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On the reconstruction of a killed Markov process

By Sadao Sato

1. Introduction

Let ( Yt) be a right continuous strong Markov process and ( St) be its

semigroup. Let (ifft) be a multiplicative functional satisfying 0~Mt~ l. Then the

formula

(1.1) Ttf(x)=Ex[f(Yt)Mt]

defines a subordinated semigroup. P. A. Meyer obtained the existence and

the uniqueness (up to the life time of Yt) of such an Mt for every positive

semigroup subordinated to ( St) (see [DM3]). A Markov process with semigroup

(Tt) is called (according to Dynkin) a subprocess of (Yt). It is a strong

Markov process if the functional (M t) is exact, and in particular if a.s..

Conversely, let (Xt) be a right continuous strong Markov process with

semigroup ( Tt). The problem in this paper is to construct in a natural way

a strong Markov process (Yt) with semigroup (St) such that 1) (Xt) is

subordinated to (Yt) 2) (Yt) is as close as possible to being conservative.

This problem was studied by several authors. In Ikeda, Nagasawa and

Watanabe [INW], it is constructed using the "piecing out method". They also

proved that it is conservative under the condition
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(L’) inf{P.,[~>t]} > 0 for some t>0,

which means the "uniformity of the killing". P. A. Meyer[M2] J obtained that the

piecing out method preserves the class of right processes.

The natural idea to reconstruct 8 t is to try to give a meaning to the

formula

(1.2) Stf(x)=ETX[f(Xt)1 Mt].

However, the expectation being relative to the small semigroup (Tt), we

must find a way to describe the MF (Mt) on the sample space of (Xt). The

precise description in the general case will be given later, but there is a

simple particular case, when X has a totally inaccessible lifetime ~. Then the

decreasing has a continuous predictable compensator At
which is a continuous additive functional of X Then the appropriate version

of the MF in (1.2) is In the general case, we must use "Stieltjes

exponentials" in the sense of Sharpe[S] instead of ordinary exponentials.

We can prove in all cases that the formula gives a larger semigroup (8 t)
and still submarkov. However, it is not necessarily conservative. We can

prove it is conservative if we have "uniformity of the killing" and the totally

inaccessibility of § (Theorem 4.5).

In Section 2, we justify the formula (1.2) in the relative theory of (Yt)
and (Xt). We give an example which is important in Section 4 and 5.

Next, we forget (Yt) and then we can see only (Xt). In Section 3, we

obtain a general formula of l/M. We can get a theorem concerning the

continuity of a compensator.

In Section 4, we study the conservativity of (St).
In Section 5, we only assume the totally inaccessibility of the life

time. Now, (8 t) is not conservative in general. However, we can still get a

conservative semigroup in a weak sense. We also show some properties of (8 t).
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2. Basic results on the killing

In this section, we recall the basic construction of the killing by a

decreasing right continuous multiplicative functional and point out some facts

which suggest our main results in latter sections.

The construction of a subprocess is discussed by many authors. We

describe it along the method in Blumenthal-Getoor[BG].

Let ) be a right continuous strong Markov process and (St)
be its semigroup. We denote the state space by E, which is locally compact

metrizable, and the death point by 3. For every function f on E, we always

set f(a)=0 for convenience.

Let (M t) be a right continuous MF satisfying 1. Let EM be the set of

permanent points, that is which is universally measurable.

If x is not permanent, then 

We consider the product space and denote its element by 

We denote the coordinate map from Q to j0,m J by Define

(2.1) if tr, =a if not.

Thus the life time of Define the translation operator by

(2.2) 8 t(r~w)=((r-t)+,8 tc~)~
which guarantees and We give the filtration $t

generated by gt-measurable random variables (considered as a variable on Q

not depending on r) and R~ t.

Define

(2.3) 

Then this filtration is right continuous and Note that if g is

Ft-measurable, then there exists a gt-measurable h such that g=h 
on 

Define the probability measure P_~ on Q by
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(2.4) 

where let M~-=l, ~ m =D. If x is not permanent, we have 

For every gt-measurable ft, we have by (2.4)

(2.5) 

Specially, for every measurable function f (remembering that f(a)=0), we have

(2.6) 

where Tt denotes the semigroup of (Xt). We can easily obtain the Markov

property of 

Remark 2.1. We can construct (Xt) by considering the product of (Yt) and an
independent variable e which has the exponential distribution with parameter

one and define

This construction (due to Hunt) is more intuitive than the above. However,

it becomes difficult to define the translation operator and get the Markov

property. See Azema[A] for the "relative theory" of a general process.

