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Stochastic Calculus and the Continuity of Local Times of Lévy Processes

Richard Bass* and Davar Khoshnevisan

1. Introduction. Let Zt be a one dimensional Levy process with characteristic func-

tion

E exp(iuZt) = 

where

(1.1) 03C8(u) = -iau + 1 203C32u2 - ~-~ 
(eiuz -1- iuz1 (|z|~1))03BD(dz).

Here v satisnesj’(l A  ao.

We are interested in those Levy processes for which 0 is regular for ~0} and either
Q2 > 0 or {0}) = oo. In this case (see [K]) there exists a bounded continuous

function g that is a density for the 1-resolvent:

(1.2) y)dx = EY /~ e-t f (Zt)dt, f > 0, y E l~.

(If G(x, y) is the Green function for Zt killed at an independent exponential time with

parameter 1, the relationship between g and G is given by g(x) = = G(a, a + x)
for any a E R and G(x,y) = g{y - x).)

For each x,

{ ) 

For each x, g(x - . ) is the 1-potential of an additive functional Lf that is continuous in
t. Moreover, a version of may be chosen that is jointly measurable in {x, t, w).
See [GK] for details. Lf is called the local time of Zt at x. Lf is also a density of

occupation time measure: if f > 0,

(1.4) ’ a.s..

A number of people have studied the question of the continuity of Lf in the space
variable (see [Bo], [Me], [GK] and [MT]), culminating in the works [Bl], [BH], and [B2],
where a necessary and sufficient condition for the joint continuity of Lf in t and x is

given.
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The purpose of this paper is to give a stochastic calculus proof of the following
sufficient condition for joint continuity. Let ~ : R 2014~ [0, oo) be defined by

(1.5) ~)=~(1_~)R~~..
Let d(a, b) = ~(&#x26; 2014 a) and let H( u) be the logarithm of the smallest number of d-balls
of radius less than u that are needed to cover [20141,1]. Define

(1.6) F(~)= / 
Theorem 1.1. (a) IfjF(0+)  oo~ then L~ has a jointly continuous version.

~ For each t,

lim sup sup sup |Las - Lbs| F(03C6(a-b)) ~ 2(sup Lxt)1/2, a.s.

Theorem 1.1 (a) was first proved in [BH], where it was also remarked that the
entropy condition was equivalent to one involving the monotone rearrangement of p.
Part (b) was also proved in [BH], with, however, the constant 2 replaced by a larger
constant (namely 416). In [B2] it was shown that part (b) holds with the constant 2
under the additional assumption that p is regularly varying (but not slowly varying)
and that the constant 2 is sharp. (The principle result of [B2] was that the condition

- F(0+)  oo is necessary as well as sufficient for joint continuity.) Marcus and Rosen

[MR] have recently obtained necessary and sufficient conditions for the joint continuity
of local times of certain Markov processes. Theorem 1.1 for symmetric Levy processes
is a special case of their results.

In Section 2 we prove Theorem 1.1 assuming that ess supxLxt  oo, a.s. We establish

this latter fact in Section 3.

2. Modulus of continuity. Our proof is modeled after that of [McK]. Let us begin
by assuming for this section that ess supxLxt  oo, a.s. Let R be an exponential variable
with parameter 1, independent of Zt. Since y(:r 2014 .) is the I-potential of Lf, we have

(2.1) 
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Proposition 2.1. y(b)~  c~2(a - b).
Proof. Let Tz = inf{ t Zt = x}, S = Ta A T6. Since Lf increases only when Zt is at x,
the strong Markov property at time S yields

Ig(a) - g(b)1 = |E0LaR - = |E0[EZsLaR - S ~ R])
~ E0|EZs LR - EZS LR I
= = Ta] + S = ~’b]
= g(b - a)I p°(s = Ta) + b) - = ~’6)

Since g(x) = E0LxR  ExLxR = g(o), then

9(b)~ ~ 2g(0) - g(b - a) - ~(. - b).

By (1.3) and (1.5), the right hand side equals cp2(a - b). D

Using (2.1) and the Markov property,

(2.2) Mt = g(a - g(a - Zo) - Lat^R

is a martingale with Mo = 0. Fix a and b and let Nt = Mt - Mf. Let L; = ess supxLxt.

