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MORE ON EXISTENCE AND UNIQUINESS OF DECOMPOSITION

OF EXCESSIVE FUNCTIONS AND MEASURES INTO EXTREMES

S.E.Kuznetsov

Necessary and suf f icient conditions are derived f or the existence

and the uniqueness of decomposition of (normed) excessive functions

into extremes. If the necessary condition is not satisfied, then a

function is constructed which cannot be decomposed into extremes.

Similar effect is established for excessive measures.

1. The problem of decomposition of excessive functions into extremes has

a long history. It starts from the paper of Martin [Ma41] who proved that any

non-negative (super )harmonic function in a domain of Euclidean space could be

uniquely represented as an integral of extreme functions. Many researchers

worked to extend this result to the class of all excessive functions for an

arbitrary Markov process, and we do not claim that our reference list is

complete. Nevertheless, one can notice two main approaches to the question.

The f irst is connected in some way with the behavior of tra jectories of

corresponding Markov processes (see [Do59], [KW63], [Dy69a], [Dy69b], [Dy72],

[Dy78], [Dy80], [Kuz74], [Kuz82] etc.). The second one is more analytical and

centers round the Shoquet theorem (see [DM75] etc. ).

In the f ramework of the f irst approach the important improvement was

advanced by Dynkin in [Dy71] and [Dy72] where the following program was

realized. The problem of decomposition of excessive functions was reduced to

an analogous problem for (co)excessive measures which in turn was constructed

through decomposition of inhomogeneous (co)excessive measures into extremes.

This route allowed us for the first time to discard all topological

assumptions, i.e. compatibility between the transition function and a fixed

topology in the state space (for example, the existence of a right continuous
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strong Markov process).

Continuing this approach, the author succeeded in obtaining (see

[Kuz74]), without any topological assumptions, the necessary and sufficient

conditions for the existence and the uniqueness of decomposition of

inhomogeneous excessive f unctions into extremes. For the class of homogeneous

excessive functions the paper [Kuz74] contained close but different sufficient

and necessary conditions. The necessary condition of [Kuz74] was equivalent to

the following property: the measure y used to normalize excessive functions is

reference measure, i. e. if h = 0 f or some excessive f unction h then h

vanishes identically.

Here we establish the suf f iciency of this condition. Next, the paper

[Kuz74] does not answer the following question. If the necessary condition is

not satisf ied what is that which is violated: the existence or the uniqueness

of decomposition. Namely, only the conditional result was established: if all

f unctions could be decomposed into extremes, then f or some of them the

uniqueness condition fails. Here we shall construct excessive functions

without decomposing into extremes.

The history of the decomposition of excessive measures is shorter. In

[Dy72] Dynkin proved the existence and the uniqueness of decomposition of

excessive measures into extremes if the normalizing function had a strictly

positive potential. Later in [Kuz82] the author pointed out that this

condition is also necessary. But analogous to excessive functions, this result

was conditional, i. e. it was proved that if all measures could be decomposed

then for some of them uniqueness fails. Here we shall construct excessive

measures without decomposition.

We mainly use the notation of [Kuz82], [DM75], [BG68], [Ge75], [Sha88],

and give all basic definitions.

2. Let ( E, ~ ) be a measurable space which is assumed to be Borel, i. e. to

be isomorphic to a Borel subset of a Polish space with Borel 03C3-field. In
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[DM75] Lousin space stands for this object.

We call the function p(t,x,r), t > 0, x E E, a homogeneous

transition function, or a sub-Markov semigroup, in the space E if it is

in t, x for every r and is a sub-Markov measure on r for

every t, x and the Kolmogorov-Chapman equation holds. See nO 11.1 of [Kuz82].

Denote by a ~ 0 a resolvent of the semigroup p. We denote by Pt
and Ua the operators corresponding to the kernels p(t,.,.) and ua(.,.),
respectively.

A non-negative universally measurable function h is called excessive if

h whenever t ~, 0 or (which is the same, see Theorem 5.1 of [Dy72]) if

aU ah ~ h as a ~ oo.

In turn, a or-finite measure v on  is called excessive if 

whenever t ~, 0 or (which is the same) if as a --~ oo.

Let y be a finite measure on . Denote by y(h) the integral 

Let us introduce a condition

(A) ~ is a reference measure, i.e. the equality y(h) - 0 for any

excessive function h implies that h = 0 identically.

It is well-known that (A) is equivalent to

For any a > 0, x E E the measure u (x-,’) is absolutely continuous

with respect to the measure y~/ (’).
More precisely, (A) immediately follows from (A ) and the relation 03B1U03B1h ~

h. The inverse implication is contained, for example, in the proof of Theorem

3 of [Kuz74].