The value of Mt in ~,c~) has no meaning for the subprocess. Thus we can

take a normalization of (Mt) by setting

(2.7) Mt=0 for tz~,

which we will assume in the following. Another selection is to set for

Define

(2.8) 

which is a terminal time for (Xt). We have under the condition (2.7).
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Theorem 2.2. We can ln vert (2.6) as

(2.9) 

Thus we can reconstruct the larger semigroup from X t by Iff P2 ~ .

Proof. By (2.4), we obtain R~P on Thus a.s. for tR. By

(2.5), we get

Remark 2.3. (a) If Mt is equal to zero with a positive probability on f t~~ ),

we can not reconstruct the upper process (Yt) completely. Typically, M~
becomes zero at an absorbing boundary. Then we cannot avoid to change the

state space or to give an external condition (like an entrance law) to get a

conservative upper process in general.

(b) Under the normalization (2.7), since on we have R=f on

Now, we introduce the increasing process (At) by the "Stieltjes logarithm":

(2.10) on [o,ao],

with the condition A~-=0. Define

(2.11) 

which is a [0,~]-valued AF. Let (ag) be the continuous part of (at) and denote

the jump by . Then we can write

(2.12) 
[0,03C1),

on [03C1,~].

Note that 0394At1 when t03C1 and if (p may be ao). For details, see

Sharpe[S] and Meyer[Ml].

We consider At as a random variable on Q. Since by our

rule, we have which is Ft-measurable. We also note that
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is ~-measurable. Define a right continuous process on Q by

(2.13) °

Since on P~ a.s., is a finite right continuous AF.

Lemma 2.4.

(2.14) 

(2.15) 

Proof. Since A~. and Mt are of finite variation, by (2.10) we obtain

in Therefore, by (2.4) we obtain

I

°

Similarly, we get

(2.1s) 

On the other hand, we have

(2.17) 

where we used (2.7). By the definition of At, we have Adding

(2.16) and (2.17), we conclude (2.15).

For the simplicity, we write and Since is

an AF, we get

Therefore we obtain

Theorem 2.5. The process (m t) defined by (2.13) is a martingale with respect
to 
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Corollary 2.6. Assume that (Mt) is continuous in jO,P) and one of the following
conditions is sa tlsfied:

(a) on f t~~~ and M~_=0 a.s.

(b) (Yt) is conservative and a . s ..

Then A t Is a PCAF(posi ti ve continuous AF) and the life time ~ of (Xt) is

totally inaccessible. Moreover, we have

(2.18) Stf(x)=Ex[f(Xt)exp(At)].
Proof. Under the condition (a) or (b), we see that P=~ and At has no jumps
by (2.12).

Proposition 2.7. Assume that (Mt) is continuous in j0,p) and M~ _=0 almost

surely. Then the variable a~ has the exponential distribution with parameter
one.

Proof. Fix any c~ 0 and define By the continuity of at, we have

.

Now, we give an example which suggests our situation to be treated in

Section 4 and 5.

Example. Let (Yt) be the standard Brownian motion on with the absorbing

boundary at zero. We define

(2.19) at= 0 t Ys -2 ds,
and be the subordinated process by Mt=exp(-at). Since almost

surely, by Corollary 2.6(a), we have

(2.20) At= t  S X-2sds
and 03B6 is totally inaccessible. By the inverse formula (2.18), we can get
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(Yt) from But, ( Y t) is not conservative. In addition,

we emphasize that the life time of is predictable and the Doob-Meyer

decomposition of  t like (2.13) is trivial.

3. Inversion of the killing

In this section, we fix a right continuous strong Markov process

(‘~t’~’~’~t’px’~)’ Our aim is to extend its semigroup (Tt).
Let be a right continuous MF satisfying N~21 (necessarily ND=1).

Define a semigroup (St) by

(3.1) 

Clearly, we have St~ Tt. It is easy to see that the process

is a supermartingale iff (St) is submarkov.

