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Generalised transforms, quasi-diffusions, and Désiré André’s equation.

Paul McGill

Department of Mathematics, University of California, Irvine CA 92T1?’, USA.

Suppose Bt is a real Brownian motion started at x > ~ > 0. Writing L(a, t) for the Bt local time, we
define the fluctuating additive functional V and let r denote its equalisation time

inf {t > 0 : Vi > 0). Hypotheses on m are: it is a signed measure on [0, oo) with Hahn decomposition
m+ 2014m" and m+ is supported on [0,l]. The problem of computing ~ dy; r  ~] = II(a?, dy)
was posed in [5].

There are two suggestions; the first comes from [5]. Suppose f(x) = fg(x) is a bounded function

satisfying dfz/dm = -82 f with 6 real. Then is a bounded martingale for t  T, and

by [12] we know that on the set where T is infinite U explodes negatively. Applying the Doob

stopping theorem gives us

l0 f03B8(y)03A0(x,dy) = Ex[f03B8(B);  ~] = f03B8(x) (0.1)

Since there are examples [8] where one can solve 0.1 by inspection, we would like to know whether
this ’eigenvalue relation’ uniquely determines lI(x, dy). See [13] for an idea of how 0.1 fits into a
more general setting.

The other idea is to derive an equation for II(x, dy). We will use the integral equation named for
Desire Andre [9], perhaps better known as the first passage relation for Levy processes. Desire

André’s equation is formally of convolution type but it has a singular kernel. In [7] we worked
with its Fourier transform. Solving amounts to calculating l0 Ey VT /2] II( x, dy) (T is the first
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passage time to the boundary point l) and then hoping that this integral transform will uniquely
determine II(x, dy).

So both methods for computing II( x, dy) depend on proving a uniqueness result for a certain

transform. The first method, embodied in 0.1, necessitates a proof of spectral uniqueness; in

section three we will see the connection with the spectrum of the Desire Andre equation. The

second method has to do with first passage uniqueness. It can be posed for any quasi-diffusion
without reference to the problem stated at the beginning, though in general the answer is still

unknown. See [11] for an idea of the difficulties involved.

In this note we examine both uniqueness questions under the restriction that m+ comes from a

short string in the sense of Krein [2] - precise conditions are stated at the beginning of the next

section. This assumption permits the use of analytic function theory and yields simpler proofs

than in [5] (without, however, subsuming the work done there).

As in [5], our method uses Krein’s spectral representation for strings but we take zero as base

point instead of t. Working with this ’reversed string’ has the drawback that Krein’s theory

applies directly only if the mass at zero is finite. If there is an infinite mass at zero then we need

the notion of a ’killed string’ as discussed in [4].

The advantage of reversing the string is that it allows us to reduce the two problems to similar

conditions, listed at 2.1-2 below. This is important because we prove spectral uniqueness by

interpolating from the eigenvalues at 0.1 to the eigenvalues of a string for m+, which is the spectrum
at 2.1. Remark that we do not allow m+ to charge the boundary point t.

The paper begins with a simplification. Using excursion theory we show that « m+. This is

a crucial part of the argument: our uniqueness proof uses Krein’s spectral theory in Li([0, .~), m+).
Section two contains the main results. The first step is to rewrite the first passage problem,

formulating it as an eigenvalue relation on the eigenvalues of the positive string (this step is not

necessary but it does emphasise the difficulty with 0.1- it is not a Krein transform). So, modulo
the discussion in section four, first passage uniqueness follows from our simplification. From there

on the argument is a straightforward extension of results in [2]. The basic idea is that an analytic
function of finite type cannot have too many zeros. We show, in effect, that there are (at least) as

many eigenvalues at 0.1 as there are points in the spectrum of the positive string.

Section three shows the connection with a singular integral equation. This equation (3.2 below)
has Wiener-Hopf structure but we study it using properties of the symbol; one can identify the

imaginary zeros of the symbol with the eigenvalues of 0.1.
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1. Krein’s strings and absolute continuity.