Under the condition (Al) every excessive function is measurable indeed

(not universally measurable).

Let S = S~ be the set of all excessive functions h satisfying ~(h) - 1.

Let  be a 03C3-field in S. It is said to be admissible if the function F(h,.x:) =

hex) is -measurable with respect to hand x. If  is admissible then for

any probability measure v on S the formula hv(x) = f S h ( x)v(dh) has sense and
defines a function hv E S. Under (A1 ) an admissible 03C3-field can be defined by
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the formula

(1)

See [Dy72] or [Kuz82].

The excessive function h E S is said to be extreme if the equality h = hv
for some probability measure v on S implies that v = 6 is concentrated in h.

Denote by Se the set of all the extreme functions.

Theorem 1. Let (A) be satisfied and S be non-empty. Define the ~-f ieLd ~

by (1). Then the set of extreme functions Se is measurable in S and any

function h E S can be uniquely represented as h = h with v concentrated on

S.
e

Theorem 2. Let (A) be not satisfied and S be non-empty. Let SP be any

admissible a-field on S with Se ~ . Then there exists a function h e S which

cannot be represented as h = hv with v concentrated on Se. .

Remarks. (1) In [Dy72] (see nO 1.9) the following three conditions stand

for sufficiency: (i) the measure y is equivalent to some excessive measure m;

(ii) there exists a semigroup p which is dual to p with respect to m; (iii)

the semigroups p and p both satisfy 

(2) In [Kuz74] the absolute continuity of a semigroup p(t,x, . ) with

respect to ~Ua( . ) ) was proposed as a sufficient condition.

(3) The sufficient condition proposed in [Dy80] includes among other

requirements the existence of a transition density p(t,x,y) with respect to

some excessive measure.

(4) It has been already pointed out that Theorem 2 improves the result of

[Kuz74] where the necessity of (A) but not the existence of nondecomposable

functions was established. More exactly, Theorem 6 below gives a wide class of
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functions without decomposition.

3. Let now 03C6 be a non-negative measurable function.

Denote by V = V~ the set of all excessive measures v satisfying = 1.

Consider a a~-field 1! in Y generated by all the functions F(v) = v(r), r E ?.

For any probability measure,... on ’U one can put

= 

Similar to the case of excessive functions, extreme measures can be defined.

The set of all extreme measures is denoted by Ve. The following result belongs

to Dynkin 

Proposition. Let be strictly positive and let V be non-empty. Any

excessive measure v E V can be uniquely represented in the form of v with

~C concentrated on .

The proof of this proposition can also be found in [Dy78] or [Kuz82].

Examining its proof more carefully, one can see that the assertion remains

valid even if is strictly positive on the set ~x: > 0?. The next

result is similar to Theorem 2.

Theorem 3. Let vanish at some point x0 with > 0 and let the

measure u (jc ,dy) be ~-f inite. I f V is non-empty then there exists an

excessive measure v E V which cannot be represented as 03BD = 03BD  with 

concentrated on V .
e

Remark. As has been mentioned, in [Kuz82] it was proved that the strict

positiveness of is necessary for the existence and the uniqueness of

decomposition into extremes. But the existence of nondecomposable measures was
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not established.

For the convenience of exposition, following [Dy72], we call a measurable

space (X,x) a simplex if (i) the center of gravity is defined on X, i.e. to

any probability measure p on X there corresponds a center of gravity x  e X;
(ii) extreme points are defined and the set Xe of all the extreme points is

measurable in X and (iii) any point x e X can be uniquely represented in the

form x = xp with p concentrated on X . . Now the assertion of Theorem 1 implies

that S is a simplex.

1. Existence of decomposition for excessive functions

1.1. As a f irst step we shall establish Theorem 1 under an additional

assumption of existence of a dual semigroup.

Let some ao > 0 be chosen. Denote po 
= 

. The measure po is a finite

03B10-excessive measure (i.e. it is excessive with respect to e-03B10t p(t, ., . )).

Introduce a condition

(d) There exists a semigroup p(t,y,dx) in the space E which is 03B10-dual to

p with respect to 0, i. e.

= t > 0, (1.1)

and satisfies

limt~0 p(t,x,E) > 0 (1.2)

for all x e E.

Denote by ua(x, . ) the resolvent of the semigroup p. It easily follows

from (1.1) thatllo(dx)ua.+(X (x,dy) a > 0. (1.3)

Theorem 4. Let (A) and (d) be satisfied and S be non-empty. Then S is a
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simplex.

