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SOBOLEV TOPOLOGIES

IN SEMIMARTINGALE THEORY

E.I.Trofimov

Introduction

This article is a short presentation of the author’s studies

on construction of semimartingale distributions via topologies of
s

the fractional Sobolev- Slobodetskii hilbertian spaces IH2 and

some others of the kind (see [T13, for instance).
s

The H -topologies are considerably finer than the

pseudo-paths topology A (that of convergence in measure) used by

P.A.Meyer and W.A.Zheng [MeZ] and Ch. Stricker I Stl. We give here

some new conditions, being weaker than those from [MeZ] and rSt],
s

to insure tightness of semimartingale sequences in H . We prove

equivalence of the tightness conditions from tMeZl, CSt], and

tTll, under which every limit point of a tight sequence of

semimartingales is a semimartingale law.

Sobolev spaces

Throughout all functions and processes are defined on the

time interval We denote by D the usual space of functions,

which are right continuous with left limits in this interval. For

0  s  1 let X be the completion of the space of C~ functions

in 10,fl with respect to the standard Sobolev-Slobodetskii norm
s

II (see the well known books of Lions-Magenes (1967),

Besav-Il’in-Nakolski (1975), Triebel (1986), for instance)

defined by

(13 ~X|IHs ~
2 

= ~X~2La + |X(u)-X(v)|2 |u-v|1+2s03BB(du)03BB(dv)
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s

where ~ is the Lebesgue measure on to, ~ ~ , Then H is the space of

equivalence classes of functions w, r, to ~, Let ~rs be the norm
s

topology in ~i ,
t

It is a general fact about these spaces that for 5  t, ~I
s

is contained and the embedding operator is compact. This

property is convenient in the considerations below about
s

probability distributions in the scale j.

Preliminaries
s

Let c m be the subset of m consisting of functions
s

admitting a finite H -norm. Since two elements of ID equal a, e.

are equal everywhere, one may consider as a subspace of Hs,
o s

The limiting case of is simply the set m, with the

topology induced from We use notations of topologies also

for their traces into function sub-classes. The reader is

reffered to the author’s works for details on construction of

modified Sobolev-Slobodetski norms, which seem somewhat more

convenient in theory of stochastic processes.
On the set with s > 0, the topology of Hs isn’t

comparable with either the uniform topology, or that of

Skorokhod. It is easy to see that there exist functions in H 
fi

with infinite and oscillating discontinuites, and there exist
s

continuous functions which do not belong to ~i. On the other

hand, these norms somehow measure the "non-Hölderness" of a

function 

We restrict our study to the interval 0  s  f /2 for the
s

following reasons. First, using the definition of the IH norm and

the Fubini-Tonelli theorem, we may calculate the mean square norm
s a

IH li ) of the standard Wiener process (Wt) on and

obtain quite easy that it is finite for s  ~~2 and infinite for
,

s ?s/2. The same result can be deduced from Levy’s modulus of
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s

continuity for the Wiener process, Similarly, the IH norm of the

indicator function of an open interval from [0,H is finite for

s t 1/2 and infinite for s > ~~C, and this applies also to the

paths of the standard Poisson process,

Sobolev norms and p-variations
S

To estimate the IH norm of semimartingale paths, we need to

recall some inequalities. For x E m, and finite

subdivisions ~r = t 0 = t~t... ~ tn = T ~ of the interval ( 0, ~ 3 , put

Var03C0p(x) = [03A3i |X(ti+1) -X(t1)|p]1/p ,

and

Var (x) = sup03C0 Var03C0p(x) ;

and let W be the subspace of D consisting of functions of finite
p-var iat i on. It is easy to see that Var C x) > Var q for p  g,

and the embedding W P c W q is strict.
The following inequality of Hirschmann, known in function

theory, is of importance below (see [T1] for a generalization) :
for and 

(0,1)dt |~(t+03B8) - x( t) |p ~ 4 |03B8| (Varp(x))p

Using this inequality and the estimate (for p> 2)

r 
dt xC t+03B8) - xC t) I 2  

[(0,1) 
dt | xC t+03B8) - xC t) 

2!r 
f

for ps  ~ we obtain that,
s

(23 ~X|[H ~ ~ cp,s Varp(x).