Proposition 2.2. ?cp2(a - 
Proof. Let NC, Nd be the continuous and purely discontinuous parts of Nt, respectively.
We first estimate ~

Let

(2.3) W(x, x) _ [~g(a - (x + z)) - g(a - x)} - - (x + z)) - g(b - 

Since Lt and Li are both continuous in t, the jumps of Nt are the jumps of ~(o2014 Z)
- g(b - Zt). Hence

= ~ ~Ns = ~ (W(Z~_, OZ~))2. °
9t 

By the definition of Levy measure, E ~$t = v(A)t if A is a subset of R
that is a positive distance from 0. By the Markov property and the translation invariance
of the increments of Zt , v(A)t is a martingale. Taking the stochastic
integral of with respect to this martingale, we see that ~8t h ( Ze_, L1,Z~ -
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fo j z)v(dz) ds is again a martingale, where h(x, z) =1B(x)lA(z). Taking linear
combinations and limits, we deduce that

[Nd,Nd]t^R-t^R0  W(Zs-,z)203BD(dz)ds

is a local martingale. Hence it follows that

(Nd,Nd)t = t^R0  W(Zs-,z))203BD(dz)ds.

Since Zt has only countably many jumps, we get

(2.4) (Nd, Nd)t = (W(Z, 

 

 L*t   (W(x,z))2dx 03BD(dz)

= L*t 203C0  |(u,z)|2du03BD(dz ) (Plancherel’s theorem)

where W (u, z) is the Fourier transform of W(~, x), z fixed.
By (2.3),

eiub})
= 

Since ea"e -1 ~2 = 2( 1- cos 8),

(2.5) / 2 ~g(-u)~2~1 - (1- cos uz)v(dz) du
= 4/’(1 - cos(u(b - 

where 03C8(u) - 1 203C32u2. Substituting (2.5) in (2.4), we obtain

(2.6) Nd,Nd>t ~ 2L*t 03C0 (1-cos(u(b-a)))|(u)|2Re03C8d(u)du.
Next we estimate (NC, If f is a smooth function and we write h’~ for the

martingale part of f (ZinR), then by Itô’s formula,

Kt = 
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where B~ Is a standard Brownian motion. Then

~ ~ 

~7~~(/’(.r))’~
= 03C32L*t J_ /’ (Plancherel)27r ~
=~L~~!un/(~)!~. .

Approximating ~at(’) == ~(o ’*’) ’* ~(~ ’*’) by smooth functions in a suitable way, taking
limits, and noting that = ~(2014u)(e""* 2014 e"~), we get

(~,~} ~ ~~/’~!F(-u)t’)e""’ 
= ~ / ~~~)’’(1 - o)))du.

Adding to (2.6) yields

~ 2014L / ~ V

Finally, from (1.1), Re~(u) ~ 0. So

(2.9) 03C62(x) = 1 03C0 /(1 - cos 
= - / (1 - B + B!2 du~ 

7!-7 
~ ~°~ ’~~’ ’~

= ~ /(1 - 
since ~(u) = (1 + ~(tt))"~. Comparing (2.9) to (2.8) proves the proposition. D

Proposition 2.3. Let 6 > 0. There exists Jo > 0 depend on c such that if Xt is
any square integrable martingale with jumps bounded in absolute value by Jo and with
(X,X} continuous, then exp(X - (1 + c)(X,X)/2) is a positive supermartingale.

Proof. Take Jo small enough so that !e" - 1 - ~) ~ (1 + 6)a:~/2 if ~j  Jo , Let

~=~-(1+6)(X,X)/2.
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By Itô’s formula,

= 1 + local martingale - ~ 2 / / 
+ 03A3 eYs-(e0394Xs-1-0394Xs)

Since is a local martingale,

(2.10) eYt = 1 + local martingale - ) / local martingale

- 1+ 2 03A3 eYs-(0394Xs)2 + 03A3eYs-(e0394Xs-1-0394Xs).
~~ ~~

But e~~ -1 - AX~ - (1 + ~)(A~)~/2 ~ 0 by our selection of Jo. Hence (2.10) exhibits
exp(Yt) as a local martingale minus an increasing process. D

Write P for P~.

Corollary 2.4. |Xs| > A + (1 + )X,X>t/2) ~ 2e-03BB.