Remark. We shall not use the f initeness of  and 0 in the proof of

Theorem 4. Only the 03C3-finiteness of 0 will be used.

Until the end of the proof of Theorem 4 the semigroup p will be fixed,

and Pt and Ua will stand for the corresponding operators.

Lemma 1. There exists a set E0 ~  of zero 0-measure and

ua(y,~) ~ 
f or y ~ Eo.

Proo f . Take an arbitrary f ixed x > 0. In view of (A1 ) there exists an

-measurable f unction ) such that

(x,dy) _ 
0

f or any x E E. Hence f rom ( 1. 3 )

= (x,dy) _ (1.4)
o

Put - and Eo - ~y: Ky,’) ~ M (y,’)}. Using separability

of  and (1.4), one can easily see that E0 E ~  and 0(E0) = 0. But u (y.*) -

~(y~’) ~ tco( ~ ) outside Eo. It only remains to note that measures u (y,’) are

equivalent for all a. o

A 03C3-finite measure 03BDs(dx) dependent on a real parameter S’ is called an

inhomogeneous excessive measure if

vt for s  t,

T vt Whenever s ~ t.
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In turn, a non-negative universally measurable function depending on

real parameter s is called an inhomogeneous excessive function if

for s  t,

Pt-sht T hs whenever t ~, s.

Similar ob jects connected with p are called coexcessive, in their definitions

p acts in the reversed time. Namely, a coexcessive measure vs satisf ies the

condition v sP s-t ~’ vt as s ,~ t. In turn, a coexcessive f unction hs satisfies

Let vs and hs be inhomogeneous excessive measure and function. If 

0o a.e. v 
s 

for all s then there exists a Markov process Pv) with random

birth and death times f or which

xt~dy) = v s (dx)p(t-s,x,dy)h t (y), s  t.

See [Kuz73] or [Kuz82]; see also Section 3. Define a scalar product v,h> -

(cf. [Dy72] or (Kuz821). Scalar product h,v> for a coexcessive function
v

hand coexcessive measure v can be def ined in a similar way .

Put

Ils(dx) = -ao  s  oo.

The measure ps is an inhomogeneous excessive measure.

Take any f ixed positive al i > 0. For any non-negative ~-measurable

function b(x) on E we put

00

= j (1.5)Lt (y) = Ltb(y) = t (s-t,y,dx)b(x)03B11 2exp(-03B11|s|-03B10s)ds (1.5)
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One can easily verify that Lt is an inhomogeneous coexcessive function.

Moreover in view of (1.2), if b is strictly positive then so is Lb. If b is

bounded and a i > ao then so is Lb. .

Lemma 2. For any h E S put vh(dx) = h(x)p (dx). Then
(i) The measure vs is coexcessive ;
(ii) For any non-negative measurable function b on E, we have

Proof. (i) follows immediately from the duality relation (1.1) and from

the fact that h is excessive.

(ii) follows from the relation (1.9) of [Dy72]. a

A coexcessive measure v sCdx) is called an a-homogeneous one if

vs(dx) = e03B1S03BD0 (djc) for any s.

By virtue of this definition, 0-homogeneity implies that v s does not depend on
s, i. e. is a homogeneous coexcessive measure.

Lemma 3. Let vs be an a o -homogeneous coexcessive measure which does not

charge Eo, , where Eo was constructed in Lemma 1. Then v = vh with h being a

homogeneous excessive function and this representation is unique.

Proof. (Cf. [Dy72], Lemma S.1 and 5.2) Note that vo is a homogeneous

coexcessive measure. In fact, one can see that 03BD0Pu = u ,
~ 0. Hence 03B103BD0 03B1 ~ 03BD0 whenever 03B1 ~ ~. But since 03BD0 (E0) = 0 then 03BD0 0 in

force of Lemma 1 and a Radon-Nikodim density h = can be taken. Basing on

the coexcessiveness of vo and the duality relation (1.3), one can easily show

that

03B1U03B1 ~  a.e. 0 and nUn ~ a.e. 0 as n ~ ~. (1.6)
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But (1.6), ) and the resolvent equation imply that the function o~/ h is

monotone in a. Put h = lim at/ h. The function h is excessive and by virtue

of (1.6) h = a.e. 0, hence 03BD = 03BDh.

The uniqueness follows easily from (A ). a

Let b be any bounded strictly positive ~-measurable function. Denote by

Mb a set of all inhomogeneous coexcessive measures v satisfying the

normalizing condition

where L. b is defined by (1.5). Consider a 03C3-field Mb in Mb generated by all the

functions F(v) -oo  t  co, r e ~. For any probability measure m on Mb

the formula

~ ) ) = v ( ) m(dv)

defines a coexcessive measure vm e Mb. Under the condition (1.2), by virtue of

[Dy72] (see also [Dy78], [Kuz82]) the space Mb is a simplex.