Thus space W endowed with the p-variation norm is continuously
P s

embedded in H for and moreover it is a compact
s

embedding, by (2) and the compactness of those in the scale 
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While the Hs norm of the paths of the drift process of a

semimartingale can be estimated by t2~, its local martingale part

requires an additional inequality. A first estimate for the norms

of martingales can be deduced simply from the Fubini-Tonelli

theorem, as above for the Wiener process,

D.Lepingle has proved [Lep] that the paths of a martingale M

a.s. have finite p-variation for p > 2, and he gave the estimate:

(33 l l ,

for every q~i, where M*t ~ sups~t |Mns|.

(2,3) together imply an estimate of the mean H norm of a

martingale, and an estimate in probability of the norm of a local

martingale. Furthermore, by [Lep] and (2) we have that:

almost all semimartingale paths belong t o the function
s

classes > for all s ~T~2, and to the three following ones

[H1/2- ~ ~ [H, [D[H1/2- ~ ~ [D[H , V2+ ~ ~ Vp.

In the framework of the Sobolev distribution model, it is

natural to consider semimartingale distributions in the latter

three, smaller support-spaces, with a Sobolev countably normed

topology, which we denote Tl/2-. Similarly we define a topology
T‘~’, for any u>O.

Measurability.
It was shown in (Tl] that the Borel u-algebra in is

equal to the usual cylindrical (i.e. coordinate) u-algebra in
s

DH , and thus to the Borel u-algebra of the Skorokhod topology,
and to that of A, the topology of convergence in measure (see

[HeZ]). Let us notice here, that the cylindrical measurability
properties in the countably normed support-spaces defined above

are simply verifiable.
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Indeed, any set from closed and bounded in , is

closed in the topology A, since the p-variation functional is

lower-semicontinuous in this topology, The latter property is a

simple extension of the result from [MeZ3 for the case 

Hence by (2) and the compactness of embeddings in the Sobolev

scale this set is compact in TS, for any 5 f ~!p ,

, 
, 

Then the measurability properties follow from the.remarks:

the set W2+ is itself borelian in the spaces H and

[D[H1/2- w, r, to the topology 03C41 /2-.

. 

. 

2) Since when restricted to a bounded and closed set

w, r, ta the norm far . we have that

is the restriction of the cylindrical (y-algebra to

~IZ~ , Here comes our first theorem.

Theorem 1. For any , euery semimartingale

(Xt) defines random elements with values in the spaces

(M~T’~-3, (fll/ ’ , ’~’l, t and ‘ Tt !2 ,

Tightness.

Meyer, Zheng and Stricker had given [MeZ],[St] simple

conditions under which a sequence of semimartingales is A-tight

in D, and each of its limit laws P also defines a semimartingale

into the canonical space D, First we show that weaker conditions

imply tightness w, r, to the ~ri ~2‘ topologies. Throughout we do

not give details whenever standard martingale machinery is used.

Let CP 3 be a sequence of probability laws on m such that

the coordinate process ] 
is a Pn-semimartingale, for all

As usual we consider the canonical space D, with its

natural, right continuous filtration of o-algebras; Xn

denotes the process X on the probability base 

and we assume it to be completed as usual. We consider
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decompositions X = Lf" + M~’ on this base into a process Yn of

f inite 1-variation and a local martingale Mn, with 0,

Let us introduce a condition implying the tightness of the

sequence Pn (here p > ~ ~ , ,

(Alocp) For any ~>0 there eXi s t decompositions X" + Mn

and 03B2n-stopping t imes Sn such that sup In{ Sn t 1 }  ~, and
_

E’  oo ,
n Sn

supn Pn{Varp(Vn) Sn 
> a )  ~ ,

for sufficiently large a, where denotes the p-variation
taken upon the time interval [0,jf].

