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WEAK CONVERGENCE OF JUMP PROCESSES*

AIHUA XIA

(East China Normal University, Shanghai, China)

ABSTRACT. This paper gives a necessary and sufficient condition for the weak conver-
gence Xn ===~ X of general jump processes defined on R.+, for Skorokhod topology,
in terms of their predictable characteristics dx) and v(dt,dx). The result is an
improvement and generalization of that in Jacod [1]. .

1. INTRODUCTION

A real valued cadlag function w defined on R+ is called a step function, provided
it takes finitely many values in any finite interval, i.e. w can be written as

00

(1.1) w(t) _ ~ bt > 0,
k=0

where

(1.2) 0 = to  tl  ...  ... , tk i oo;

(1.3) Vk > 0, if tk  00, then tk  tk+1;

(1.4) V~ > 1, 

Note that, if tk = oo, then 03B1i = 0, k. For tk  ~, |ak| is called the jump size
of w at jump time tk. We denote by H the space of all such step functions.
A process Y, defined on a probability space ,(t)t>0, P), is called jump pro-

cess, if its sample functions, with probability 1, are step functions, i.e. Y can be

expressed as
00

Y(t) _ ~ rlk 
k=0 

with (Sk, satisfies (1.2), (1.3) and (1.4). Note that, in this paper, the expression
of any jump process is automatically in this form. Let

00

= ~ ,

Jb=l
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where is the Dirac measure at point (u, b), and D = ~(w, t) : ~ U~.
Then ~ is called the jump measure of Y, and its compensator v(dt, dx) is called the
predictable characteristic of Y.

Obviously, every jump process is a semimartingale. If we consider jump processes
(Xn) as a special case of semimartingales, it is not difficult to give some conditions
on their predictable characteristics to ensure the weak convergence of (Xn). But,
unfortunately, those conditions are not necessary.

However, many authors discussed the classes of counting processes directly, and
obtained some conditions for the convergence of counting processes. But most of

the conditions are not necessary either except the case that the counting processes
are conditionally independent. (cf. [7,8]) Recently, J. Jacod [1] got a necessary and
sufficient condition for the convergence in law of counting processes in terms of their
compensators.

In this paper, we use the similar method in an attempt to improve and extend the
result in [1] to general jump process classes.

To discuss the small jumps of (xn) is a matter of semimartingales, no particularity
of jump processes. In order to avoid disturbance of small jumps, we try to impose a
condition on the jump size of (Xn). Hence, what we will discuss here is, as a matter
of fact, the weak convergence with respect to a "strong Skorokhod topology", which
is introduced specially for jump processes in section 2. Since usual discussion of

weak convergence of processes is with respect to Skorokhod topology, we will give the
relation between the weak convergence under usual Skorokhod topology and the weak
convergence with respect to the distance defined in this paper.

2. PRELIMINARY

Let D(R) be the space of all real valued cadlag functions defined on R+, and
p denote the Skorokhod distance on D(R). (cf. [2]) In this section, we will intro-
duce another distance p on Q, and give some notations. Through out this paper,
the notations N and Z+ stand for all positive integers and all nonnegative integers
respectively.

2.1 Definition. Let w and w’ be two step functions:

00 00

= ~ 
k=0 k=0

with (tk, ak)k>o and satisfy (1.2), (1.3) and (1.4), define

:= arctan(ao) - arctan(bo) [

+ 1 2k1  [|1 tk- + | arctan(ak) tk - arctan(bk) sk |].
Then it is clear that p is a distance on S~. .

The following lemma is evident.
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2.2 Lemma. Let Wn E ~, n E N:

oJ

(2.1) ~ 0;
k=0

then ~ 0 is equivalent to Vi, t= ~ t= and as ~ a; if t=  ~, and implies
-~ 0.