Denote by a subset of all 03B10-homogeneous coexcessive measures v E

Mb. Note that by Lemma 2(ii)
(1.7)

for any ao homogeneous coexcessive measure v.

Lemma 4. The space is also a simplex.

The proof is a simple repetition of nO 1.7 of the paper [Dy72]. The only

difference concerns the definition of the shift operator e: Mb -~ Mb. Namely,

it should be def ined as
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(03B8s03BD)t(0393) = exp(-03B10s)03BDt+s(0393). []

Denote by Me’ b the set of all the measures v E M8’ b that do not charge

E . . The set Me’b is obviously measurable in Me’b.
0

Corollary. The space Me’b is a simplex too.

The proof is trivial and is based on the relation

03BDms(E0) = 03BDs(E0) m(d03BD)

(cf. section 6 of [Dy72]). []

Take b - 1 and denote M - Me’ 1. Consider also a set S - S 
p 
o 

of all

homogeneous excessive functions h which satisfy the relation 0(h) = yUa (h) 
_

1. Introduce a 03C3-field SP in S by the formula (0.1).

Lemma S. The space S is a simplex too.

To prove this assertion one has only to note that Lemma 3 establishes an

isomorphism of measurable spaces M and S which is two-sided linear (cf.

[Dy72], n0 5.4). o

Introduce a set So = {h E S: 03B3(h)  oo?. Clearly So is measurable in S.
’" ’" ’" N ’1For any function h E So define i(h) = h E S = S~.o y(h)

In turn, let h E S. Since 1 - y(h) - lim03B1~~ 03B103B3U03B1(h) and the set 1x:

U03B1h(x) > Of is the same for all a, it yields that (h) > 0 and one can put
0

j(h) = U h h E 0. Obviously both the mappings i and j are measurable and

0

inverse.

A probability measure  on So is called admissibie if ~~ = J 
So
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-  oo. In turn, for a probability measure p on S we put ~ ~ =

S p(dh) _ 03B3U03B10 (hp). In light of the above remark > 0.

For any admissible measure  on So, , let us define a measure  = p(I) on S

by putting

)
p(dh) _ N 

.

(h)

In turn, for any probability measure p, on S, let us define a measure  = t(p)

on So by the formula

N N 

.

Lemma 6. The mappings p and i are inverse. They establish a one-to-one

correspondence between probability measures on S and admissible measures on

S . Moreover if p = p(p) then ~ and h = ,j(h~), and vice versa.

The proof consists of simple calculations. °

We are now ready to prove Theorem 4.

Let the function h e S 
o 

be represented in the form h = hN p’ = S N h 
The equality ~(h) - (h) ~(dh) implies that ~ is concentrated on So.

Moreover,  is admissible because of  oo. Denote = 

From Lemma 5 and the above remark it follows that each function h e So can be

uniquely represented as h = h for some admissible measure ii concentrated on

0,e. Hence Lemma 6 implies that any f unction h E S can be uniquely

represented in the f orm h = h  with a probability measure p 
concentrated on

i(So , e). ° lt remains only to note that Lemma 6 implies the relation ) =

S . Theorem 4 is proved. 
°
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Remark. The conclusion of the proof of Theorem 4 is close to the

conclusion of the proof of Theorem 0.2 of [Dy80].

2. We shall reduce Theorem 1 to Theorem 4 by means of the f ollowing Lemma

7. Recall that the semigroup p is said to be normal if p(t,x,E) ’-- 1.

Lemma 7. Let E be a Borel space and p be a normal semigroup in E and v be

a a-finite a-excessive measure. If p separates the points of E then there

exists a semigroup p which is 03B1-dual to p with respect to v and is satisfying

the condition (1.2).

Proof . The existence of a-dual semigroup p is established in [Kuz91], and

it remains only to modify it in such a way as to satisfy (1.2).

Consider a set Ho = {x: limt~0 p(t,x,E) = 0}. The set Ho is measurable

and the duality condition yields

03BD(H0) = 

limt~0 03BDPt(H0) = limt~0 H0e03B1t03BD(dy)(t,y E) = 0.

