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Markov processes on the boundary of the binary tree

MARTIN BAXTER

Statistical Laboratory, University of Cambridge, Cambridge CB2 1 SB

1. Introduction and Summary

We consider a Markov chain on the nodes of the binary tree, I:

Figure I . Graph of Binary Tree

By choice of jump rates and the relative up-down weightings, we can ensure that the
chain is reversible, positive recurrent, and able to hit infinity and return in finite time.
Our basic structural assumption, on which we shall lean heavily, is of lateral symmetry
- that is that jump rates depend on the state only through its level and that the
process is equally likely to go left as right on any down jump.

Rogers and Williams [4] allows us the existence of the chain with reflection at its
boundary. (David Williams asks me to report that Ivor McGillivray has explained to
him that the reflection in the example on page 156 is off the Kuramochi rather than the
Martin boundary. In our example, the two agree.) The Ray-Knight compactification
can be thought of as:

Figure 2. Ray-Knight Compactification

Let I be the points of the nodes of the graph, C be the Cantor set of limit points
of I, and F be I UC, the Ray-Knight compactification of I. There are no branch points,
and no ’irrelevant’ points in the sense of 111.81 of Williams [6]. .

’ 

Construction. We use Rogers and Williams [4], and results in Williams [6] to con-
struct the Markov chain on the graph with reflection at the boundary. Unidentified
references in this paragraph refer to Williams [6]. The time-truncation arguments of
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Rogers and Williams [4] let us take the limit of finite chains on the tree which reflect
at level n to give us, their Theorem 9.13, a x-symmetric transition matrix P(t) and
Feller resolvent Ra on I. From II1.57, we extend R x to C(F), and there are no branch
points, as we can condition the chain to hit any particular boundary point (111.49). By
symmetry either all the boundary points are relevant I) = 1) or they are all
not, but as we must visit some of them, it is the former which holds (111.81). From
111.60, we see that P(t) is Feller-Dynkin (FD), and we can thus, III.11, construct a
strong Markov F-valued honest R-process X with law P(t).

Given the F-valued process X, the projection process n(Xt), the level of Xt,
is also a Markov chain (by the symmetry) and is a birth-death process on the non-
negative integers with the one-point compactification at infinity. This level process
reflects from infinity, as the projection of the time-truncation of X is the same process
as the time-truncation of the reflecting birth-death process.
WARNING: Throughout, we shall switch from the graph process to the level process
and back with impunity, using i, j and so on for states in I, and n to denote states of
the level process. For example 7r, = 2-n~t~~n(i), where n(i) is the level of state i.

The chain can be fully quantified by the jump rates from level n.

Figure 3. Graph process Figure 4. Pro jected BD process

The up-jump rate is ~n and the left and right down-jump rates are both 
and we shall define qn to be An + We put ~rn := (Ao ... An-i)/(pi ... the
invariant measure for the BD process, choosing to make 7r a distribution if it is a
finite measure.

We can think in terms of the level process as being the time-change of a Brow-
nian motion reflecting at each end of a bounded interval, [0, a]. This is made rigorous
later (section 4). The set of times at which this Brownian process is at 0 is a random
Cantor set, which in particular is uncountable and perfect. Our first question is inspired
by noticing that when the graph process first hits the boundary, it must almost imme-
diately return uncountably often to the boundary. But there are uncountably many
other boundary points nearby. Does it return to the same point of the boundary ?
That is, is the boundary point regular ? One can think of a bolt of lightning which
bounces back off the ground and back down again repeatedly. From all the possible
bits of ground, how can it ever find again the exact spot where it first hit ?

Assuming (wisely) that we can arrange it so that all boundary points are regular
(and thus have individual local times), our second question is: can we find a jointly-
continuous version of the local time on F ?

The precise answers to all these questions are contained in the following theorem:
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THEOREM 1. . Let X be the graph process as constructed above. Then
(I) X is positive recurrent ~===~ ~n ~rn  oo, and then

(2) X reaches the boundary in finite time 4====~ ~n  oo, and then

(3) any (and hence each) boundary point is regular ~=~ En bn  oo, and then

(4) there exists a jointly-continuous local time on F 4====~ En and then

(5) X has visited all the states of F by a finite time,
where bn := ’ d cn :_ LZn br.