Let (At) be any AF such that the process

(3.2) m t = t +At

is a supermartingale. Since (Nt) are of finite variation, we have

(3.3) 

We introduce the "Stieltjes exponential" of (At), that is the unique solution of

(3.4) on with 

which is a MF and its value is

(3.5) 

Since the supermartingale (mt) has finite variation and its jumps are 2 -.1,

the Doleans exponential Dt of mt-mO is a positive supermartingale and its

expectaion is s 1. By the Doleans formula, we have

(3.6) t~, 

which is a MF. Putting ~, 
we get a normalized MF which still has
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expectation s 1. Hence we obtain

Theorem 3.1. The semigroup associated with is submarkov and an

extension of (T t ).

Corollary 3.2. Let (Af) be the continuous part of (At). Then

(3.7) 

is an extended submarkov semigroup.

Remark 3.3. If T~~ is a stopping time, we have 0 ~ and

therefore Thus if § is predictable, this extension is completely trivial.

Now we consider a (unique) predictable AF (At) which generates the

pure excessive part jU of the function j=1 on E. Since j(.x~)=~ ~, (3.2) gives

the Doob-Meyer decomposition and (m ) is a martingale of the class ~ 1.

Since (Nt-) is predictable, the first term of the right side of (3.3) is a local

martingale.

In the following, we consider the case that (At) is predictable and (mt) is

a martingale. We do all things in the general theory of stochastic processes.

First, we recall

Lemma 3.4 Let (A t) be a predictable increasing process.

(a) For every nonnegative function ~ on with ~ (0)=0, define

(3.8) .

Then (Ct) is predictable.

(b) If is continuous on (T,ao) for a stopping time T. Then (AtA T)is

predictable.

~roof. By [DM2,VI53], the purely jump part of A t is
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(3.9) Adt=Hn1{Tn~t}.

where Hn is 9T 
n 
_-measurable and are predictable stopping times

with disjoint graphs. Thus {Tn~t} is predictable. Under the

assumption in (b), is predictable and is continuous. Thus

is predictable.

Let 1 be the Doob-Meyer decomposition and suppose that A t
is continuous on (T,m). By (b) in the above, we conclude Then we

will say T is a quasi life time. Let be a predictable increasing process

satisfying the condition:

(3.10) NQ=1 and fNt=0 on [T ,(0).

By (b), we can assume study the process Considering

~ t as 1 the formula (3.3) gives us a canonical decomposition of the

semimartingale t). Because, Nt-dAt and 03BE tdNt=dNt are predictable. Note
that the canonical decomposition is unique(see [DM2]).

Proposition 3.5. Let T be a quasi life time and be a predictable increasing

process satisfying (3.10). Then the process is a supermartingale iff

(Nt) satisfies the inequality

(3.11) 

Then we have Nts l~t on 
Proof. Let t) be a supermartingale. Then it has a unique canonical

decomposition as (local mart.)-(predictable increasing process). Thus (3.11)

follows by (3.3) and the converse is clear as well. Moreover, let (C t) be the
Stieltjes logarithm of (Nt) defined by dCt=dNt/dNt-. Since we have

dCct~dAct and 0394Ct~0394At. By the explicit expression (3.5), we conclude .
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For ~l, define an increasing function on by

(3.12) ’

and a predictable increasing process by (3.8) as ~_~~. Since

l, we have dAt and Now consider the equation

(3.13) with 

This unique solution is

(3.14) 

We again consider the derivative of (~~ t) by a different way from (3.3):

(3.15) 

Since is predictable, the first term of the right hand is a local

martingale. By (3.13) and the process (~~ t) is a supermartingale.

Theorem 3.6 Let (At) be the compensator of a quasi life time T.

(a) 0A t 1 for t ~T.

(b) Let l~. Then T~ is a predictable stopping time.

(c) If then is continuous and T is totally inaccessible.

Proof. Let Then ~c is a predictable stopping time and r. ~0

a.s.. Let ~. By virtue of the supermartingale property, we have" Y->9 "

for a ~D. Therefore is integrable. By (3.14), N~ is
infinite on which implies ~2 T a.s.. Thus (a) is proved. Therefore Th~ is

equal to r which is predictable. Suppose that Then 11 satisfies (3.10).