This is our first tightness result. Note that it does not

imply that the limit laws are semimartingale laws. This will be

the object of the stronger condition below and theorem 3.

Theorem 2. Ct) The sequence Pn is tight in the

space (Vp,03C41/p-) for p>2, if it fulfills the Condition

(~) for some qp.
The sequence Pn is tight in (V2+,03C41/2-), if it fulfills

the condition (~~) for all q> 2.

Mote. As Varq(x) > Varp(x) for q  p, we have:

(Aq~) ==~(Ap~)~ the assumption p>2 is necessary to handle the

semimartingale laws of general kind, and the theorem allows

further precisiions in particular situations.

Proo/. Fix some Since the embedding 
s 

is

compact, condition (A~) entails tightness of the family /~ in

For the martingale parts ~ the tightness property
follows from condition (AJ~) and the estimates (2,33 :
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  as

for and sufficiently large b. The tightness of the

sums follows by linearity of the topologies r~.

To extend the result onto the spaces and

C~o+,T~"3 , let us note that the above considerations entail :

for any d>0 and sequences (resp.,
’ 

~C0B,23, there exists a sequence 

sufficiently fast, such that

supnPn{Varq(i)(Xn) > a(i), for 
some i}  6 .

Then the ,r~~ tightness follows, because 6 is

arbitrarily small, the set for 

is compact in tL (resp., w. r. to the topology 

and

 6 a

Remark. The condition (A~). may be of use

when sequences of semimartingales with asymptotically oscillating

drifts, or processes of finite quadratic energy are under

consideration.

To consider tightness conditions implying the semimartingale

property of all limit laws we modify condition to make it

stronger as follows (A~). From now on, we suppose X~=0, 
for the sake of simplicity.

Given and a sequencce of decompositions

we put

(4) Jr =sup sup S E T ~0394MnS~r  ~,

where J- is the set of all (Ft)-stopping times.



603

There exist deconposi t ions for which

Jr  oo, such thai

sup P~/ar.(/)-!-t:~,~]~a~ -~ 0 

(i.e., the family of the r.Y.s , is

s t ochas t i ca l y bounded).

Remark. Obviously, (A~) ==~ (AI) ==~ (A~) for r’ > r.

Condition remains essentially the same, if the brackets

are replaced respectively by the r.v.s (~b~ , or the

predictable brackets ~~ when r>2. Indeed, by the Davis’

inequality, for some constant c , each from the processes (~O~,
(put X for it) dominates the other (denote it Z 3

in the Lenglart sense. Since the quantity (4) J~  co, one has by

the Lenglart-Rebolledo (L-R) domination inequality:

(5)  

n

I , e . , t the family o f the r.v.s Y~ is stochasticaly bounded, if
n 

"

the family Z~ is.

We now recall the two tightness conditions from [MeZ] and

[St], denoted here (B) and (0, respectively.

(B) for any ~>0 there exist Pn-quasimartingales yn such

that

sup > 0)  ~ and sup  co,

where denotes the quasimartingale variation of /~ ([DM]).

(0 sup sup [ > ~~ -~ 0 as 

where U varies in the set n of all (Ft)-predictable simple

processes, bounded by 1 in absolute value, and left continuous,

and is the elementary stochastic integral upon the interval
~ 

n

[0,n (t.e., the family of the r.v.s U~03A0, n~N} is

stochasticaly bounded).
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Notice, that by the Lepingle’s theorem on p-variations of

semimartingale paths, one can consider the sequence P~ restricted
to the new canonical space endowed with the filtration,

which is the trace of 

Proposition, for all roo, , (Ar) ~ (B) ~ (C).

