is more elegantly expressed by

Theorem Three

Let f be a function on [0, oo) such that eventually f (t )lt 
1/2 is increasing. Then f

is a q.e. upper function if and only if j  oo.

The proof of Theorem two relies heavily on arguments found in Erdos (1943), which
finds a (different) integral test to determine which functions are upper for a.a.

Brownian paths.

Section One

Lemma 1.1

Let s >_ 0} be the 0-U process on Wiener space killed at rate 1. Let DM
be the set of continuous paths ~to : (0(1) ? M}. Let Y be a standard normal random

variable. Then for w E 03B4DM,

= E[I {O1s ~DM }ds | Oa > M - }1/2]ds = 2 (1 + o (1))
Proof
Let co be a path in 8DM . . Then

b O ( i ,is ) O ) = Jl 0 [ O h =J] ds
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00

0

Now is equal in distribution to + where B(.) is a

Brownian motion independent of Oo(.). From this distribtional representation we see
that is equal to This latter

expression is equal to ] ]. The result follows.

[]

Using a similar argument we can show

Lemma 1.2

For 03C9 e 
ao

V(03C9)=E[I{Os1~DM}ds | O10 = ° ( 1 )
o

as M tends to infinity, uniformly on x E [0, 1].

Corollary 1.2

E }ds, O10 E DM = o ( as M tends to infinity.

Using the two lemmas we obtain our first inequality.

Proposition 1.1

The quantity C(1,M) satisfies C(1,M) >_ Cap 1(DM ) _ (1 +o (1)) 1 Me M2/2.
Proof
A characterization of the 1-capacity of a set E for a symmetric process with sym-
metrizing measure m, is

Cap1(E) = P03C9[TE  ~]m(d03C9)

where TE is the first hitting time of the set E for the process killed at rate 1. See
Fukushima (1980). We know from the Gaussian distribution that for our symmetric
process and the set E = DM = O]m (d co) is of the order ~ e M2~2. Corollary
00

1.2 states that = o( 1 e M , l2) as M tends to infinity. From

Fubini’s Theorem

2 203C0 1 Me-M2/2(1 + 0{1)) DM]ds =

E[I{1s~DM,TDM=0}ds]+E[I{Q1s~DM,0TDM~}ds]
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Given our observation on the first term we conclude that

2 M 1 e-M212(1 + 0(1)) = E [I 1~DM}ds]

Using the Strong arkov property, we can rewrite the right hand side as

. By Lemma 1.1, this quantity is less than (I + o(1))P[0 

TD~  and the result follows. D

We complete the proof of Theorem One with the following.

Proposition 1.2

The quantity C(I,M) satisfies C(I,M)  (1 + o ( 1 )) 2 Me M2~.
Proof
Fix ~. E (0, 1). Define the sets

An (M ) _ {co : 
u 
sup co(u ) > M} n = 1 , 2, ..

Then AM = U An (M ). Therefore C(I,M) = Cap 1 (AM ) S 03A3 Cap 1 (An (M )). Also by
n=i n=1

n-I

scaling, ). It will suffice to estimate quantities
Cap1(1(M)). By reasoning similar to that employed with Lemma 1.1 we find that

V’(03C9) = E[ I{O’s~A1(M))ds | O10=03C9]

satisfies inf V’(co) >_ (1+0 (1)) 03BB1/2 M2 . Therefore, reasoning as in Proposition 1.I,
M

we find

(1+o(1)) 2 03C0 1 M e-M2/2= E[I{0 TA1(M) ~V’(O1TA1(M))] ~P[0TA1(M)  ~] 03BB1/2 M2 .

Therefore Cap1(A1(M)) ~ ( 1 + o ( 1 )) 2 Consequently

(I +0(1)) 
- 2 M e-M2/2. Since 03BB is arbitrarily close to one, our proof

is complete. D

We will need the following corollaries.

Corollary 1.3

P[TDM  ~ | O10 (o,l) = 0] ~ 2(1 + o(1)) 2 03C0Me-M2/2.
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Corollary 1.4
For a fixed, finite interval I,

1 _ lim 
P[tEI: 

_ - lim 
P [ t EI 0, (w)eAM] 

_ 2

This limiting behaviour is uniform on |I| ~ 1. In the above inequalities AM may be
replaced by DM. .