For each n E N, let

oJ

(2.2) X~ :_ 0;
k=0

be a jump process defined on a probability space ~’", P") with pre-
dictable characteristic vn . Let

00

(2.3) Xt(w) := :_ t ~ 0;
k=0

be the coordinate process on ~. Set := s  t) := and let P be
a probability measure on (Sl, 

-

2.3 lemma. ~2~ Let an, , a If p(wn ,w) --~ 0, then Vt > 0,
a). there exists a sequence (tn), such that tn - t, an(tn) -~ a(t) and --~

b). if 0, then any sequence with the same properties as (tn) in a~
coincides with (tn) for all sufficiently large n;
c). for ~c > 0 satisfying ~t > 0, ~ u, set

= s(0, u) = 0, s(p + 1, u) = inf{t > s(p, u) : | 039403B1(t) |~ u},
sn(p+ 1, u) = inf {t > sn(p,u) : : ~> ~}, Vp E Z+ ;

00

= + ~ 
p=1 

00

«(0) + ~ ,

p=1 

then Vp EN, sn(p, u) - s(p,u), ~ 039403B1(s(p,u)) if  ~, and

P(au’n -~ o.

2.4 Lemma. Vi, m EN, let

E D(R) : I CY(t~ :_ E ~~
and the jump size of a in (0, m) is > 
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then is a closed subset ofD(R).

Proof. Let /?" E p E D(R), and -~ 0. Let u E (o,1/i) in lemma 2.3
c), we have p(~Q"’n, ~‘) --~ 0. Because {3n(s), Vs E [0,m), by lemma 2.3 a),
we get ~Q(s), Vs E [0, m). But {u E (o,1/i) : ~~3(t) ~ u, Vt > 0} is dense in
~0,1/i~, the definition of ~‘ gives that ~Q E 
2.5 Notations. (i). Assume that (F,d) is a metric space, and the notation B(F,d)
stands for the Borel u-algebra of (F,d) .

(ii). Let

(2.4) R(N, k) :=1(ti, to = 0, ao |~ N; ti + 1/N  ts+i
and ( E [1/N, NJ, 0  i  k -1 }.

It is easy to see that, as a closed subset of space (R+ x R)k+1 (with the product
topology), R(N, k) is compact.
2.6 Theorem. Let

k) := ai1[ti,~[(t) v E R(N, k) )

fi : Vk E N, ak =1  ~}.

LA:=1 
~ j

Then

a). S~ is a closd subset of (~, p); ;
b). (S~, p) is a Borel subset of D(R);
c). ~ 
d). is a compact subset ;

e). (~, p) is separable.
Note that (S~, p) is not complete. For example, let then ( w n) is a

p-Cauchy sequence, but it has not limit in (S~, p). 
~ ’

Proof. The proof of a) is the same as that in lemma 2.4. Since Q = nm Ui the
assertion b) follows. It is well known that B(D(R), p) is equal to the u-filed D(R)
generated by all maps on D(R) : 03B2 ~ {3(s) for s ~ 0. (cf. [2]) But and F are
the traces of B(D(R) , p) and on 0 respectively, hence = ~". Because
of lemma 2.2, we know that every closed subset of (~, p) is closed under distance p,
we find C B(S~, p), which implies c). To prove d), consider a mapping M on
R(N, k) to defined by

k

~_ 

i=0
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This mapping is continuous by lemma 2.2, and maps R(N, k) onto Q(N, k). Therefore,
the compactness of R(N, k) gives that is compact. Let

:= k),

by an appeal to the mapping M we find that (S~(k), p) is separable. Since (~, p) is
the closure under distance p, we get that (S~, p) is separable. e

Suppose v(w, dt, dx) is a predictable random measure on P). In this
paper, this v will play the role of predictable characteristic of X in the sequel.

Now, we introduce three hypotheses. Firstly, we use C+ to stand for the set of all
nonnegative bounded continuous functions R - R+, and have a limit at infinity.
2.7 Hypotheses.

v~>o, JbeN, /ec+,

03C9 ~ f.03BDt^Tk(03C9) := t039BTk(03C9)0 R f(x)03BD(03C9,ds,dx)
is continuous on 

fH2J. Vt > 0, k E N, o n > 1 } is uniformly integrable.
[H3]. dt > 03BEnk |~ [1/N,N], Tnk  t) = o.