We now formulate our problem more precisely, by using the language of Krein’s theory of strings.
Notation is adapted from [2], to which we refer the reader for more detail.

The positive mass m+ is the mass of a Krein string (m+, k, ~). This means that 0, ~ are in the

closed support of m+, which is itself a subset of (0, ~. The case m+ {.~} = oo is trivial here and
will be omitted without further comment. We shall suppose throughout that ~ + m+(0, ~~  oo, so

if there is a finite mass at zero then the string is short in the sense of [2]. The first three sections
deal exclusively with this case.

As in [5], the measure m+ is not allowed to charge the boundary point l. The value of k can be

any positive constant or infinity; we can even take k = 0 since m+ does not charge l, but we will

not do so here.

The requirements on m- are less stringent. We allow any positive measure on (l, oo) and we define

= E~ (1.1)

where x > ~ and T is the hitting time of l. This function is decreasing and satisfies D-(z, ~) =1.

The first step is to simplify 0.1. We show that II(x, .) « m+, thereby reducing uniqueness to a

problem in Li. The proof uses results from [3] on the transition density of quasi-diffusions, applied
to the quasi-diffusion Xt with speed measure m+; probabilistically Xt is the time-change of Bt by
the increasing additive functional Yt+ = f L(a, t)m+(da).
For the proof of « m+ we look at excursions of Bt downwards from the point ~. These run

in the inverse local time scale at t, denoted here by Ute Write ~t for the excursion process so that

a generic excursion path r is defined by r o Et = 0  s  an excursion functional

is any function defined on the excursions.

At the heart of excursion theory lies the

Master Formula. There is a measure Q on the space of excursion paths with the property that if

Q[A] is finite then

E A 0 Q[A]t
o..t

is a martingale.

Terminology is from [10]. As written here A is constant but the result extends. For example, if

A depends (measurably) on time then the right side becomes t0 Q[As]ds. More generally, one can

make A vary predictably in the sense that on the excursion starting at time Ut- the functional

may depend on the entire process (Bg : 0  s  Qt_}. This extension is to be found in [6] where

one also finds a more detailed description of the excursion measure Q.
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Suppose ~ is the minimum functional on excursion space and take Te as the Bt hitting time for

.~ - e. Recalling that T is the equalisation time for the additive functional Vt,

T~(~~t) ’ T~ o £~

defines a predictably randomised excursion stopping time.

Before beginning the proof we note that = ~~ = 0; the law of VT, alias the Xt first passage
time to l, has no atoms.

Theorem 1.2 The kernel II(x, dy) is absolutely continuous with respect to m+.

Proof: Choose e > 0 arbitrarily, and, using the above definition of T’(E, t), we write the indicator

function

Ind [Br E dy; 3 t with + Te  r  E E dy;   ~ - e] o £t
t>o 

The right side is now of a form where we can apply Maisonneuve’s extension of the Master formula

to see that
t

03A3 Ind[0393’(~,s) E dy; 03BE  l - ~] 0 E dy; 03BE  l - ~]ds~ ~

is a uniformly integrable B03C3t martingale. Taking the expectation, we use the standard description
of the excursion measure in terms of the killed process ~3t to find

P [B ~ dy; ~t with 03C3t- + T~ o 03B803C3t-   03C3t] = E[L(l,)0 Q[P~,V [B ~ dy] ; 03BE  l-~] dt]
where (abuse of notation) we take V = + Te o 03B803C3t-). Recalling that Xt is the time-change
of Bt by ~+, we note that if S = inf{t > 0 : Vt+ = c} then Bs = Xc; this allows us to write

Pe[Br E dy] in terms of the transition semigroup for X,. Letting ~ ,~ 0, it follows from [3] that

II(x, dy) is absolutely continuous wrt m+ on (0, Q).

Remark that 1.2 is valid even for long strings, though for them we need to work with £ as the

initial (and not the final) point of the string.

