SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

RICHARD F. BASS DAVAR KHOSHNEVISAN

Stochastic calculus and the continuity of local times of Lévy processes

Séminaire de probabilités (Strasbourg), tome 26 (1992), p. 1-10 http://www.numdam.org/item?id=SPS 1992 26 1 0>

© Springer-Verlag, Berlin Heidelberg New York, 1992, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Stochastic Calculus and the Continuity of Local Times of Lévy Processes

Richard Bass* and Davar Khoshnevisan

1. Introduction. Let Z_t be a one dimensional Lévy process with characteristic function

$$E\exp(iuZ_t)=\exp(-t\psi(u)),$$

where

(1.1)
$$\psi(u) = -iau + \frac{1}{2}\sigma^2 u^2 - \int_{-\infty}^{\infty} (e^{iuz} - 1 - iuz1_{(|z| \le 1)})\nu(dz).$$

Here ν satisfies $\int (1 \wedge z^2) \nu(dz) < \infty$.

We are interested in those Lévy processes for which 0 is regular for $\{0\}$ and either $\sigma^2 > 0$ or $\nu(\mathbb{R} - \{0\}) = \infty$. In this case (see [K]) there exists a bounded continuous function g that is a density for the 1-resolvent:

(1.2)
$$\int f(x)g(x-y)dx = E^y \int_0^\infty e^{-t} f(Z_t)dt, \qquad f \ge 0, \quad y \in \mathbb{R}.$$

(If G(x,y) is the Green function for Z_t killed at an independent exponential time with parameter 1, the relationship between g and G is given by g(x) = G(0,x) = G(a,a+x) for any $a \in \mathbb{R}$ and G(x,y) = g(y-x).)

For each x,

(1.3)
$$g(x) = \frac{1}{2\pi} \int e^{-iux} \frac{1}{1 + \psi(u)} du.$$

For each $x, g(x - \cdot)$ is the 1-potential of an additive functional L_t^x that is continuous in t. Moreover, a version of $L_t^x(\omega)$ may be chosen that is jointly measurable in (x, t, ω) . See [GK] for details. L_t^x is called the local time of Z_t at x. L_t^x is also a density of occupation time measure: if $f \geq 0$,

(1.4)
$$\int_0^t f(Z_s)ds = \int f(x)L_t^x dx, \text{ a.s..}$$

A number of people have studied the question of the continuity of L_t^x in the space variable (see [Bo], [Me], [GK] and [MT]), culminating in the works [B1], [BH], and [B2], where a necessary and sufficient condition for the joint continuity of L_t^x in t and x is given.

^{*} Research partially supported by NSF grant DMS-8822053

The purpose of this paper is to give a stochastic calculus proof of the following sufficient condition for joint continuity. Let $\varphi : \mathbb{R} \to [0, \infty)$ be defined by

(1.5)
$$\varphi^2(x) = \frac{1}{\pi} \int (1 - \cos ux) \operatorname{Re} \frac{1}{1 + \psi(u)} du.$$

Let $d(a,b) = \varphi(b-a)$ and let H(u) be the logarithm of the smallest number of d-balls of radius less than u that are needed to cover [-1,1]. Define

(1.6)
$$F(\delta) = \int_0^{\delta} (H(u))^{\frac{1}{2}} du.$$

Theorem 1.1. (a) If $F(0+) < \infty$, then L_t^x has a jointly continuous version.

(b) For each t,

$$\limsup_{\delta \downarrow 0} \sup_{\{a,b:\varphi(a-b)<\delta\}} \sup_{s \leq t} \frac{|L_s^a - L_s^b|}{F(\varphi(a-b))} \leq 2(\sup_x L_t^x)^{1/2}, \quad a.s.$$

Theorem 1.1(a) was first proved in [BH], where it was also remarked that the entropy condition was equivalent to one involving the monotone rearrangement of φ . Part (b) was also proved in [BH], with, however, the constant 2 replaced by a larger constant (namely 416). In [B2] it was shown that part (b) holds with the constant 2 under the additional assumption that φ is regularly varying (but not slowly varying) and that the constant 2 is sharp. (The principle result of [B2] was that the condition $F(0+) < \infty$ is necessary as well as sufficient for joint continuity.) Marcus and Rosen [MR] have recently obtained necessary and sufficient conditions for the joint continuity of local times of certain Markov processes. Theorem 1.1 for symmetric Lévy processes is a special case of their results.

In Section 2 we prove Theorem 1.1 assuming that $\operatorname{ess\,sup}_x L_t^x < \infty$, a.s. We establish this latter fact in Section 3.

2. Modulus of continuity. Our proof is modeled after that of [McK]. Let us begin by assuming for this section that $\operatorname{ess\,sup}_x L^x_t < \infty$, a.s. Let R be an exponential variable with parameter 1, independent of Z_t . Since $g(x-\cdot)$ is the 1-potential of L^x_t , we have

$$(2.1) E^a L_R^b = g(b-a).$$

Proposition 2.1. $|g(a) - g(b)| \le \varphi^2(a - b)$.