2.8 Remark. In hypothesis [HI], the continuity with respect to p is very important.
The following example shows that , if we have p instead of p in [HI], then the result
in this paper will be meaningless.
2.9 Example. Let X be a Poisson process with = f1 (dx)dt, where
~i(d.c) is the unit measure at point 1. Let = n 1~1~~~(t); w(t) = 0, 0. Then

03C1(03C9n,03C9) ~ 0, but 1.03BD2039BT1 (03C9n) =1, 1.03BD2039BT1 (w) = 2, hence 1.03BD2039BT1(03C9n) 1.03BD2039BT1 (03C9).
1

In appearance, the hypothesis is not so satisfactory. The following lemma
shows that is equivalent to a stronger and more reasonable condition. Set
[Cl]. Vf E C+, (W, t) ~ f.vt() is continuous on (S~ x R+, p x d), where d(x, y) :=
j .c 2014 t/ j, 
[C2]. V f E C+, t > 0, ~ t-~ is continuous on 

2.10 Lemma. fHIJ is equivalent to and implies fC2J and d f E C+, , u, t E
R+, p E continuous on 

Proof. The following proof is similar to that in ~1~. Let W E S~, t, tn E R+, and
p(cv",W) -> 0, tn --~ t. In order to prove -~ take subsequence if
necessary, it suffices to prove the following two cases.

(i). 3p E Z+, such that  t   tn  Tp+1 (W n ), dn > 1.
Define 1 as following:

(T1,03BEq)(03C9), if q ~ p,

(Tq,03BEq)() = { (t, 1), if q=p+1,(Tq,~q)(~) ~ (oo, 0), 
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r if q ~ p,

(Tq,03BEq)(n) = (tn, 1), if q = p + 1,

(oo, 0), if q > p+ 1.

Obviously,  and w are in a same atomic set in Because v is predictable, we
have f .vt(w) = (i~). (cf. [3]) Similarly, we have = 

Set 03B3 = supn tn, then y  oo and

f .vt (w) = (w) ~ = 

Since -~ 0, tn -~ t, we have 0, which implies -~

(w). Hence, we get --~ 

(ii). 3p E Z+, such that t = Tp(tü), and tn > Vn. Let tn = then

applying (i) gives f .v=ri -~ f.vt(w). Because of  (wn), we obtain

(2.5) = f.vt(w).

On the other hand, Vs E (t, Tp+1 (w)), because of (03C9n,03C9) ~ 0, we get tn - t =
Tp(w)  s, -~ Tp+1 (w) > s. Thus, one obtains that s E (tn, for

all sufficiently large n. As the result of (i), we have --~ f.v&#x26;(tü), which implies

(2.6) limsup  = f .va (w).

Let s in (2.6), we get lim sup  f .vt (w). Therefore, (2.5) and (2.6) imply
n

lim = f .vt(w).1

2.11 Notations. Let (F,d) be a metric space and Z be an F-valued random variable
on some probability space P). The notation ,C(Z) stands for P o the
distribution of Z. The convergence (resp. tight, relative compactness for the weak
topology) in distribution of F-valued random elements will be denoted by Xn ===~ X
in (F,d) (resp. (F,d)-tight, (F,d) - RC). The notations En and E stand for the
expectations with respect to Pn and P respectively. If we need to emphasize the
measure P, we write, for example, Xn => (X, P) in (F,d), and Ep, etc.

2.12 Lemma. The following statements are equivalent:
(1). Xn ==~ X in (~, p) and holds;
(2). Xn ~ X in (~, fi);
(3) (Tni, arctan(03BEni) Tni+1)i~0 ~ (Ti, arctan(03BEi) Ti+1)i~0 in ([0, ~]  R)Z+.

Proof. Because of [10], it follows that (1) is equivalent to (3); and the definition of p
gives that (3) is equivalent to (2). ~
2.13 Lemma. [5] Let F be a Polish space, Y = and Yn = n > l,
be F-valued random sequences. . Then Yn ~ Y if and only if k >_ 0 , (Yn0,...,Ynk)
~ ... , ,Yk).
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3. THE RELATIVE COMPACTNESS OF IN 

This section discuss the relative compactness of jump processes in abbr.