Next, we look at some spectral theory. Associated to any string (m+, k, .~) are two basic functions,
usually denoted by A and D. We recall the definitions but remark that our conventions differ

slightly from [2]. For us A(z, x) is the unique solution of the boundary value problem
d dm+

Ax = z2A ; A(z, 0) = 1, Ax(z, 0-) = 0

One can show [2] p.163 that for z > 0 the function A(z,.) is convex increasing. The complementary
solution D(z, x) solves

d dm+
Dx = z2D ; Dx(z, 0-) = -1, D(z, l) + kDx(z,l) = 0 (z > 0)
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D(z, .) is convex, decreasing, and never negative on [0, ~).

The Green’s function for the string (m+, ~, k) is defined, as usual, by = for

x  y and it has spectral representation

y) = 1 y ~(d’Y) 1.3( -oo ( )x2 / ( )

From now on we simplify notation by writing m in place of m+, unless there is some possibility of
confusion.

For real z, the above kernel defines an operator Gzu(x) on LZ((0, Q), m)
which is the inverse of z2 - Q (the latter is defined on the closed subspace D2(G) of {u : +

 +oo} determined by the boundary conditions for the string; there we have (z2 - C) f =
z2 f - However we want to work on L1 ( ~0, .~), m). The argument below is adapted from

[2].

Theorem 1.4 If(x, y) -~ y) is uniformly bounded then Gz is an isomorphism on L1 ((0, ~), m).

Proof: Any function u ~ L1 is the limit of L2 n Li functions un and, since gGzun = 

converges in L1, we can define its limit, independently of un, as Since Gz satisfies the

boundary conditions we see, with obvious notation, that Gz maps L1 into Di (~) and by definition

(z2 - Q)Gz = I. We claim Gz is onto. For the proof, taking u E we write v = Gz(z2 -
C)u - u E so (z2 - Q)v = 0. But if v(0, z) > 0, then this function is monotone increasing
and hence v ~ since it fails to satisfy the boundary condition at l. Replacing v by -v if

required, the contradiction shows us that v = 0. So Gx Li -~ Dl (G) is an isomorphism with

inverse z2 - p.

There is clearly a problem here if m+ puts an infinite mass at the origin. We will look into this

in section four. However, in the case of short strings the kernel y) is uniformly bounded and

1.4 applies.

2. Uniqueness Results.

In this section we consider the two uniqueness problems posed in the introduction, retaining the

assumption that the positive string is short. We begin by showing that they are related; each can

be formulated as a spectral uniqueness question, but on different spectra.

Recall that T denotes the first passage time to the boundary point ~. Then Ey =

A(z, and we want to study uniqueness of the transform ~C*(z) = fo Ey 



239

where , is a bounded signed measure. If we suppose that this vanishes then, using Gx(y, 2) =

A(z, y)D(z, ~) and the spectral representation at 1.3, our hypothesis becomes

[0,l) (dy)1 03C0 A(i03B3, y) A(i03B3, l) 0394(d03B3) 03B32 + z2 = 0

For z real the measure (12 + z2)-10394(d03B3) is finite (just put x = y = 0 in 1.3), and since

[0,l) | |(dy)1 03C0 |A(i03B3, y)A(i03B3,l )|0394(d03B3) 03B32 + z2
is bounded J’ y), we have the estimate
needed to commute the order of integration. Taking ~(~) = f our hypothesis reads

1 03C0 (03B3)A(i03B3, l)0394(d03B3) 03B32 + z2 = 0
But recall from [2] p.177 (see also p.171) that the spectrum consists of those (imaginary) points

satisfying

~) + ~+) _ ~ (2.1)

By uniqueness of the Stieltjes transform, using the fact that A and Ax cannot vanish simultaneously
- recall how k > 0 - this means that ~c(~) = 0 on the spectrum of ~. So uniqueness for the

transform ~C --~ p*(z) can be formulated as the spectral uniqueness question: do the conditions

f = 0 necessarily imply ~ = 0?