Moreover = 0 a.e. v because of = 0. Put

(t,x,0393BH0) if x ~ H0,

p(t,xo, rBHo) else,

where x0 ~ H0 is fixed. Let us show that p is the desired semigroup. In fact,

f irst of all

p(t,x, ~ ) = p(t,x, ~ ) a.e, v,

hence the duality relation remains valid. We shall show that p satisfies the

Kolmogorov-Chapman equation. One has only to study the case x ~ H , , r E 8. But
in such a case
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p(s+t,x,0393) = (s+t,x,0393BH0) = E(s ,x,dy)(t,y,0393BH0)

=EBH (s,x dy)(t,y,0393BH0 ) = Ep(s,x,dy)(t,y,0393),
o

.

since Pt,Y;> * ° for Y " Ho. Finally, suppose that iimtiost,x,E> = ° for

any x. One may assume x  H . By virtue of the definition of H one has
_ 

0 0

p(t,x,E) > 0 for some small t. But on the other hand, if 0  s  t then

~(t,x,E ) = ~~ 
= p(s,x,E) = 0.

o

The contradiction proves the result, a

To finish the proof of Theorem I it only remains to reduce the general

case to the case when p is normal and separates points. Some additional

constructions are required.

(a) Reduction to a normal case. Put

~ 

# = (x: I(x) > 01.

One can easily find that

(I) The function 1 is excessive and -measurable and E e l©;

(it) Any excessive. function h vanishes outside E;

(iii) The function

$(t’X’r) " £ j r P(t’x’dY)I(Yl’ x " E’ r C E’
is a normal transition function in E;

(iv) If h is excessive with respect to p then h(x) = £#, x G E, is

excessive with respect to p. Moreover y(h) = where = 1(X)y(dx) is ,a

finite measure. In particular, it implies that p and  satisfy (A) together

with p and y.
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(v) the correspondence established in (iv) is an isomorphism of the space

S and the space S of all the f unctions which are excessive with respect to p

and satisfy y(h) = 1.

(b) Passage to an entrance space. Let p be a normal semigroup. A

sub-probability measure vt(dx) depending on positive parameter t > 0 is called

an entrance law if 03BDtPs = for any t, s > 0. An entrance law is said to be

normed if limt~0 v teE) = 1. °

Let H be the space of all normed entrance laws. Consider a 03C3-field  in H

being generated by all functions F(v) = vt(r), t > 0, In force of

[Dy71] and [Dy72] the space H is a Borel measurable space and a simplex. Let

E be the set of all extreme elements of Hand g be the restriction of 1f to
+ +

E+. The measurable space (E ,~ ) is called an entrance space. In force of

[Dy72] the space (jC ,~ ) is Borel.

Further, to every point x e E there corresponds an entrance law 

p(t,x,r), hence the probability measure q(x, . ) on E+ which defines the

decomposition of the entrance law Ilx into extremes. Basing on the definition

of  one can easily get the measurability of the function q(x,r) with respect

to x for a given r. Denote by Q the operator corresponding to the kernel q.

Let now x E E+. Denote by vx the corresponding entrance law. Def ine a

semigroup p+ in the space E+ by the relation

p~(t~r) = ~ r ~ ~ t > o.

One can easily find that p+ is a normal semigroup which is measurable with

respect to t and x and separates points of E+. .

Denote ~+ - The measure ~+ is finite. (The only point where the

finiteness of y has been really used).

Next, for any excessive function h on E one can construct an excessive

f unction h on E by putting
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h+(x) = limt~0 03BDxt(h).
In turn, the function h can be reconstructed from h+ by the formula h = Qh +
and moreover y(h) = ~+(h*). Hence for the condition (A) holds. Let S =

{h +: ~+(h+) = ly. The described correspondence defines an isomorphism of S and

S+ preserving linear operations.

Applying Lemma 7 and than Theorem 4 to the semigroup p+ and the measure v

= we obtain the assertion of Theorem 1.
0

2. Nondecomposable excessive functions

1. In this section we assume the semigroup p, measure y and admissible

03C3-field  satisf ying the condition of Theorem 2 all are fixed.

Consider a space W of all the tra jectories in the space E def ined on

open intervals (0, ~) where ~ = ~(j) ~ oo is the lifetime. Let ~~ be the

Kolmogorov cr-field in W and let ~t = , 5’ ~ t). Define shif t operators 9t
and measures Px on (W,0) in the usual way (see [Ge75] or [ShaSSD. As usual,

we put jc.(tj) = . By ~t (resp., ~) we shall denote the completion of ~~
(resp. ~~) with respect to all the measures P . .

Let h be an excessive function. Put

Z(h)t _ - 
f Q lim inf . h(x ) for t ~ t0,~),

= ~ ~ 0 ~ ~ 
for t 2: ~.

It is well known that the process (resp. Z(h)J is a supermartingale

with respect to the filtration  t (resp. ~t+) ) and any measure P .