(~)-RC).
First, by lemma 2.12 and lemma 2.13, we have

3.1 Lemma. Let := and A~), := then X" - X in 
if and only if k ~ N, F X(k) in (03A9,).

Let

Ao := {(ti, arctan(03B1i) ti+1)i~0 : i ~ 1,ti  ti+1 and ai ~ 0 if,  oo;

t1 > to = 0; and ti ~ oo as i ~ oo}.

From lemma 2.12, we get that (X") is (Q, ~) - RC if and only if {(T~ 
is Ao-tight. This implies 

,

3.2 Proposition. (X") is (f~) - RC if and only if 0, p C Z+,

(3.1) lim lim sup Pn(Tni ~ t) = 0 ;

(3.2)  A (T~ +e)} = 0;

(3.3) ~+1 )%  ~ = 0,

and{~} is R-tight.

Proof. Define mappings on Ao : (Sj,~j)((ti, arctan(03B1i) ti+1)i~0) = E Z+.

It is easy to see that is Ao-tight if and only if Q(Ao) = 1 for all
weak limits of {~((T~, ~~f~)>o)}. On the other hand, Q(Ao) = 1 is equivalent
to that it satisfies condition (3.4), (3.5) and (3.6) for t > 0, p E Z+ :

(3.4) lim Q(Si ~ t) = 0;
(3.5) lim Q{?p+i ~ t A (Sp + ~)} = 0;

(3.6) 
R) = 0.

Since (3.1)~(3.4), (3.2)~(3.5), and (3.3)~(3.6), the proof of proposition 3.2 is ac-
complished. ~

It is worthwhile to point out that we may use the (H./5) - RC of to get the

(f~/?) - RC of for all k e N. But the converse is not always true. A
counter example is
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n

3.3 Example. Let X n = E It is evident that {Xn(k)} is (S~, p) - RC for
i=1

all k EN, but is not (S~, p) - RC. ~
Let Ao(k) := {(~~~~’))o.~ : VI ~ ~ k - i  0 

oo; ak ~ 0 if tk  oo; t1 > to = 0}. Because Xn(k) has at most k jumps, one can
find that (3.1) is always true for applying proposition 3.2 gives
3.4 Lemma. For fixed kEN, , the following statements are equivalent :
(I). IS - RC;
(ii). {(Tni, arctan(03BEni) Tni+1)0~i~k} is 0(k)-tight;
(iii). (3.2) and (3.3) hold for all t ~ 0, 0  p _ k -1.
In addition, under any of these conditions, we have
(iv). lim lim sup Pn{(Tni,03BEni)0~i~k ~ R(N, k), Tnk  t} = 0, t > 0.

Proof. It is easy to see that (iii) implies (iv), and the proof is complete. ,
3.5 Remark. From lemma 3.4, we see that (k)} is (S~, p) - RC for all k E Z+, if
and only if (3.2) and (3.3) hold for Vt > 0, p E Z+. So, if we discuss the (Q, p) - RC
of directly, we must verify the condition (3.1). But lemma 3.1 gives a way for
us to avoid condition (3.1).

4. MAIN RESULTS

Vp EN, let the notation bC(p) stand for the set of all nonnegative bounded contin-
uous functions: (R+ x R)p+1 ~ R+.
We recall R(N, k) in (2.4). For D c R+, set

[S-C-D]: Vt,u E D, p E Z+, , f E C+, g eb C(p), (g is a constant if p = 0.)

(4.1) 
- ~ -"~ ~.