The proposition below follows directly from Karatzas and Shreve (1988), page 339-
342.

Proposition 1.3
Let Sy = inf{t > 0 : = y}. Then for 0  x  M,

P [TM  To I 0 0( 1 ) = x ] = ) where = j o .

Section Two

Note that by scaling Theorem One states that

1 I e-Mz~2( 1+0 ( 1 )) S Cap ~( ~w : sup p w(s ) > })  
. 

2 1 
~ 1+0 ( 1 »

Recall that a function f is an upper function for a path co if for all t sufficiently large,
wet)  f(t). It is well known that f(t) = (t ) is an upper function for a.a.
Brownian paths and indeed for q.e. Brownian path, if e is stricly positive but not if £
is stlictly negative. Erdos (1943) proves that if f(t)/t ~~2 is eventually increasing, then f
is upper for a.a. Brownian paths ( or a.s. upper), if and only if

00

03C8(t)e03C82/2 dt t  ~

where = f(t)/t 1/2.
We will adapt Erdos’s proof to the capacity case.

Define the sequence nln by mn = The following inequalities will be
made use of in this section:

There exist finite strictly positive constants c and c’ such that

A) c( mn loglog(mn ))1/2  (rn n+1 ))n2 - (m n (m n )) 112  c ’( mn loglog(mn) )1/2.

B) c  m n + 1 - m n  c’ .
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Lemma 2.1

If f is an increasing function e-f(mn)2/2mn  oJ, then f is a quasi-

eveiywhere upper function.
Proof
Given Fukushima’s LIL we can and will assume that for all t, f(t)  
For notational simplicity we denote the n’th term of the above series by Consider

Y (~) 7 (~J ~-/(~)~~ ~ ~ 2 

~ 
l/2 

Clearly 201420142014 ’ 
1/2 

is bounded. Also inequality B) enables us to bound

f(mn)2 mn+1-mn 2 mn+1mn by e f(mn)2/2 c mn loglog(mn).
We assumed that f(t)  so this

latter expression is bounded. Consequently

03A3 f(mn) m1/2 e-f(mn)2/2mn+1 ~ K03A3an  ~
Therefore, by Theorem sup > / (~)})  oo.

~ ]

So by the "Borel-Cantelli Lemma " for capacitances (see Fukushima (1984)),
Cap ~({o: sup w(u) > f (~) for infinitely many n }) = 0.

This establishes the lemma since f is assumed to be increasing.
D

The proof of Theorem Two is all but completed with the following proposition.

Proposition 2.2
Let f be a function such that = f(t)/~ increases with t, lim ~j/(~) = 0, and

~-/(~)/2~ ~ ~ then for each non-trivial interval I and each n, there exists

s e I and t > mn so that > /(~) with probability one.
We make some preliminary remarks.

Remarks

1) Our assumptions on f guarantee that I i/2 for

some strictly positive c.

2) Let In be the indicator of the event { s e I such that > f(mn)}. The o-

field of these events is trivial, so to establish the lemma, it will be sufficent to show
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that there exists c > 0 so that for each n, P [ L 1m > 0] > c. .

3) We may assume that I is an interval of small length and that f(mn )Imnl2 increases
to infinity.
4) As with Lemma 2.1, we may assume that for n large f(mn )  3mn loglog(mn).
5) Given Corollary 1.4, we may assume that for n large enough, P[In = 1 ] - |I|

f (mn) . Therefore for n arbitrarily large we can find d m > n so thatf(mn) mn1/2 e-f(mn)2/2mn. Therefore for n arbitrarily large we can find m > n so that

m

E[ ~ E (1/3, 1/2). As Remark 2 makes plain, Proposition 2.2 will be proven if we
j=n’" 

m 
o

can show that for such an (n,m) pair with n sufficiently large we have E[(03A3 I j )2] uni-
j=n

formly bounded. Therefore it will be enough to find K so that for n large enough and
m-v

every v E [n, m],  KE 

j >o

6) Given I = [a, b], define the stopping times by
inf > f (~rrk ) }, = inf > 

’ 

s_a ?Tk.a 
’ ’

By the reversibility of the process

E[I,,l,,+j] S   T~ + ~l ( 

Remarks 2, 5 and 6 show that Proposition 2.2 is implied by the following proposition.