To make the resemblance between 2.1 and 0.1 more explicit, notice that the functions /0 defined

at 0.1 can be written

f03B8 (x) = A(i03B8, x) x  l;
A(i03B8,l)D-(03B8,x) x > l;

where D- is defined at 1.1. These functions are continuous but we need their derivatives to match

at Q, which requires choosing (real) 6 = ~8n so that

= 0 (2.2)

Since 0.1 says = 0, we find the two problems differ only in their spectra.
Note that k plays no role in 2.2.

Remark 2. 9. We are glossing over an important point here, namely the role of zero in our eigenvalue
conditions. For 2.1 the answer is very simple: zero is an eigenvalue if and only if k is infinite.

Condition 2.2 is more subtle. Clearly zero is an eigenvalue if and only if T is finite almost surely.
A criterion for this can be formulated in terms of the Levy process Yi of the next section. It says

that r is finite if and only if

~ ~03B8[Ax(i03B81/2,l) A(i03B81/2,l) - D-x(03B81/2, l)] 03B8=0 

~ 0
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This follows from the strong law of large numbers except in the case of equality, when we can use

(1~.

To state our main results we introduce the space of bounded signed measures on 

which are absolutely continuous with respect to m.

Theorem 2.4 Suppose the string (m+, ~, k) is short. Then the transform

 ~ l0 A(i03C8n,y) (dy) ; A(i03C8n,l) + kAx(i03C8n,l+) = 0

is a 1-1 mapping on 

Proof: If 101 = 0 for 03C8 = then

= ~(~)~A(~~(~!/)~~
vanishes if we can commute the two integrals - justified by the estimate

noting from 1.1 that = E since the string is short. Thus Gzu = 0

and uniqueness follows from 1.4.

The corresponding result for 2.2 is not so easy.

We introduce the notation 0  X1  X2 ...  Xn  ... for the positive zeros of 9 -+ -

zero is never a root. The non-negative eigenvalues of 2.2 we list as 0  91  92 ....

Theorem 2.5 If the string (m+, 2, k) is short then the transform

 ~ l0 (dy)A(i03B8n,y) ; Ax(i03B8n,l) - D-x(03B8n,l)A(i03B8n,l) = 0

uniquely determines  E 

Our argument can be outlined as follows. Because the string is short, A(z, .) is bounded on (0,.~)
and we have a ready made analytic function z -~ ~c{z) We will prove that if

p vanishes on the spectrum {fi8n : n > 1} then it vanishes everywhere. The argument involves

comparing the eigenvalues with the zeros of A(.,l). Using a growth estimate and the Phragmen-
Lindelof theorem we find  is a constant multiple of w(z) = IIn (1 + zz8n 2), and examining the
ratio for z large gives us = 0.

Now for the details.

Definition We say that an integral function f has type T if  for all 03B4 > 0 but

for no 03B4  0. If we can take T = 0 then f has minimal type; f has finite type if T  +00.
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We have the following basic type estimate for string functions. The proof is given in [2] p. 238.

Lemma 2.6 The string functions z ~ A(x, x) and z ~ Az(z, x) have exact exponential type

T(x) = x0[m’(y)]1/2dy
where mt is the derivative of m.

The Holder inequality

T2(x) ~ x x0 m’(y)dy ~ xm[0,x]
shows that the type is always finite; the type is minimal whenever m is singular.

We will carry out the proof of 2.5 in five steps, starting from the hypothesis that ~c vanishes on

the eigenvalues It helps to keep in mind the classical case: m+ is Lebesgue measure on [0, f)
and A(x, x) = cosh zx.

1) We may suppose that the eigenvalues 9n at 2.2 are interlaced with the zeros Xn of A(i8,.~), and

that 0  ~i  Xl  ~2  X2  ....

By [2] p.232 the roots of A(z, ~) and are purely imaginary and interlaced. This means that

which is zero at the origin, takes all real values on each (xn-1, Xn) for n > 2.