[C-D]: Vt, ~c E D, p E Z+, f E C+, g Eb C(p) with supp(g) C R(N, p) for some
N eN, (4.1) holds. Where supp(g) is the support of g.
4.1 Remark. (i). For fixed t, put - f.vi"Tp+lA(Tp+u) - _

UNeNR(N, p). The construction of the predictable random measure v gives that,
under condition [HI], has the following form (cf. [3]):

= ntnll{Tlt}; . .. ° ;Z’p n 

where A I tp A satisfies

(4.2) s ~ is nondecreasing, and = 0;
(4.3) tp = 0, if tp > t ;
(4.4) 

is continuous on R+ x 4l(p). 
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In fact, the construction of v gives (4.2) and (4.3). To prove (4.4), let

~n = (Sn~~~~a~~... ~~p~Qp)~ ~_ (S~tp,a0~... tp, ap) E ~‘’t x 0(p)~
and ~n -~ r. Take subsequence if necessary, it suffices to prove the following three
cases:

1). s" = s = 0 for all n >_ 1. This case is clear.
2). s > 0, and sn > 0 for all n > 1. In let u = supn sn,

P P

w - + lf~p +a n,~( ~ w - + 
i=O i=O

Then 0, combining and lemma 2.10 gives (4.4).
p p

3). s = 0 and s" > 0, 1. Let wn = E and w = ~ in [HI],
s=0 

’’ 
s=0

applying lemma 2.10 and 2) gives

0  limsup  limsup = 

n n

which implies (4.4) by letting k i oo.
(ii). To each w E 0, we associate the stopped function wTp defined by =

w (t A TP (w ) ) Since the value of

9(w) 
is determined by the first p jumps of w, we find that under condition [HI],

sup g(w) = sup = sup g(w) = sup g(w)  oo,
03C9~03A9 03C9~03A9 03C9~03A9(p) 03C9~03A9(N,p)

the last inequality is due to the continuity of 9 on and the compactness of

(~(N, p), p). Hence, the condition ensures that the expectation in is always
valid.

4.2 Theorem. Suppose holds, then the following statements are equivalent:
(4.5). X n ====~ X in (Q, p) and jH3J holds;
(4.6). Xn ~ X in 
(4.7). 3D C R+ with R+BD countable, such that holds; ~o ~ ~a;
(4.8). holds; 03BEn0 ~ 03BE0.

4.3 Remark. It should be emphasized that, in theorem 4.2, we cannot have S :=

~ f E C+ : 36 > 0, such that f(x) = 0, V [ x ~ ~} instead of C+ in [C-D]. A
00

counter example is as following. Let v(w, dt, dx) - 0

which implies [HI], then satisfies [C-R+] for f ES, but (4.6) does not hold. this
example also shows that f E C+ in [C-D] contains the contral condition on jump size
of (Xn).

Let pn and p. be the jump measures of xn and X respectively. In order to simplify
the typography, let f *u(t, u, p) denote - and similarly define

u, p) etc.
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4.4 Lemma. Suppose [H1] and (4.7) hold, then VJk 6N, {(Xn(k))} is 

Proof. We proceed by induction on t to get the assertion.
Applying (4.7) gives that {jC(X"(0))} is Now, suppose inductively

that {:C(X"(9))} is Let

A(.) == {«., ~~)..~~ = ,  ; «... ~~)c~, C A~)} .
Then, ~ ((T~, ~~~’ )o?+i) } is A(g)2014tight, and we may assume it converges
weakly to Q on A(g). Define a function ~’~ on A(g) as following:

~((~,~~~)o~,+i) = 
For convenience, write g((ti,ai)0~i~q) := g’((ti,arctan(ai) ti+1)0~i~q), and let
~((T~)o~) :=== and similarly define ~(X"(g)). Remark 4.1(ii) implies that

{~M)~’((~,’’~~)~...)}
is uniformly integrable. Therefore, Is Q-integrab!e, and

(4.9) E~(J~))~ o ~} -. EQ{/7~~}.

By remark 4.1 and the compactness of (n(~~),~), one obtains that ~A~ ~ 0
uniformly as u j. 0 for fixed / and g; g’Kf(i),qu j. 0 uniformly as t f oo for g and u
fixed. Where /(t) e C+ satisfies 0 ~ /(t)  1 and

if 1/i ~|x|~i,1, if |x|~1/(i+1) or |x|~i+1.

Hence, applying (4.9) gives

(4.10) lim lim sup En{g(Xn(q))Hf,qu o X"} = 0, for fixed / and g,

(4.11) lim limsup En{g(Xn(q))Hf(i),qu o X"} = 0, for fixed g and u.