Lemma 8. For any t > 0, x e E and any excessive function h

= for 0 a.e. P . (2.1)

Proof. Since both sides of (2.1) are right continuous in s a.e. P , it is
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sufficient to prove (2.1) for any fixed s. Since h(.x- ) ) is a non-negative

supermartingale ’ a.e. ° Px there exists a limit lim , ° So a.e. ° P 
x 

we

have

9tZ(h)s = ~ = A ) = .

hence the result. o

Lemma 9. h(x) = P Z(h) .
This relation easily follows from Fatou lemma and properties of

supermartingales. a

2. Since by assumption (A) is not satisfied, there exists an excessive

function ho with ~(ho) ) = 0. We may assume ho to be bounded (otherwise one can

put g = min(h o ,I) and then take go = lim aUag). One can easily see that

together with any point h e S the space S also contains a ray h~ = h + 

~ 0. It can be proved that this property contradicts the unique decomposition

into extremes (see [Kuz82], Theorem 11.2 for exact proof). We now prove that

none of the functions h~, a > 0 can be decomposed into extremes.

Fix the function ho and put Eo = {h 0 > 0}. Using the relations T ’ h

as a ~ oo and Pth ~ h as t ~ 0 one can easily f ind that 0 and

= 0 for Eo and n (:x-,E ) ) > 0 for x ~ E . .
Put

03C4s = inf{t> s: Z(h0)t = 0},
03C4 = 03C40.

T is the stopping time with respect 

An excessive function h is said to be harmonic on E if
0

h(x) = Px Z(h)03C4.



462

Lemma 10. For any t > 0

t + 9tT = it a.e. Px.
This readily f ollows f rom Lemma 8. a

Lemma 11. For any t > 0

 t, jc ~ E } = 0.

Proof. By construction, = 0 a.e. Px due to the right continuity of

Hence from the stopping theorem for supermartingales, we have

0 = p X Px 0~

hence the result. a

In particular, Lemma 11 implies that

it = min{T, t} a.e. Px. (2.2)

The main tool is given by the following

Theorem 5. For any excessive function h, let us define h(x) = PxZ(h)T. .

Then

(i) The function h is excessive and coincides with h outside E~ and is

harmonic on E~. .

(ii) There exists an excessive function g vanishing outside Eo and

satisfying h = h + g.

Proof. ° (i) Since Z(h)t is progressively measurable with respect to ~t+
(see Theorem A3.2 of [Kuz82]), the function h is universally measurable. Next,

by Lemma 8 and Lemma 10

Pt(x) = Px(Pxt(Z(h)03C4)) = Px(03B8t(Z(h)03C4 ))

= Px(Z(h)03C4t) ~ Px(Z(h)03C4) = (x),
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and in view of (2.2) the left side converges to the right side as 0. Hence

h is excessive.

Further, by Lemma 9, if x ~ Eo then PxZ(ho)o = ho(x) = 0 hence i = 0 a. e.

Px hence h(x) = P x Z(h) 0 = = h(x).

It only remains to show that h is harmonic on Eo. . Since h = h outside Eo, ,
by Lemma 11 we have Z(h)s = Z(h) s a.e. Px on (i ~ s). It implies that

(x) = PxZ(h)03C4 = PxZ()03C4
.

(ii) Put

0 if x ~ E0
g(x) = ~ if x ~ E0 and h(x) = ~

h(x) - h(x) else.

Since = 0 if x ~ Eo, , one has Ptg(x) = 0 for x ~ Eo. In turn, let x E

E~ and g(x)  oo. Then h(x)  oo and h(x)  oo, ’ which implies Px ( h(x ) )  oo ? _

1 for any t > 0. Hence using (2.2) one has

Px g(Xt) = Px(h(xt) - h(xt)) = Px(Z(h)t - )

= ) = h(x) s g(x).

This calculation also yields P tg(x) ~’ g(x) as 0 if h(x)  oo, even in case

h(x) = oo.

Thus g(x) is a supermedian function. Put g(x) - limt~0Ptg(x). The

function g(x) is excessive and coincides with g(x) if h(x)  oo, hence h = h +

g’ o

Corollary. Let h E S be an extreme function. Then h is harmonic on E~.
Proo f . Assume that h * h. Let g be as in Theorem S. Since by construction

(g) = 0, we have h E Sand h + 2g E S. But
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h = 2(h + (h + 2g)). o

Lemma 12. The function is B[(0,~)xx-measurable with respect to

and h.

The proof uses the right continuity in t and measurability of h(x) with

respect to h and x. o

Lemma 13. Let h = S h p(dh). Then Z(h),~ ~ S p(dh) a.e. P . x .