COROLLARY 2. If (1)-(3) hold then

~ bn  oo ~ there exists a jointly-continuous local time on F,
n

and L nbn = oo ~ there does not.
n

We thus have enough to construct a boundary (Cantor set) valued process, which
we examine in the final section.

2. Proof of Theorem

This section contains the mathematics of the proof, the next contains the arithmetic.

Parts (1) and (2) of the theorem are basic Markov chain theory. See, for example,
4-3 of Wolff [7].
Part (3). Rogers and Williams [4] have given us a standard honest x-symmetric
transition matrix function P(t) = such that = j) = We
define its Laplace transform R(A) and a x-normalised symmetric resolvent ~ca by

rij(03BB) := ~0e-03BBtpij(t) dt,

and u03BB(i,j) = u03BB(j, i) := rij(03BB)/03C0j

respectively. It is known that a boundary point ~ is regular if and only if (for any
and hence all A) u x has a continuous extension to (~, ~) and ~)  oo. By the
definition of the Ray-Knight compactification, in for example III.57 of Williams [6],
we see that u x has a finite continuous extension to F x I, and hence by symmetry to
F x E 

Let us put a partial order on F by saying x  y for x, y in F, if x is one of the
points between y and the root of the tree 0. We say that x is before y, and that y is
beyond x. For any pair x and y, we let x I1 y be the -greatest point which is before
both of them. Pick an i before ~ and let Ii := { j E be the set of all points
not beyond i. For any k beyond i, and for any j in Ii, all paths from j to k must pass
through i, so that the strong Markov property implies that

k) = E~ k),
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where H(i) is the time to first hit state i. Letting k tend to ~ E C, we find that

u03BB(j,03BE) = Ej(e-03BBH(i))u03BB(i, 03BE).

Then

03A3 03C0ju03BB(j,03BE) = 03A3 03C0jEj(e- 03BBH(i)) u03BB(i,03BE),

jEI. ~Eli

and so . _ 
~,lua(~~ ~) 

( ) 
.and so u03BB(i,03BE) = 03BB03A3j~Ii03C0j Ej(e-03BBH(i)).

As i goes to ~, Ii i I, and the numerator tends upwards to I ) = 1 (Williams (6~,
III.81). Therefore

u03BB(03BE,03BE) = 1 03BB03A3I03C0jEj(e-03BBH(03BE)),

and  oo if and only if H(03BE)  oo (a.s.).
We let the "up-jump time", Vn, be a random variable distributed as the time

to hit level (n 2014 1) starting at level n, and let the "left-down-jump time", Tn, be a
random variable distributed as the time to hit the point below and to the left of a start
point on level n. Then we can control the means and variances of these in the following
theorem.

THEOREM 3. If (1) and (2) hold then

EVn = 03C0[n] 03BBn-103C0n-1, Var(Vn) = 1 03BBn-103C0n-1 (03C0[r]2 03BBr-103C0r-1 + 03C0[r + 1]2 03BBr03C0r),
ETn = 2n+1-03C0[n+1], 03BBn03C0n, Var(Tn)  K2n 03BBn03C0n 03A3 2r 03BBr03C0r, for some K,

~r~r

where := ~({r, r + 1, ...}).
We defer this proof till section 3, but the method of calculation in each case is just to
find the minimal non-negative solution to a system of equations induced by conditioning
on the first jump. We find that means are enough for upper bounds and sufficiency,
but we need control away from 0, that is variance information, for lower bounds and
necessity.

Sufficiency of (3). If ~n bn  oo (where bn = then Theorem 3 shows that

En ETn  oo and so ~ is a regular boundary point.