The only problem is with choosing 91. But if 91 is not zero (i.e. if r is not finite) the criterion at
2.3 shows that the function 

03B8 ~ Ax(i03B8,l) A(i03B8,l) - D-x(03B8,l),

which may start at zero, becomes positive for a time before bending back down and tending to

- oo as 9 approaches the point So it must have a root in between.

2) w(z) = IIn (1 + z29;;2) is an analytic function of type T - the product is over all eigenvalues,
with the convention that if 91 = 0 the corresponding factor just z2.

A(z, i) has type T = T(l) by 2.6. By [2] p.232 its zeros ±i~n satisfy 7rnT-1 for n large,
so by 1) the infinite product converges absolutely and defines an analytic function. To see that

w(z) is of finite type notice that its maximum values are along the real axis, something which is
true also for and But is an even function, and by the Hadamard product

representation it is a constant multiple of IIn (1 + so by 1) grows at most

quadratically on the real axis. It follows that w(z) also has type T.

3) x ~ |A(z, x)| is strictly increasing on the support of m provided zz = a + ib with a > 0.

For this we write A = u + iv and we obtain the system of equations

d dm
ux = au - bv ; 

d dm
vx = av + bu
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We claim u~ + v2 is increasing. Starting from

1 d u2 + v2 = a(u2 + v2)dm + (ui + 
we see that for y > a?

1 2 t62 + v2 x y - 1 2 (u2 + 
But (uz + v2)z vanishes at the origin (actually at 0-), so u2 + v2 is increasing as required.

4) ~{z) is constant multiple of w(z).

By 3) and 2.6 we see that  has finite type. Hence by 2), our hypothesis, and [2] p.20, f = 

which is analytic, is of finite type also. We can apply the Phragmen-Lindelof theorem: If f is

analytic and of finite type in a sector of opening less than ~, and is bounded by L on the boundary,
then f is bounded by L everywhere in the sector. For this we check, using the Hadamard product

representation, that is bounded on rays close to the real axis for (z( > I say. By 3)
the same holds for f, so by the Phragmen-Lindelof theorem the even function f is bounded on the

upper (lower) half plane, thereby proving by the Liouville theorem that is constant.

5)~=0.

We examine the behaviour of as z tends to infinity along the real axis, bearing in mind that m+

does not charge i. Then, since 2 is a point of increase of m+, we find that A(z, ~) converges
to zero for x  e and by the dominated convergence theorem .~) converges to zero also.

But, as we saw for 4), the ratio is bounded when z > 1. Hence -i 0, and

This completes the main part of the proof of 2.5, and in particular it leaves us in the hypotheses
of 2.4. So we are finished.

3. Desire André’s equation.

In this section we examine the connection between 0.1 and the first passage relation as it applies

to diffusion factorisation ([7] but see also [9]).

Recall that 03C3t is the right continuous inverse of the Bt local time at i. Then Yt is a Levy

process and we define its Laplace exponent by E = The time of return to

.~ after equalisation, namely corresponds in the Q~ time scale to U = inf {t : Yt > 0). The

random variable Yu is called the overshoot of level zero for the process Y; note that VT = Yo  0

here.
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One can derive an equation for the distribution of If f is a bounded continously differentiable

function then by Ito’s formula the process
t t

f(Yt) _ ~ (f (Y~ + y) - f (Ys)l v(dy) + a ~ f(Y9)ds (a > 0)

is a uniformly bounded (purely discontinuous) maxtingale. Taking f (x) = and stopping at
the time t = U, we compute the expectation, first in Y~ and then in VT, to obtain

U

Ez = Ez [03BB + 03BA(z)]Ex [EVT [U0 e-03BBte-zYtdt ]] (3.1)

This is the equation of Desire André [9]; it is valid (at least) when z is purely imaginary.