Proposition 2.3

Suppose that f satisfies the assumptions of Proposition 2.3 and the assumption made in
Remark 4. Then there exist K and so that for v large enough and every j

 II ~ + T,,)  
and sup is bounded.

A good first step towards proving Proposition 2.3 and therefore Proposition 2.2 is the
lemma below.

Lemma 2.2

There exists a finite so that for v sufficiently large and all j,

P[Tvv+j  Tv + |I|]  K E(Iv+j] + (mj+v - mv)1/2 f(mv) - f(mv+j)mv mv+je (f(mv+j)-f(mv))2 2(mv+j-mv) .

Proof
The processes Os (mv) and Os (m~,+ j ) - Os (m,, ) independent. Since Tv is a stop-
ping time with respect to the filtration of the first process, it follows that

OT~ has a N(0, m,,+ j-m,, ) distribution. Let the stopping time S, _
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inf{ s > 0: Os(mv+j) = x}. From the strong Markov property

 7’.  0~.) e  So t = 

/?

+ ~~(~.~) - ~(~.) = H = o]

= P[S(mv+j)  |I| |O0(mv+j) = 0] + j’ . !(I1".)+Y]
- GO 

Corollary 1.3 tells us that the first of the two terms above is already of the desired
form so it will suffice to deal with the last term.

Given that the probability P[Sf(mv+j)  So t is an increas-

ing function of y, we may majorize the second term by

~ r 2(~,-~.) v~+7 ~ ~
b 

It is easily seen that for large x, is approximately equal to and so the
above expression is bounded by

K dy mv+j-mv = 
e y2 2(mv+j-mv) [e

(y+ (mv ))2/2mv+jf (mv+j) ef(mv+j)2/2mv+j(y+f(mv))  1 ]
~ K [ dy mv+j-mv e

- y2 2(mv+j-mv) e(y+(mv))2/2mv+jf(mv+j) ef(mv+j)2/2mv+j(y+f(mv)) + mv+j - mv f(mv+j)-f(mv) e (f(mv+j)-f(mv))2 2(mv+j-mv) ]
The second term satisfies the desired inequality so it remains to examine

~ ~ 
- r ~y 

~ 

+ 

2~~)

y2 (V+/(~))’ ... _
The exponent inside the above integral, -20142014-201420142014- + 2014201420142014-2014, is maximized

at y == Given our assumptions on f, this is greater than
~y 

~ (y+/(~))~ ..

f(mv+j)-f(mv). Accordingly, the exponent -20142014-201420142014- + 2014201420142014-2014, is increas-
ing on [0, /(~y+,)-/(~)]. Furthermore, the slope of the exponent decreases to the
value at the right endpoint of the interval,

~+/~.+y -~’)
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Given these facts the conclusion follows easily.
0

The above lemma will provide a good bound for if is not too large.
It will not be sufficient when this ratio is large. We require the following lemma.

Lemma 2.3

Let c be a strictly positive constant. There exists a positive constant K so that for
v large enough and any j with
i mv+j mv ~ (log (m v ))c,

ii f  3mv+j loglog (mv+ J ), f  (rnv+ j ),

 KE[I,,JE[l,,+JJ.
Proof
Remark 4 makes plain that the second constraint does not really represent a loss of
generality, since we are only interested in l,,,h,+J where this is the case.