Necessity of (3). Conversely, if ~n bn = oo we use the following lemma:

LEMMA 4. (LOWER-BOUND LEMMA) [0,oo] is a random variable such that
E(X 2)  KE(X)  oo for some K, then

E (1 - e-X~ > aE(X )
1- e-4K

where a = a(K) = 8K

The proof (in section 3) uses concavity coupled with the variance control.
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By Theorem 3 (noticing that is of no greater order than Var(Tn)) we have that

E(T~) ~ KdnE(Tn),

(for some new K) where dn = br. And so the Lower Bound Lemma 4 tells us
that

1 - e-4Kdn
E(1-e-Tn)  8Kdn E(Tn)

03B1bn dn for some 03B1 > 0,

as dn - oo as n - oo. Kronecker’s Lemma tells us that = ~, and we deduce

that ~n E{1- e-Tn) = oo, and hence = ~n = 0, giving us the
necessity of condition (3). Here we have used, and will use again, the useful analysis
lemma that for a sequence (xn) in (0,1), 03A3n(1-xn) is finite if and only if 03A0n xn is
positive.

Part (4). Given (1)-(3), we can assume an individual local time L(x, t) for each point
x of F. For (4) we use an excellent paper of Marcus and Rosen [2], which uses an
Isomorphism theorem of Dynkin between the Markov chain on the graph, and zero-
mean Gaussian process on the graph with covariance equal to the 1-potential density
ul(~, ~). Their Theorems II and 9.1 together state that

THEOREM 5 (MARCUS AND ROSEN). Let X be a strongly symmetric standard Markov
Process with continuous I-potential density ui. Let L = ~L(x, t) : x E F, t E R+}
be the joint local time of X, then L is continuous a.s. if and only if there exists a
probability measure m on F such that

sup 03B40 [log1 m(Bd(x, r))]1/2 
dr ~ 0 as 03B4 ~ 0, (*)

where Bd(x, r) is the radius-r closed ball centered on x under the metric d, where

= + .

X is strongly symmetric if ul exists as a symmetric 03C0-density for the Laplace transform
of P(t), which here is true. Our first step is to show (in section 3)

LEMMA 6. Given (1 )-(3), for x, y in F, with n(x)  n(y), then

d2(x, y)  

for some universal constants a and A.

As already hinted, the upper bound follows from simple inequalities and knowl-
edge of the means, whilst the lower is derived from variance control and the more subtle
analysis of the Lower Bound Lemma 4. The lemma tells us that d is "equivalent" to the
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sequence (c~), and we essentially translate condition (*) of Theorem 5 into a statement
about (cn), preserving both necessity and sufficiency.

Sufficiency of (4). We elect m to be ?p + ~c, where p is the probability on I giving
mass 2"~"~ to each point on level n, and c is the Cantor distribution (Hausdorff
measure) on C. Our condition holds, that is

03A3 1 ncn  ~ where cn := 03A3 br, and bn := 2n 03BBn03C0n.

Putting ~ = $ 6 C, we can deduce from Theorem 3 and Lemma 6 that (for new a and
A)

~(~~/) ~ 

Thus for r chosen to lie in r  i , then In := {t/ ~ ~} G 
where is the point on level n before ~. So

m(B~r)) ~ = 2-~B

and

Acn0[log1 m(Bd(03BE,r))]1/2 dr A log 2 (cr- cr+1) r+2

 K(ncn+(r+1-rcr) K(ncn+1 rcr).

By the monotonicity of (cn),  2~r=[n/2] 1 rcr which goes to 0 as n goes to

infinity, so that the whole right-hand side goes to 0 as we wish.
We also have to get a similar result when :r = z 6 I. Let N be ?~), the level

of z, and let in be the point on level n before !, for n  N. As before, for r such that
r  then (y in} C In addition for 0  r  then

{z} C so m{z} = 2-~~+~. And so

AcM0[log1 m(Bd(i,r))]1/2dr  K’McM+NcN+03A3N-1r=M 1 rcr M  N,NcM M  N,

which goes to 0 uniformly in N as M ~ ~. Thus the sufficiency is proved.