Proof. Reducing the continuous part of Xt by stopping times, we may assume Xt
bounded, as long as our probability bound does not depend on the L~ norm of J~.
We can then write e~ = where Kt is a martingale with .Ro = 1 and Ifi an

increasing process with ~o = 0. Then by Doob’s inequality,

This proves > A + (1 + e)(X,X)/2) ~ exp(-A). Applying the same

argument to -X proves the corollary. D

Under the assumption L~  oo, a.s., we can now prove Theorem 1.1.
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Proof of Theorem 1.1. Let Nt = M! - Mt as above, F(~) defined by (1.5). Since

the potentials of and are bounded. Nt is square integrable ([DM], p.193).
Clearly F(6) - 0 as 6 --~ 0. Also, cp(~) -~ 0 as 6 -~ 0 by the continuity of g, hence

H(u) -~ oo as u - 0, hence ~/F(~) -~ 0 as 6 -~ 0.
Let be > 0 such that a,Q > 1, let E > 0, set 6 = ~b - a~, and set r~ = cp(~). Let

Xi = 

Since the jumps of Nt are bounded by 2sup~ (g(x - a) - g(x - b) [ ~ 2cp2(b - a), the
jumps of Xt are bounded by which will be less than the Jo of Proposition 2.3
if 6 is small.

Now apply Corollary 2.4: if 6 is sufficiently small,

A standard metric entropy argument (see, e.g., [D]) and (2.11) shows that we can
find a version of Mt that is jointly continuous in t E [0, R) and x E Q and such that
for each K > 0,

(2.12) P ( lim su p su p sup 
~ 
> c(a + (1 + E)pLt ) * - 0b))

for each a, ~3 > 0 such that a,Q > 1. Here Q denotes the rationals. By being a bit more
careful with the constants in the metric entropy argument, one can show that one can
in fact take c = 1.

Fix an w not in the null set for any a, /?, f rational, K a positive integer, take
h’ >- + 1)~ ~ E ULi (w))1~2~ (1 + E)(Li (w))1~2~~ and a = (1 + and then
let e -3 0. We thus get

(2.13) lim sup sup sup |Mas-Mbs| F(03C6(a-b)) ~ 2(L*t)1/2, a.s.

By Proposition 2.1, ~g(x - a) - g(x - b))  ~pz(~). Since r~ = as r~ --~ 0, (2.2)
yields (2.13) with M: - Mf replaced by L’~R. Arguing as in [GK], one can
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find a version of L~ that is jointly continuous in t E [0,R) and x E R, that is still an
occupation time density, and that satisfies

limsup sup sup  2(Li )1 ~Z, a.s.

n10 b)) -

Finally, using the strong Markov property at R and performing a renewal argument
yields Theorem 1.1. D

3. Essential boundedness. It remains to show that L;  oo, a.s., under the hy-
potheses of Theorem 1.1. Let

(3.1) Jt (r) _ 
Clearly Jf(r) is bounded by t/2r. Let p(x) = /9r(.c) = Note

Jf(r) = Lt * p,.(x), where * denotes convolution.

Proposition 3.1. If E > 0, there exists Ii > 0 such that

supP(supJt(r) > I~)  E.

r1 x

Proof. Since Jf(r) = L~ * the I-potential of Jf(r) is g * pr(x - ~). By Proposition
2.1,

(3.2) 19 * Pr(u) - 9 * Pr(b)1 ~ - b)~

Let Wr(x, z) _ ~ W(y, z)p,.(x - y)dy. If we let Nt(r) be the martingale part of
9 * Pr(a - * pr(b - ZtnR), then as in the proof of Proposition 2.2,

/ 
But by Jensen’s inequality,

(Wr(x, z))2  

hence

~ ~ - y)Lt dx v(dz) dy

= / 
 J 
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With a similar change to estimate we get

(3.3) (N(r), JV(r)), ~ 2c~2(a - b) sup Jf (r).
z

Proceeding as in Section 2, we get the joint continuity of Jf(r) in x, with probability
estimates independent of r. Take ho large so that > Iia -1)  f/2. Using
the probability estimates for the continuity of Jf (r) in x, take K > T~o large enough so
that

P( sup Jf(r) > K)  f/2.

This proves the proposition. D

Theorem 3.1. Under the assumptions of Theorem 1.I, ess sup Lf  oo, a.s.
x

Proof. Let rn = 2’n. Let E > 0 and choose K as in Proposition 3.1. Let

An = {sup Jt(rn) > K}
z

If Jxt(rn) > K for some x, then since

_ - 2 1 ( r n+1 ) )],

we get supy Ji (rn+1 ) > IE. Therefore An C An+1.
It follows that

00

P(sup Jf(rn ) = oo)  P( U An ) = lim P(An )  E.

z,n n=1 
n

Since 6 is arbitrary, Jt(rn)  oo, a.s. Our result then follows by Lebesgue’s
differentiation theorem. D
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