Proof. By Fatou lemma

SZ(h)03C4 (dh) = S lim infr~03C4 h(xr ) (dh)

~  lim infr~03C4 h(xr) = Z(h)03C4 a. s. P x. o

Theorem 6. If h e S can be decomposed into extremes then it is harmonic

on E . .
0

Proof. Assume that h = h p(dh). Then by Lemma 12 and Lemma 13 andS
e

Fubini theorem

h(x) = J.L(dh), = Px ) tc(dh)
e e

- P 
X j ~ Z(h) I p(dh) * P X Z(h) I .

= Px 
e 

Z(h),~ p(dh ) ~ 

On the other hand, by supermartingale properties, h(x) ~ Hence there

is an equality. o

Now Theorem 2 f ollows now f rom the obvious f act that f or any h E S the

f unction h03BB = h + 03BBh0 cannot be harmonic on Eo f or arbitrary positive a > 0.

Remark. Let us call the function h e S, extremal if it cannot be

represented in the form h = h i + g where h 1 e Sand = 0. It follows from
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Theorem 6 that any function admitting decomposition into extremes is extremal

indeed. To prove this one has only to assume the contrary and start from ho =

g and Eo = ~g > 0}.

Example. Let E = R2. For any point x = (x 1,x 2 ) denote x+t = (x 
1 
+t,x 

2 
+t).

Define a semigroup p by the formula p(t,x,dy) = 8x+t(dy). Let be a

finite measure on E which is equivalent to the Lebesgue measure. Condition (A)

is not satisfied: for example, the function h(x) = I{x1 =x2 } 
is excessive but

y(h) = 0. One can easily verify that S = S has no extreme point and contains

no extremal function.

3. Nondecomposable excessive measures

1. In this section, we take cp, V = VCP, V and xo as in Theorem 3.

Introduce a space Q of all the trajectories defined on open intervals

(03B1,03B2), -~ ~ cc(tj)  a(w) - oo. As usual, we put = for a  t  03B2, F(.) =

03C3{xt, t ~ .}, F = F(-~,~), F(s,t+) = ~ F(s,t+~) etc. See [Kuz82]. The star

stands for universal completion, F*t+ = ~ F* (-oo, t+E ),

For any real t we define the shift operator ~ Q by putting 

ws+t with corresponding shift of the life interval We put Dt = i~ n 

t  ~3}. Obviously 6S(nt) Ds+t and 9 ~(’) > = y(’ ~ + t).

Let Q be a (r-finite measure on ~. The pair (xt, Q) is said to be a

(canonical) Markov process with random birth and death times if its

one-dimensional distributions

Q{x  t  ~3, ~ ~ d~}

are a-finite for any t and the Markov property

= a.s. Q on a  t  ~,

holds for any A E ~~t, B E Due to [Kuz73] for every excessive measure v

there exists a unique canonical Markov process (xt, Q ) with two-dimensional
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distributions of the form

mst(dx,dy) =  E dx, xt E dy, t  ~)

= v(dx)p(t-s,x,dy).

It can be easily f ind that

Q(9tA) = Q(A).

for any A E ~.

Starting from the transition function p, one can in the usual manner

construct a family of probability measures P , , s E E (-oo,oo), x E E on the

03C3-fields F>s being concentrated on iIs and satisf ying f or s  t, B e F>t

Q(A~~~t) = a.s. Q on a  t  S.

on t  ~.

See Section 2 of [Kuz82].

2. Let some p > 0 be fixed. Put

~t = 

(Cf. the definition of Z(h) in Section 2).

Let v be any excessive measure.

Lemma 14. (i) The process Zt is right continuous on a.s. f or

any s,x, and on (a, co) a.s. Q .
(ii) For any s 

’

03B8sZt = Zs+t for all t > 03B1 a.s. Q03BD.
(iii) Let T be a stopping time with respect to satisfying z > a.

For real t

Qv( ~ ~~+ ? ~ e Z,~ a.e. Qv on ~i  t}.
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(iv) Let cr be a pair of stopping times with respect to F*t+
satisfying T > a. Then

Qv{ j ~ ~~,~+ ) ~ Zt a.e. ° Q~.

Proof. In general, note that the function ht(x) = 

P 
is an

inhomogeneous excessive function. Hence for any s the process is a

supermartingale on with respect to the filtration y(.?,t] and any measure

P .

s,x

(i) Basing on the given remark and the properties of supermartingales one

can obtain the part of the assertion concerning measures P . . To get the rest

part, one can repeat the considerations from the proof of Theorem 5.2. A of

[Kuz82].