Necessity of (4). For this we use the lower bound for d. If m is any probability
measure on F, set ~o to be 0, and recursively define to be the point immediately
beyond ~ which has no more m-mass in its subtree than the other point immediately
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beyond in, so that m{y  03BEn}  2’". We set 03BE := limn 03BEn be a boundary point. If r
is such that Q K r  then C {y  03BEn}, so

03B1cN0 [log1 m(Bd(03BE,r))]1/2 dr 03B1log2 (cn - cn+1) n+1

 k 1cn, for some k > 0.v ~
Part (5). Fix 03BE E C and let An := {( C C : ( > 03BEn}, where is the point on level n
before ~. Let r~(~) := L~(~) > ~}, and set

:= P~(L~(.,~M) > 0 on 
The function p is monotone in each co-ordinate, and as L~ is jointly-continuous

= 1, (t > 0). Thus p is positive for some (and hence all) n, and the
strong Markov property gives us that

l-p(0~)~(l-p(0~))~
whence we deduce that =1. If we now set Ct :=={(~ C : > 0},
which is open as LX is continuous, we have proved that Ct ~ C as t ~ ~, and by the
compactness of C, we deduce that CT = C for some finite T. D

3. Various Proofs

Proof of Corollary 2. Firstly, if bn  ~, then by Holder’s inequality

1 ncn ( 1 n1+~)1/2( n~cn)1/2  ~,

because n~cn = bn(r~)  n(1+~)bn  ~.

Secondly, if 03A3n nbn = ~, then as

N N N N

tt=l r=n ~==1

we see that 03A3n cn = ~. We consider the sequence (dn), defined by dn := and

look at the set
j4 := {~ : = {~ : ~}.

If j4 is finite, then (dn) is eventually more than (cn) so its sum diverges. If A is infinite,
there exists an increasing sequence (~,) in A, so that by the monotonicity of (dn)

dn  ni-ni-1 ni = (1-ni-1 ni) = ~, as 03A0ni-1 ni = 0. []
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Proof of Theorem 3. Let ~ be set to the expected time to jump-up one level
from n. We can expand Vn conditionally on the first jump as

0 with prob. n/qn
Vn = ~(qn ) +Vn+1+n with prob. 03BBn/qn,

where V~ has the same distribution as ~, ~(c~) is exponentially distributed with rate
~, and all variables on the right-hand side are independent. We know the are the

minimal non-negative solutions to

~ = -L + + (~ ~ 1),
9~ 9~

Or = 7T~ + 

(using = This has the required solution

kn __~]_ .*~n 

Similarly the variance sequence will satisfy

Var(Vn) = 1 q2n + 03BBn qn[Var(Vn+1)+Var(Vn)] + 03BBn n q2n[E(Vn+1 + Vn)]2,

or [03BBn-103C0n-1 Var(Vn)] = [03BBn03C0n Var(Vn+1)] + 03C0[n]2 03BBn-103C0n-1 + 03C0[n+1]2 03BBn03C0n
which has the desired solution.

Now we let /~ be equal to the expected time to down-jump one level
from n to a particular point. We can decompose Tn as

0 with prob. 1 2T0 = ~(03BB0) + V1 + 0 with probe ,.Vi + To with probe ,

0 with probe 
Tn = ~(~) +  + Tn with probe (n ~ 1)

+ T~ with probe 

where Tn has the same distribution as So is the minimal solution to

h0 = 1 03BB0 + h0 + 03C0[1] 03BB003C00
hn = 1 qn + n+03BBn qn hn + n qnhn-1 + 03BBn qn 03C0[n+1] 03BBn03C0n 

(n  1),

or

03BB003C00h0 = 2 - 03C0[1]
= + ~ + 7T[~] (~ ~ 1).
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Figure 5. The concave function y =1- e’x and a subchord

VVe can use induction to show that

(03BBn03C0nhn) = 2n+1 - 03C0[n +1], (n 0)
whence the result.