Recall the definition ~), , we may choose a ~r ~~ C(g) satisfying 0  ~~  1
and

0, if (ti, ai)0~i~q ~ R(N + 1,q),gN((ti,ai)0~i~q) = 1, t/ ~ 
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such that

(4.12) E" u,q)}

= 2l~ q~~ = 

 ~~ 4) - u~ 4’) ° 
+ 4’~ ° X n~
+ ~~ .f ~ ~  t}.

In (4.12), let f - 1, n r oo firstly, u j 0 secondly and N r oo thirdly, [C-D], (4.10) and
lemma 3.4 imply condition (3.2) for p = q. On the other hand, let u > t, substitute
f(i) for f in (4.12), and let n ? oo firstly, i T oo secondly, and oo thirdly, we get
(3.3) for p = q by applying [C-D], (4.11) and lemma 3.4. Applying lemma 3.4 again,
we obtain that + 1)~ is (H, p) - RC. t
4.5 The proof of theorem 4.2: (4.8)=~(4.7) is clear. Thanks to lemma 2.12, we
need prove only that (4.7)=~(4.6) and (4.6)=~(4.8).
(4.7)=~(4.6): By lemma 3.1, we need prove Vk E Z+,

(4.13) ~ X(k) in (SZ, p).

It is obvious that (4.13) holds for k = 0. Suppose inductively, that (4.13) holds for
k = p, we wish to prove it holds for k = p + 1.

By lemma 4.4, we may assume 1) ~ (X(p + 1), Q) in (S2, p), where Q is
a probability measure on Since R+ BD is countable, excise a countable subset
from D if necessary, there is no real loss of generality in assuming that 
0) = + l~T;+t ~ 0) = 0 for 0  i  p, t E D. Hence and

are Q-a.s. continuous in (S2,p), which implies 

- 

= 0 Xn(p + 1)}
- ’ ~,P~~~~ °

On the other hand, [HI] implies

= ~ 1~~}

Because of [C-D], we have

(4.14) = ’~~ P~~}
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The boundedness of (4.14) shows that (4.14) holds for all g Eb C(p). Thus, applying
the right continuity of X and f .vt gives that (4.14) holds for all t, u E R+, g Eb C(p).
Let

:= 

The above argument shows that EQ = 0. Thus, for any R > 0, 
measurable, takes countably many values, we have

(4.15) EQ 

Consequently, we may conclude that (4.15) holds for all R >_ 0 and FTp-measurable.
Thanks to the construction of filtration (cf. [3]), we see that, 
stopping time T, there exists a R > 0, FTp -measurable, such that R + Tp = T on
[Tp  T  Therefore, one finds ER = 0, which implies that 
is a Q-martingale. This yields that Q = (cf. [3]), proving X"(p+ 1) =~
X(p + 1).
(4.6)=>(4.8): Because f.vt(W) is continuous with respect to time t, we find that
X has no fixed discontinuous points, and Vt, u E R+, p E Z+, g E6 C(p), f E
C+, u, p) is P-a.s. continuous on (~, p). Therefore, we may apply lemma 2.12
to get .

(4.16) = 

~ u~p)}. °

Under condition [HI], lemma 2.10 implies that g(X (p)) f*v(t, u, p) is continuous on
(S~, p), so

(4.17) u, p) ~ = u~p)~ ~ xn}
- ’ E~9(X(p))f*v(t~~~p)}.

Because v is the predictable projection of p, we obtain ~C-R+J. ~
4.6 Corollary. Assume that [H1] and hold then any statement in theorem 4.2
is equivalent to 
(4.18). holds for a D C R+ with countable (hence all subsets with
such property); ~’o ===~ ~’o.