Theorem 3. Under the condi t i on (0, , the sequence P~
is tight in (~~T’ f/~2014 ), and the canonical process X is a

semimartingaLe w, r. to every P, which is a limit point of the

sequence P .
Proofs. The theorem is an obvious consequence of the

A-tightness theorems [MeZ], CSt], and the two previous ones, and

the proposition To prove the proposition, it is sufficient to

show implications: h (C) ==~ and(0 =~ (B). or
r

(~ ) ==~ (B) either. The converse implication (B) ==~ (0 was

shown in [St]. The first one follows from the estimate

sup > 2c~   ~ ~ +

+ (J~ +M/a + P~{ c([~~]~~~>&#x26;~.
In the martingale part, it is again a consequence of the Davis’

and L-R inequalities (c/. (5)).

Let now the sequence or equivalently the sequence X~B

satisfy the condition (0. For short, we denote this property by

the following symbolic inclusion (it will be used below also to

denote such a property of other semimartingale sequences) :

(a) 

Stricker had shown [St], in particular, that (a) entails:
n n

(M The sequence [X ,X ]1, , , is stochosticaly bounded.
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n n n2 n n
Indeed, notice that [X X ~=(X.3 -2(X_~X )., and the property

n *
(C) imply the stochastic boundedness of the family (X )1, n~1,

Then for every a priori given integrands Xn-, n~1, are

uniformly bounded, out of some sets of Pn-probabilities less

than ~, Hence by ~~ , the family of the integrals is

stochasticaly bounded, out of these set,s, in virtue of the known

local property.
The implication ~~ is a result of the following

chain of simple consequences of the statements Put

~ = 03A3S~. 0394XnS 1(|Xns| > 1)

n n n nd nc nc
and consider the decompositions X = U + A +M +M , t where M

n n nd
is the continuous local martingale part of X , and A + M is

the canonical decomposition of the special semimartingale
(Xn-Un-Mnc) into a (predictable) process A

n 
of finite

variation and a purely discontinuous local martingale Nnd
Notice, that the decompositions Xn = Vn + Mn, n~1, where
n n n n nc nd

Y = U + A , M = M + M , , satisfy the condition 

n nd nd n n
Since + ( M , M l ~  t X , X l ~ , the property ( b)

entails:

(c) The sequence (Vari(Un)+[Mnd,Mnd ]i), n~1, is

stochasticaly bouroed.
As above, by the property J~ _ c, and the L-R inequality, one has

from ta,c7;
n n nd

Cd3 (Z =U +rf 3 e (C),
n

(i.e., the Pn-semimartingales Z satisfy the Stricker’s

condition); and (a,d3 entail:
n n nc

(e) (Y =A +M ) E (C)
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Again by Stricker, (e) entails:

nc
The sequence tM >1 , is stochasticaly bounded.

Applying the Lenglart domination inequality, one has from (f):
nc
M e (Q, ,
n n

and entail : A e ~~ , Since the processes A are

predictable, the last inclusion is equivalent to the property :
n

C h) The sequence i s stochasticaly bounded.

Finally, Cc, f , h, ) result in the property 
It remains to show the implication tA2 ~ ==~(6)~ for

instance. Define the pre-localizations

Yn =(Xn)R(n,l)-
,

n n i1 i Ia

where ?~ L ~, The

n 2
processes W are special S -semimartingales and hence

quasi-martingales. By ~~~ ~ they satisfy ~~~ , because

supnPn{CX - Y)>0} ~supnPn{R(n,l)~>  ~ ,nn

for sufficiently large L ; and sup  c t a
n

Remark. The reader acquainted with the Emery’s

topological semimartingale space can see that the weak relative

compactness conditions (Ar) and (Q resemble boundedness ones in

that space. An examination of such relations, and the systematic

development of semi mart in gale limit theorems w.r. to various

topologies, which are of use for applications, make up the

subject of the book 
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