Finally Var(Tn) will be the minimal non-negative solution to the following equations:

Var(T0) = 2 + 2 [Var(Vl ) + Vax(To)] + 4 [E(Yi + To)] 2
Var(Tn) - 1 2 + 03BBn [Var(Tn) + Var ( Y n+1)] + n [Var(Tn) + Var ( T _ n 1)]

qn qn qn

+ 
03BBn( n + 03BBn) q2n[E(Tn+Vn+1)]2 + 03BBn n q2n[E(Tn+Tn-1)]2 [E(Tn + Vn+1)]2 + 03BBn n q2n [E(Tn + Tn-1)]2

- 03BBn n q2nE(Tn + Vn+1) E(Tn + Tn-1), ( n  1),

which, on setting un to equal 2-n03BBn03C0n Var(Tn), can be rearranged to give

u0 = (1+03C00)2 +203C0[r+1]2 03BBr03C0r  ~

un = un-1 + 2
-n (1 + I(r>n))03C0[r+1]2 03BBr03C0r + 4 (2n-03C0[n+1] 03BBn03C0n + 2n-1-03C0[n] 03BBn-103C0n-1)

r=n

+ 21-n03C0n + n 03C0[n+1]2 + 03BBn 03C0[n]2 + 203C0[n]03C0[n+1] 
(n  1).+ 

qn + qn 03BBn03C0n + qn 03BBn-103C0n-1 + 03BBn03C0n + 03BBn-103C0n-1 (n  1).

Hence

un un-1 + 21-n( 03C0[r+1]2 03BBr03C0r) 
+ 4(2n 03BBn03C0n + 

2n-1 03BBn-103C0n-1)

+ 
21-n03C0n qn 

+ (03C0[n+1]2 03BBn03C0n) + 3 (03C0[n]2 03BBn-103C0n-1)
So, remembering that (1) and (2) hold

n 

2r 
n 

2r
un A+B 2 03BBr03C0r K 2 03BBr03C0r (n 0),

for some constants A, B, and K. This delivers the required result. 0
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Proof of Lower Bound Lemma 4. The function f(x) =1- e-x is concave on the
bounded interval [0, a] (Fig. 5), so

NowN°~’° 

E (f (X)) > a) ~ (1 -ae -a) 
and by Holder’s inequality

E(X; X > a) = IIX  ~X~2P(X > a)1/2  (KE(X)P(X > a))1/2.
Further aP(X > a) ~ E(X), so we deduce that

E(X; X > a)  

Choosing a to be 4K, then E(X;X  a)  E(X) and

E(f(X)) (1-e-4K 8K) E(X).

D
Proof of Lemma 6. We can write d2(x, y) as

y) = x) + y) - y) - x).
For the upper bound, we use the fact that (1- e-x)  x to show that

d2(x,y)  [ sup u1 (z, z) (Ex (H(y)) + Ey (H(x))).

We can split the expected hitting times into four summands, two being sums of (Vn)’s
from x and y to x A y, and two of (Tn)’s from x A y to x and y. Theorem 3 tells us that
the largest will be the down time from x A y to y, so

4 .

zEF J
For the upper bound we throw away some terms to reveal that

d2(x, y) [inf u1(z, z)] (Ex (1-e-H(y))

[inf u1(z, z)] (Ex^y (1-e-H(y))).
The function ul(z, z) is a continuous positive function on the compact space F, so the
sup and the inf are finite and positive. Remembering that E is finite, Theorem
3 and the Lower Bound Lemma 4 together give us that 

An ~"

~ 

for some positive a. D
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Figure 6. Construction of diffusion

4. Time Substitution

We aim to tie the Markov chain on the nodes, F, of the graph together with a
Brownian diffusion on the graph, G, comprising of F and the edges. We can construct
the diffusion by building up excursions from a point on level n as follows.

(We are only going to define the height and current edge of the process, the
horizontal position being thus determined.) Given a reflecting Brownian motion, we
take its excursions from 0 in order and make them excursions from our start point. The
edge that each excursion follows is randomly selected according to the law assigning
probability § to going up, and probability ( to each of the down edges. Run this

process until it hits levels (n - 1) or (n + 1), then repeat starting from the new node.
We identify level n with the height xn := 1 03BBr03C0r (Fig. 6).