(y-f(mv))2 2(mv+j-mv) - y2 2mv+j ~ 
-yf (mv) mv+j - mv 

~ h

for some constant h. It follows that for y S 
- (rnr ))‘

1 
e 2(m,,+~-mr )

2~t(m,,+~-m~, ) .,

H 
-Y

for some H.
j

SO

- fY f (mr ))‘

P[T,‘~’+~ J  II I ] = J P  II 
1 

e 2(ln’~+’~n") ~y
)

4mv+jloglog (mv+j) -(y-f(mv ))2
 P [Tt,+ J .  I I ( I ~ o(m,,+ , J )=y J 

1 
e ) (jy

- 00 2n(mv+j mv )
~ -(y-f(mv))2 2(mv+j-mv)

4mv+jloglog (mv+j) 203C0(mv+j-mv)
e 

4mv+jloglog (mr+j ) 
P [Tv+j  |I|| O0(mv+j)=y dy~ H 

00 -(Y f (my ))’‘

(mr+j ) ~2~(m v+J -m ) e 
2{mr+j-mr) 
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~H ; p  |II||O0(mv+j)=y] 1 203C0mv+je -y2 2mv+j dy

This last expression is equal to (1 + 0(1)), where the o( ) is used as v+j
tends to infinity. D.

Pr~oof of Proposition 2.3
There are three cases to examine:

1) 

2) E 

3) E 

We will choose c later, while dealing with Case 2. Note that however small c is

required to be, Lemma 2.3 deals with Case 3, so we need not comment further on v+j
E Case 3..

Case 1

We must show that there exists K large enough and so that for v large and

v+j in Case 1,
P  T,, + ~ I ~ ]  K (h,+ j ] + 

and L  M for M not depending on v. Given Lemma 2.2, it is sufficient to show

B,,j
that

(m. U2 (mv))2 2(mv+j-mv)

is bounded for large v. Our conditions on f ensure that for v+j in Case 1,

(fn j+v - mv )112 is bounded. Also, the assumptions on the function f ensure

f f v+J )mv mv+j 112

f(mv)~c1j [mv loglog (mv) ] 1/2.

By inequality B), mv+j 
- m,,  . Therefore for v+j in Case l, the

above inequalities guarantee that for suitable C,

c3 not depending on v,j. So = II clearly satisfy our requirements.
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Case 2

In this case, as in the above case we can use Lemma 2.2 to reduce our task to

bounding

)/2 _ U(m~~) f (m~))2

Case 2 
f ( mv )- f ( mv+ j ) f(mv)-f(mv+j) mv mv+j

Note

-f (m,.) ? c403A3 [mv+r loglog (mv +r ) > 
It follows that for v large enough the above sum is less than

4 ~. 
Case 2 f(mv)

4 y 
mv+.1 [1/2 e-c5loglog (mv)/2- 

Case 2 ~ m v V J
But as Erdos notes, there are only of order j’s with

E (2m~,,mv (log (nr~, ))‘ ]. So when v is large,

1/2 f (m~))‘
) 

 K (loglog (nr,, )) 2 (log ( mv )) c 12 e 
-‘ (rn,, )l2

Case 2 f(mv)-f(mv+j) mv.l 

s is equal to K (loglog (m,, (rn,, ))(‘-‘5)~2. So to bound this term we simply take c
to be less than c 5. D

Proof of Theorem Two

Given Lemma 2.1 and Proposition 2.2 it is sufficient to show that a function f
satisfying the hypotheses of Proposition 2.2 is not quasi-everywhere upper. Proposi-
tion 2.2 was proven for a fixed interval I. But this means that the conclusion must
hold for any countable collection of intervals, such as the intervals with rational end-
pints, and therefore for all intervals. So given f satisfying the conditions of Proposi-
tion 2.2 and an interval I, we can find ( random) s1 in I so that > f (mn1). By
path continuity, we can find an interval (again random) /j 1 s.t. jj 1 ~ I1 C I so that for
all tell’ Or (mn ~) > f (mn ~). Invoking Proposition 2.2 again we find s 2 E l2 so
that and > for t E 12. Continuing in this
manner we obtain a nested sequence of intervals If t is a cluster point for the inter-
vals then clearly f is not an upper function for Or ( ). This completes the proof.

a

Remark: Theorem Three which is easily seen to be equivalent to Theorem Two tells us
that functions of the form f(t) = 

quasi-2 
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everywhere upper if x is greater than 5/2, are a.s upper but not q.e upper if x is in the
interval (3/2, 5/2] and a.s. non-upper if x is less than or equal to 3/2.
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