(ii) can be proved in the same way as Lemma 8.

(iii) and (iv) can be established basing on excessiveness of ht(x) by

means of considerations similar to the proof of Theorem 5.4 of [Kuz82]. a

Put

E0 = {x: Up03C6(x) = 0},

E1 = E B E0,

03C40 
= inf {t: t > 03B1, Zt = 0},

= inf {t: t > a, Zt > Oy,

where clearly inf{ 0 } = m. In force of Theorem A3.4 of (Kuz82] the process Zt
is progressively measurable with respect to y , ’ hence io and are stopping

times with respect to F*t+.

Lemma 15. (i) Z,~ - 0 on ~z~ > a) a.s. Q . V .
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(ii) For every t, 03B6t = 0 a.e.Q v on {t > io?.
(iii) Z --- 0 on (TO’ ~o) a.e. Qv.
Proof. (i) follows from Lemma 14(i).

(ii) Put an 
= + 1) and T n = inf{t: t > an: : Zt = 0~. Similar to

(i), we find that Z03C4 = 0 a.e. Qv. Hence Lemma 14(iii) implies that 03B6t = 0 on
n

t > in a.e. Qv. It only remains to note that TO 
= inf in.

n

(iii) follows from (ii) and the definition of Zt. o

Lemma 16. ~o ~ (a,oo) a.e. Qv.
Proof. . The proposition means that Eo is an absorbing set. In fact, by

definition of TO and o~o one can see that o~o 
= a on (io > x}. In turn, by Lemma

15(iii) on {TO = a} one has a~o a.e. Qv. o

3. For arbitrary excessive measure v let us define

03BD1(0393) = Q03BD{xt ~ 0393,03C30  t  03B2},

The measure 03BD1 is equivalent to the measure of the paper (Ge891. In

view of Lemma 14(ii) the right sides do not depend on t, hence vo and vl are

well defined. Moreover, by Lemma 16

= Q03BD(xt e r, a  t  03B2, (To 
= ao?.

Lemma 17. excessive.

(ii) v~ is excessive too and 
= 0.

Proof. (i) Simple calculation shows that

= f,  t) = E r,  t - s} s 
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and the left side tends to the right side whenever s ~ 0 because of  t -

(ii) Similar to (i), we find that
~ E r, a C t P~ }
- E r, «  t - s, 0’O 

= oo}

~ E 1’, a C t, a~o 
= oo} = 

and the left side tends to the right one whenever s ~ 0 since la  t - s} ~ la

Finally, by Lemma 16 and Lemma 15(ii)

= } = } = 0.

But the set > 0} does not depend on p, which yields

03BD0(03C6) = lim 03BB03BDU03BB03C6 = 0. []

4. We are now ready to investigate the structure of V.

Lemma 18. I f v e V is extreme then v = 0.

The proof is similar to the proof of Corollary of Theorem 5 and uses the

obvious representation

03BD = 03BD0 + 03BD1 = 1 2((03BD1 + 203BD0) + 03BD1). []

Lemma 19. For every A ~ F* the function F(v) = QvCA) is universally

measurable and if v( . = j J~ v( . ) then

Q (~) = Q 
U 
(A) 
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for any A ~ F*.

This assertion can be proved directly f or sim ple events A of the form A =

~xt E rt, ..., xt E rn} } and can be extended to general /l’s by means of
t n

monotone class arguments, o

Theorem 7. I f v~ ~ 0 then the measure v E Y cannot be re presented in the

form 03BD = 03BD  with  concentrated on Ve.
Proof. Generally speaking, we have not established any measurability of

Ve (but Ye seems to be universally measurable). Nevertheless, assume that 03BD is

of the form v( . ) = v( . ) jjt(dU) and apply Lemma 19 to the set A0 = {03C30 = oo} E

Y
~ . In view of Lemma 18 Ve is contained in the universally measurable set {~:

= 0} and since by assumption

0  = = f 

it implies that  cannot be concentrated on the set Ve of extreme points, o

Proo f o f Theorem 3. In view of Theorem 7, it only remains to construct a

measure v E V with 03BD0 ~ 0. Denote K(’) - (/(x.). Clearly K is excessive.

Moreover K(~p) = 0 because of K ~ ~ ) and = 0. Hence = 0

too, which yields = 0 a.e. Q for any t. It implies that Zt = 0 for all t >

x a. e. QK, hence 03C30 
= ao a. e. QK. Thus we f ind that K = K.

Let now 03BD be any element of Y. The measure v = v + rc also belongs to Y

and vo = K > 0. Hence  cannot be decomposed into extremes, o
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