The height process then becomes a reflecting Brownian motion on the interval
We notate the G-valued process as (-Y), and the height process as 

Then Trotter’s Theorem allows us a jointly-continuous local time L~ for the height
process. For a good treatment of local times see V.3 of Blumenthal and Getoor [1]. We
can then time change K via

n

Tt := 0 : As > ~}.

We note that A is continuous and (weakly) increasing; T is right-continuous and strictly
increasing; A( Tt) = t; and t with equality if and only if t is a point of right
increase of A We time change the diffusion by setting % to be which by III.37
of Williams [6] is a strong Markov process on the support of A ({0} U 6 N}).
The local time of V at a level before it hits an adjacent level (the holding time of the
Y-process) is exponentially distributed, by the strong Markov property, and with the
right normalisation of our choice of (zn) has ensured that the jump rates of Y
agree with those of the BD-chain. In fact they are the same process. We can then
define the local time of Y, L Y, on R+ x N by

J~(~):==-L / ~ Jo

and notice that by change of variable

= -L = -L / = L~A,), ’
0 JJ+n[0,]
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where J+ is the set of the points of right-increase of A, which is all but count ably many
points of the set of points of increase of A

We can also time change the G-diffusion by r to produce Xt := which

is similarly a Markov chain on F with the same jump-rates as the process we studied
in previous sections. Consideration of the time-truncation arguments of Rogers and
Williams [6] should convince that the processes are the same. Given that conditions
(1)-(4) of Theorem 1 hold, we can construct a jointly-continuous local time, L"~ for X
on F. It then follows that Z~ := is a local time for X at the points F
in G. We can extend Z~ by interpolation on the edges to be continuous on G.

It is now possible to construct processes on the boundary, C, via time changes
of X and X induced by

A~t := CLX(03BE,t)c(d03BE) = LY(~,t),

and ~t := CX(03BE,t)c(d03BE) = Y(0,t),

with r~ and r~ respectively the right-continuous inverses. This gives us the strong
Markov R-processes Zt := and 2~ := By the continuity of the local
times,

A~(At) = lim 2-n  LX(x,At) = lim 2-n  X(x,t) = A~t.

For any (A, T )-type pair, Tt  s  As, hence

r~  ~ ~===~ ~ 4===~ ~  ~=~ Tf ~===~  ~,

whence we can deduce that r~ = and that Zt = ~. The process Z also has a
jointly-continuous local time L~, given by

~(~)=L~,~)=L~,-~). °

In summary we can say that Figure 7 commutes. We have thus produced the same
process by taking local time on the boundary of both the chain and the diffusion, which
allows us to work with whichever is more appropriate for the current problem.

Figure 7. A commutative diagram of processes

5. The Boundary Process

We now finally turn our attention to the boundary process Z. We know that the
graph processes (both chain and diffusion) spend no intervals of time on the boundary,
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but rather the set of times at which they visit the boundary is a Cantor set obtained
by removing the open excursion intervals from the time axis. The process will (almost
surely) not be back in its original position at the right-hand endpoints of these intervals
- even though it will return to its original position uncountably often almost imme-
diately. As the boundary Cantor set is totally disconnected, we see that Z must be a
very discontinuous process. In fact Z is discontinuous at a dense, though countable,
set of times.

LEMMA 7. Z is FD.

Proof. By adapting the argument at the end of III.38 of Williams [6], we can show that
Z is FD if E~(l - e-~)) goes to 0 in C, where R(~) := 0 : Zt = 7/}.
Now H(r~) is almost surely a point of right-increase of Aa, so H(r~) = We
can write as 

,

00

. 