By Proposition 3.5, Comparing (3.5) and (3.14), since (1-~a(x)) l~l+x,
we conclude The proof is finished.

Remark 3.7. (a) The formula (2.12) suggests the above theorem and its inverse

transformation is the form of (3.14) not (3.5). However, the equation (3.13) for
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(At) has the solution (3.14) only if jumps of (At) are less than one. Clearly,

(3.14) is greater than (3.5) (which implies a contradiction). This incompatibility

was caused by the definition (2.10) of (At) in Section 2. If we defined it by

- dMs/Ms=dAs on [O,ooJ,

it is compatible to (3.5) not to (3.14).

(b) Given a positive supermartingale zt, we can consider a general problem:

find a predictable increasing process Nt such that Ntzt is a (local)

martingale. It was discussed in Yoeurp and Meyer [YM]. Our discussion in. the

above is concerned with a special type of zt and not contained in [YM].

4. Conservativity of (St) .

In this section, we assume that

(N) 0~ m Px-almost surely for every xf E.

A Markov process satisfying the condition 0~~ is usually called "normal"

(always assumed in this paper). If the condition § ~~o is not satisfied, a slight

modification realizes it. Take any positive constant a and consider the process

associated the semigroup Clearly our problem does not change

taking this process and it satisfies the condition (N). Under this condition,

since j=1 is a bounded potential, we can take a predictable AF (At) in (3.2)

which generates j (see [DM3,XV]).

Moreover, we assume that

(T) ~ is totally inaccessible,

according to the terminology due to P. A. Meyer. We recall that it means that

for every increasing sequence of stopping times 

(4.1) 1 im Sn  almost surely on {Sn  for all n 

It is equivalent to the existence of the decomposition of ~ t=1 ft ~~ ~ such that
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(4.2) ~ 

where m t is a martingale with jumps at § and A is a PCAF. Also note that

a.s. and

(4.3) a.s..

We will assume that the "uniformity of the killing":

(U) E}>0 for some t>o.

If the condition (U) is satisfied, then it is easy to see that it holds for every

because and I(t) is decreasing. Note that this condition

fails if the process has the accessible absorbing boundary.

Proposition 4.1. The condition

(V) lim I(t)=1t~0

implies (T) and (U).

Proof. Obviously, we must show (T). Let be an increasing sequence of

stopping times and S=lim Sn. For every £ ~0, we have

and for all n)S 1 im EX[PX ( S ) [~~~ ]]’~ ~ n 

s 1 im (1-I(~ ))p,~[sn~ ~~~ (1-I(~ ))pX[ss~ ].X ~ ~ X ~

Taking the limit ~-~ 0, we get the conclusion.

The condition (V) means that the function j is uniformly excessive and the

above can be understood as a corollary of [BG,IV3.16].

In Proposition 2.7, we mentioned that the distribution of A~ is the

exponential law. We can deduce it without the help of the upper process.

Theorem 4.2. Assume that (N) and (T) hold. Then the variable A~ has the

exponential distribution with parameter one.
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Proof. We show that

(4.4) Ex [A  n] =n ! for every n.

From (4.2), we have By (4.3) and (N), taking the limit we

obtain (4.4) for Let Since At is continuous

increasing, we have

(4.5) d(Atn)=nAtn ldAt=nAtn 1(dmt+dUt).
Therefore A t local martingale)+nA03B6n-1Ut. Define

(4.6) 

Writing we have Taking the limit of t and

,~ to m and by the induction, we can conclude (4.4).

By Corollary 3.2, we know that the semigroup

(4.7) 

is submarkov and the process is a super martingale. The next lemma

is fundamental in the following.

Lemma 4.3. For every function f on E and any stopping time T, we have

(4.8) ]=e‘ A~ ]

and

(4.9) I

where t =~~ is the stopping time defined by (4.6). Specially, we have

(4.10) ]=1-e~ 

Proof. The right hand side of (4.8) is

Since by the above theorem, we get (4.8). Since 
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(4.9) is immediate by the strong Markov property. Let f=l. Similarly, we have

J

=e~ A~ °

The next proposition is a direct consequence of (4.10).

Proposition 4.4. is conservative if and only if for some t~0,

(4.11) lim for every XE E.
. "

We define

(4.12) E}=inf Stl(x).