To connect with the problem at 0.1, we remark that, by definition, Y~ = VT o 8,.. So using the

strong Markov property of Bt at time T we can rewrite the first term of 3.1

l0 03A0(x,dy)Ex [e-03BBL(0,)|B = y] Ey [e-zVT] =

‘0

U

Ex Le l - [03BB + 03BA(z)]Ex [EVT [U0e-03BBte-zYt dt ]]
We want to solve this equation for II(x, dy).

The above is the Laplace transform of a convolution equation of Wiener-Hopf type. The left side

is bounded analytic on the right half plane, while the first and last terms on the right are bounded

analytic on the left half plane. The given data are Ex ~, the initial condition, and ~(z) which
we call the symbol of the equation.

There are several difficulties with this interpretation. Our equation is defined only in a limited

region of the complex plane. Also, the ’convolution kernel’ is not well-behaved. In general it has
a singularity at the origin - see (7~.

Let us try another approach. We begin by writing the above equation as

= y Ey ~T /~] ,

= Ex [e-z2 VT /2] - [03BB + 03BA(z2 /2)]Ex [EVT [U0 e-03BBte-z2Yt/2dt ]] (3.2)

which we consider as a function of z. If 0  y  ~ then Ey - A(z y) jA(z, .~) is a

meromorphic function in z. Moreover, rc(z2~2) = r~+(z2~2) + ~_(z2~2) where, in the notation of
1.1,

03BA+(z2/2) = Ax(z,l) 2A(z,l) ; 03BA_(-z2/2) = -1 2 D-x (z, l) (3.3)

Here x+ (resp. rc_ ) is the exponent of the positive (resp. negative) jumps of Y .
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Lemma 3.4 Equation 3.2 holds in the sectors  IArg(z)1  3~r/4.

Proof: We know 3.2 holds when z2 j2 is purely imaginary We will extend by analytic continuation,
using the following.

1) For 0  y  ~ the function z -+ Ey is meromorphic, so the left side of 3.2 extends as

a meromorphic function to the entire complex plane.

2) Since for £  x the function z -+ E~. [e-z2VT/2] is a bounded analytic function in the sectors

?r/4   303C0/4, the same is true of 03BA_(z2/2) and z ~ Ez EvT [U0 e-03BBte-z2Yt/2 dt]] .

3) From 1), 3.3, and 2) we find the symbol = rc+(z2/2) + is meromorphic in the

sectors  IArg (z)1  3?r/4.

The required extension property of 3.2 follows.

Remark that by 3.3 the purely imaginary zeros of the symbol ~c(z2/2) coincide with the spectrum
defined at 2.2 - the origin is again a special case which we treat according to 2.3. This allows us

to prove the following.

Theorem 3.5 If the positive string is short then 3.2 has a unique solution II(x, dy).

Proof: We show that 3.2 leads to 0.1. The result will then follow by 2.5. From 3.4, taking

z = i9n ~ 0 as a spectral point, equation 3.2 gives us

l0 03A0(x,dy)Ex [e-03BBL(0,)|B = y] Ey [e03B82VT/2] = Ex[e03B82VT/2] - 03BBEx [EVT [U0 e-03BBte03B82Yt/2dt]]

The claim is that the last term tends to zero as A 1 0. To see why, we split it as

03BBEx[U0e-03BBse03B82nYs/2ds;U  ~] + 03BBEx[U0 e-03BBse03B82nYs/2ds ;U = ~]
Then the first term is bounded by E [l -  +00] and tends to zero by the dominated

convergence theorem. The second term we can bound in terms of the lowest eigenvalue 91 ~ 0 by

03BBEx [U0 
e-03BBse03B821Ys/4ds;

U = ~] ~ 03BBEx [~0 
e-03BBse03B821Ys/4ds] = 

03BB 03BB + 03BA(-03B821/4)
Ex[e03B821VT/2]

(there are no zeros of the symbol between 61 and the origin). Since this tends to zero with A, we

have verified our claim.