D Un := + where n = n(~’ I1 r~),
r=n

00

and ~= Ar~
r=n

with A; the local time on the boundary notched up while a version of the process did
an up-down Tr+ Vr+i. Then Un ~ 0, A*(Un) 1 0, and thus (1- 0 as ~ ~ 03BE,
giving the result. 0

By VI.28 of Rogers and Williams [5], there exists a Levy system (N, H) for Z.
In our case Ht = t, and N as usual is a kernel, that is a function

N : (C, ~i(C)) --~ [0, ool,
such that N(., r) is B(C)-measurable, for all r in B(C),
and N(~, .) is a a-finite measure on ,~(C), for all £ in C.

In addition N ( , {~}) = 0 for all ~ in C, and N has the Levy property, in the sense
that for any non-negative borel-measurable function f on C x C with f (~, ~’) = 0 for
all 03BE in C, then

Mft := f(Zs-,Zs)-(0,t]ds CN(Zs-,d03BE)f(Zs-,03BE)
is a martingale, if the expectation of either term is finite. We can think of N(~, as

the rate at which jumps from £ to dq of Z occur.
We can calculate this directly using excursion theory, and we will not need any

more than is in Rogers [3]. By thinking of the diffusion height process, Proposition 2
of Rogers [3] tells us that the rate of excursions from £ in C to level n or before is

1 xn = 1 ar, where ar := 1 03BBr03C0r.
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(The factor 1 2 is lost because we have rejection at the boundary so all our excursions
go up.) Therefore the rate of excursions from 03BE which have their furthest extent on
level n is simply the difference

1 xn-1 xn-1 = an-1 xnxn-1 n  1

1 x0 n = 0.
The chance that such an excursion ends up in Jyy C C is then (by symmetry) exactly
2nc(d~) if 03BE A yy is on or beyond level n, and 0 if not. We deduce that the rate of
excursions from 03BE to dyy is given by the following:

LEMMA 8.

N(03BE,d~) = c(d~) (1 x0 + 2bn-1 xnxn-1).
Proof. For 03BE in C, let 03BEn be the point on level n before 03BE, and let An be {( 6 C : :
( > ~}. For any subset F of we notice that ~V(’,~) is constant on A~ by
symmetry. We can set := and T := Then

= 0 implies that

~ ~ - 
~)

7V~~- 

and the result is proved. D

Example. In the geometric case, with

03BBn = 03B1n, n = 03B1n/03B3, and 03C0n = (03B1-03B3 03B1)(03B3/03B1)n,

then 1 03BBn03C0n = 03B103B3-n 03B1-03B3, xn = 03B103B3-(n-1) (03B1-03B3)(03B3-1), bn = 03B1(2/03B3)n 03B1-03B3,

and ~V(~ ~) = c(~)(~(2~)" + F) where ~ = n(~ A yy); ~, B > 0.

The conditions of Theorem 1 translate as (1) ~ > ~; (2) ~ > 1; (3)~(4) 7 > 2, and we
assume that all these hold. Then B~, the first time to leave ~, will be exponentially
distributed with rate

N(03BE,Acn) = A(03B3n-1) 2(03B3-1) + B(1-2-n).
We can form an analogue of the Hausdorff dimension of a diffusion as

lim logE(Hn) -n = log 03B3.

This can be seen as a measure of the asymptotic neighbourhood escape rate of the
process. As 03B3 gets larger it takes longer to escape as the downward pressure inhibits
larger excursions. The normal scaling logarithm in the denominator is missing as there
is no obviously natural metric on C. D
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Figure 8. Ternary Tree Figure 9. Ray-Knight compactification

There is (at least) one easy generalisation of the chain, keeping the same basic
structure, by taking the M-ary tree with M down edges, all equally likely, from each
node (Fig. 8). In the case of M = 3, the Ray-Knight compactification can be thought
of as a tree-like graph (Fig. 9).

Everything thus described still holds, with the alteration of the down-jump time
line of Theorem 3 to

ETn = 
Mn+1-03C0[n+1] 03BBn03C0n, 

Var(Tn)  K
Mn 03BBn03C0n Mr 03BBr03C0r, for some K.

And Theorem 1 holds with bn := The Levy kernel N is as stated above for
these new values of (bn), and the number 2 replaced by M.
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