We know that J(t) is decreasing and 

Theorem 4.5. Assume (N), (T) and (U). Then is conservative.

Proof. Let r=c,. be the stopping time given by (4.6). Then by (4.9)

2 e£ Ex [J ]

(by (4.10))

20

The first formula of this inequality goes to zero as Since we

conclude 

Corollary 4.6. Assume (N) and (V). Then (,~t) is conservative.

5. Case of non-conservative S t

In this section, we use the same notations in Section 4 and always assume
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(N) and (T).

Consider J(t) defined by (4.12). From the proof of Theorem 4.5, if J(t)

is strictly positive, then we have (St) is conservative, and so J(t)=l. Thus

we have J(t)=0 or 1 alternatively. Therefore we can study (St) under the

assumption:

(Z) J(t)=0 for some t>0.

Fix For we define the subset Ec of E by

(5.1) E;P x[ 

Under the condition (Z), since increases to E as cy 0. We denote

the exit time from Ec by ~c. Define

(5.2) 

Since (j c is the exit time, 
c 

is also a PCAF and so (St) is a semigroup.
If Qc=0 a.s., then (Sf) is trivial. However, since Thl is an excessive

function, we can consider that it is fine continuous under a suitable

assumption. For example, assume that (~~t) is a Hunt process or a right

process. Then Ec is fine open, hence St is nontrivial and

(5.3) lim almost surely.
c~ 0 

Theorem 5.1. Assume the condition (Z) and that Thl is fine continuous. Let

c be sufficiently small positive such that Ec is not empty. Then, (St) is a
nontrivial conservative semigroup.

Proof. Let By (5.1), for every xE Ec and s~h we have

Shl(Xt)>c on {tT} Px-a.s..

By the analogous way to the proof of Theorem 4.5, we have
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Since we again conclude Thus By the semigroup

property, for every t.

Remark 5.2. In the above, we gave a direct proof. However, we can get the

conclusion by considering the stopped process which satisfies the

condition (U).

Let and define the topology on E by taking all sets of the form

(5.4) 

as the fundamental neighbourhood of the added point A . Define

(5.5) if x~p,

=f(A) if x=A.

This is the simplest and usual definition of a Markov kernel for constructing a

Markov process given a submarkov kernel.

We consider the example given in section 2 again. For we can take

essentially. Clearly, the stopped process at c has the conservative

upper process . As cP0, the upper process becomes to the brownian motion on

[O,ro) which has the trap O. In general, we can obtain the following.

Theorem 5.3. Assume the condition (Z) and that Is fine continuous. Then,

for every bounded continuous function f on E.

(5.6) lim for every 
c-~ 0 ’’ "

Proof. We simply write a as Consider

=I1+I2.

When cy 0, 11 converges to the first term of the right hand side of (5.5).
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Moreover,

=I3+I4.

By the assumption, for sufficiently small c, we have ~~. Therefore

( I3 ( s~ 

By Theorem 5.1, we have

J.

Thus

which converges to the second term of (5.5).

The following proposition tells us that (St) can be obtained as a

conditional limit. Intuitively, this fact means that the upper process is a

conditional process on the set ~4~=D./. However, it seems to be difficult for

the author to prove it.

Theorem 5.4. For every bounded measurable function f, we have

(5.7) S f(x)=S.l(x)lim ]
~ L L S

If (St) ~s conservative, then we have

(5.8) Stf(x)=lim Ex[f(Xt)|~A03BE]

Proof. From (4.8), we get

Stf(x)=lim e~Ex[f(Xt);At~A03BE].

On the other hand, we have

eF PX [At £ a~ [~ A~ P,~ C~ s Px [c ~ 

By (4.10): this formula converges to as Thus (5.7) is proved. Let
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(St) be conservative. By Proposition 4.4, we can change the conditional form

in (5.7) to that in (5.8).

Proposition 5.5. For every bounded continuous function f on E, we have

(5.9) lim Stf(x)=f(x) for every X E.

Proof. Fix ~ ~D. By Lemma 4.3, we have

I =~ I I

s 

Since AO=O a.s., the right hand side goes to zero as t+0. Since f is continuous,

we also have

lim 
which completes the proof.

Corollary 5.6. For every bounded continuous function f on E, we have

(5.10) lim Sctf(x)=f(x) for every XE E.
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