Thus we can justify letting A 1 0 when we substitute z in the above equation, and this yields

the eigenvalue conditions

l0 03A0(x,dy)Ey|e03B82nVT/2] = Ex [e03B82nVT/2 ]
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which we can rewrite as

l0 03A0(x,dy)A(i03B8n,y) = A(i03B8n,l)D-(03B8n,x)

Comparing with the formula for given above 2.2, we find this is the same as 0.1. So uniqueness
follows by 2.5.

All this calls for some explanation. In the introduction we claimed two methods for computing

II(x, dy) - the choice is between solving 0.1 or 3.2. But we have just proved that 0.1 is a special
case of 3.2 (for short strings only, though the result seems to hold in general).

The point is that each method has its own advantages. Equation 3.2 yields some extra information

not easily extracted from the rather cryptic relation at 0.1. Note how the symbol ~c(z), which

uniquely defines m, is the crucial component of any solution. Yet K does not appear explicitly in

0.1. The other side of the coin is that it can be difficult to solve 3.2 directly. Edwin Beggs (private
communication) pointed out connections with the Riemann-Hilbert problem. The idea is that one
can solve quite readily for x); but we are then faced with the problem of inverting the
relevant Krein transform.

The easiest method for explicitly computing II(x, dy) is to guess the answer using 3.2, and then

verify it from 0.1. So the uniqueness result is indispensable.

4. Killed strings.

The above results do not cover all the eigenvalue problems encountered in [8]. In this section we
treat the remaining case: when there is an infinite mass at the origin so that the triple (m+, 
represents a killed string. See [4] for applications of killed strings to excursion theory; remark,
however, that their convention on the mass at zero is different from ours.

For a killed string we use the function C(z, x), defined as the unique solution of

; C ( x, 0 ) = 0, Cz ( z ’ 0 ) =1

The boundary conditions show us that this is an odd function of z (see also [2] p.172). It is shown
in [4] that we have the spectral representation

Gz(x,y) = 1 03C0  C(i03B3,x)C(i03B3, y) 0394(d03B3) z2 + 03B32
for the Green function. The analogue of 2.5 is the transform

 ~ l0 (dy)C(i03B8n,y) ; Cx(i03B8n,l) - D-x(03B8n,l)C(i03B8n, l) = 0 (4.1)
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and it is clear that this cannot uniquely determine ~ E since the mass at the origin does

not register. Note also that zero is never an eigenvalue of this problem.

We keep the notation of section two by writing w(z) = Iln (1 + z28n 2), which we will compare
with the even function The roots of are ordered by 0  81  Xl 

62  X2... as before. Then, following the arguments of [2], it is not hard to see that C(z, ~) is

of finite type, has no zeros off the imaginary axis, and that the roots of and are

interlaced.

This is essentially all we need to deduce that = 0, thereby uniquely determining ~c except for

the mass at the origin.

To determine ~t~0} we need some extra information. For this we go back to the problem posed in

the introduction; there are two cases.

Suppose m- is a Radon measure. Then, since m+ has infinite mass at zero, we have r  +0oo and

II(x, dy) has total mass one. This is our extra equation.

On the other hand, if m- puts an infinite mass on a finite interval, then r is infinite with positive

probability. Working from 3.1, we interpret ( = inf{t > 0 : -oo) as a killing time for Yt. If

U is the overshoot time with this killing removed, then 3.1 with z = 0 yields

E  (] = P z[T  +oo) - (~ + ~1- 

But, since ( is independent exponential of rate 03B3 = /c-.(0), we can rewrite this as

E = P .,[T  +00] - [A + ~(0)~(~ [l - e ~a+7)~ ~
whence our extra equation by taking A = 0 and solving for P[U  (] = E ~e-7v~. .

Notice that, in both cases, zero behaves like a phantom eigenvalue of 4.1.

Acknowledgement: I am grateful to Pat Fitzsimmons and Paavo Salminen for information on

quasi-diffusions. Bill Hudson pointed out the recurrence criterion at 2.3.
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