Proof. It is clear that (4.18) gives rise to (4.7), so we need prove only that (4.6)
implies (4.18). In fact, under condition (4.6) and [H2], we find that (4.16) and (4.17)
are also valid for all g Eb C(p), which yields (4.18) by the same argument as in 4.4,
(4.6)~(4.8). ~
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4.7 Corollary. Assume that condition holds, X~ - Xo and

(4.19) 0 X"]
==~o, v/ec+,pez+, , ,

thenX" ==~Xin 

Proof. Because (4.8) can be deduced from (4.19) and remark 4.1(ii), we get the result
at once. ,

Because of theorem 2.6 a), we find that Q is a closed subset of (H,p). Thus, we
may apply theorem 4.2 to conclude

4.8 Corollary. Let 1, and X be counting processes with X~ = Xo = 0,
and 1, and A be their predictable projections respectively. If t ~ 0, t ~ N, ,

continuous on Q, then the following statements are equivalent :
~. ~ P X g
~. 3D C R+ with R+BD countable (hence all subsets with such property) ; such
that Vt, u E D, p E Z+, g ~b C(Rp+) with supp(g) C for some N EN if

(4.20) En{g(Tn1,...,Tnp)[Ant^Tnp+1^(Tnp+u) - Ant^Tnp
- 0 -~ 0.

Where := {(~i~- ,4) :   p- 1, , +  ~+1}.
Moreover, if t ~ 0, k ~ N, {At^Tk o Xn, n ~ 1} is uniformly integrable, then (i) is
equivalent to
(ji~. 3D C R+ with R+BD countable (hence all subsets with such property) ; such
that Vt,u ~ D, p C Z+, g ~b C(Rp+), condition (4.20) holds.

5. APPLICATIONS

In this section, we try to apply the main results in this paper to homogeneous
Markov jump processes.

It is well known that X is a homogeneous Markov jump process under P if and only
is R+ x R-valued homogeneous Markov chain with transition probability

measure

Q(s,x;dt,dy) = { q(x)exp{-q(x)(t-s)}1[t>s]N(x,dy)dt, if . q(z) 
> 0,

~~(dt)~x(dy), if q(x) = 0.
Where and dy) satisfy

(5.1) P(Ti > !X(0) = ~) = 

(5.2) 6 d!/!X(0) = ~) = 

It is obvious that the distribution of X is determined uniquely by the initial law
r = P oX(0)"~, and we denote by X - (r,g,~V). From [II], we get
that the predictable characteristic of X is

(5.3) ~, dt, dy) = + dy)dt.
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5.1 Lemma. Suppose that f, f", , n > 1, are real valued functions defined on R.
Then the following statements are equivalent:
a). xn, x E R, xn ~ x, we have ~ f (x);
b). i). f is continuous,

supx~K |fn(x) - f (x)) -3 0, for any compact subset K C R.

Now, we give the applications.
5.2 Theorem. Let X, , n > 1, be homogeneous Markov jump processes, X N

(T, q, N), X n N Nn). . Then the following statements are equivalent :
(a). dxn -~ x, ,

j)~ qn(xn) ~ 
1I). if q(x) > 0, then df E C+, ~ -~ f f(y)N(x,dy);

(b). ~T" ~ T, then Xn ~ X in 
(c). ~Tn ~ T, then Xn ~ X in (S~, p) and

(5.4) lim lim sup Pn {|03BEn1 ( E (o, u), Ti  t } = 0, t > 0;

(d). dxn ~ x, take T" = Ezn, , T = Ex, , we have Xn ~ X in (03A9,03C1) and (5.4) holds.

Proof. (a)~(b). By (5.3), we obtain that V f E C+,

(5.5) f.03BDt^Tk+1 = (t n Ti+1 - t n Ts) + ’

i=0

which implies by applying lemma 5.1. On the other hand, we proceed by induc-
tion on k gives that (a) implies (4.19), hence applying corollary 4.7 yields (b).

(b)~(c) and (c)~(d) are clear. To prove (d)~(a), applying lemma 2.12 gives
Ti ~ Tl. We may use (5.1) to get (a) i). if q(x) > 0, then ~i ~ ~1 by lemma 2.12.
This shows

= 

- En = 
, df E C+.1

5.3 Corollary. Let ~n = n > 1, and Q = be density matrices corre-
sponding to Markov processes with state space Z+. . Then the following statements
are equivalent :
(a). , q ~ §

(b). n ~ T, X n ~ X ;
(c). Vi, take Tn = T = Es , ~ X .
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