Proof. Let $T_x = \inf\{t : Z_t = x\}, S = T_a \wedge T_b$. Since L_t^x increases only when Z_t is at x, the strong Markov property at time S yields

$$\begin{split} |g(a)-g(b)| &= |E^0L_R^a - E^0L_R^b| = |E^0[E^{Z_S}L_R^a - E^{Z_S}L_R^b; S \le R]| \\ &\le E^0|E^{Z_S}L_R^a - E^{Z_S}L_R^b| \\ &= E^0[|E^aL_R^a - E^aL_R^b|; S = T_a] + E^0[|E^bL_R^a - E^bL_R^b|; S = T_b] \\ &= |g(0) - g(b-a)|P^0(S = T_a) + |g(a-b) - g(0)|P^0(S = T_b) \end{split}$$

Since $g(x) = E^0 L_R^x \le E^x L_R^x = g(0)$, then

$$|g(a) - g(b)| \le 2g(0) - g(b-a) - g(a-b).$$

By (1.3) and (1.5), the right hand side equals $\varphi^2(a-b)$. \square

Using (2.1) and the Markov property,

(2.2)
$$M_t^a = g(a - Z_{t \wedge R}) - g(a - Z_0) - L_{t \wedge R}^a$$

is a martingale with $M_0 = 0$. Fix a and b and let $N_t = M_t^a - M_t^b$. Let $L_t^* = \operatorname{ess\,sup}_x L_t^x$.

Proposition 2.2. $\langle N, N \rangle_t \leq 2\varphi^2(a-b)L_t^*$

Proof. Let N^c , N^d be the continuous and purely discontinuous parts of N_t , respectively. We first estimate $\langle N^d, N^d \rangle_t$.

Let

$$(2.3) W(x,z) = [\{g(a-(x+z)) - g(a-x)\} - \{g(b-(x+z)) - g(b-x)\}].$$

Since L_t^a and L_t^b are both continuous in t, the jumps of N_t are the jumps of $g(a-Z_t)$ $-g(b-Z_t)$. Hence

$$[N^d, N^d]_t = \sum_{s \le t} \Delta N_s^2 = \sum_{s \le t \land R} (W(Z_{s-}, \Delta Z_s))^2.$$

By the definition of Lévy measure, $E \sum_{s \leq t} 1_A(\Delta Z_s) = \nu(A)t$ if A is a subset of $\mathbb R$ that is a positive distance from 0. By the Markov property and the translation invariance of the increments of Z_t , $\sum_{s \leq t} 1_A(\Delta Z_s) - \nu(A)t$ is a martingale. Taking the stochastic integral of $1_B(Z_{s-})$ with respect to this martingale, we see that $\sum_{s \leq t} h(Z_{s-}, \Delta Z_s)$

 $\int_0^t \int h(Z_{s-},z)\nu(dz) ds$ is again a martingale, where $h(x,z) = 1_B(x)1_A(z)$. Taking linear combinations and limits, we deduce that

$$[N^d, N^d]_{t \wedge R} - \int_0^{t \wedge R} \int W(Z_{s-}, z)^2 \nu(dz) ds$$

is a local martingale. Hence it follows that

$$\langle N^d, N^d \rangle_t = \int_0^{t \wedge R} \int W(Z_{s-}, z))^2 \nu(dz) ds.$$

Since Z_t has only countably many jumps, we get

$$(2.4) \qquad \langle N^d, N^d \rangle_t = \int_0^{t \wedge R} \int (W(Z_s, z))^2 \nu(dz) ds$$

$$\leq \int \int (W(x, z))^2 L_t^x dx \, \nu(dz)$$

$$\leq L_t^* \int \int (W(x, z))^2 dx \, \nu(dz)$$

$$= \frac{L_t^*}{2\pi} \int \int |\widehat{W}(u, z)|^2 du \, \nu(dz) \qquad \text{(Plancherel's theorem)}$$

where $\widehat{W}(u,z)$ is the Fourier transform of $W(\cdot,z)$, z fixed. By (2.3),

$$\begin{split} \widehat{W}(u,z) &= \widehat{g}(-u)(\{e^{iu(a-z)} - e^{iua}\} - \{e^{iu(b-z)} - e^{iub}\}) \\ &= \widehat{g}(-u)e^{iua}(e^{-iuz} - 1)(1 - e^{iu(b-a)}). \end{split}$$

Since $|e^{iu\theta} - 1|^2 = 2(1 - \cos \theta)$,

$$(2.5) \int \int |\widehat{W}(u,z)|^2 \nu(dz) du = 2 \int |\widehat{g}(-u)|^2 |1 - e^{iu(b-a)}|^2 \int (1 - \cos uz) \nu(dz) du$$
$$= 4 \int (1 - \cos(u(b-a))) |\widehat{g}(u)|^2 \operatorname{Re} \psi^d(u) du,$$

where $\psi^d(u) = \psi(u) - \frac{1}{2}\sigma^2 u^2$. Substituting (2.5) in (2.4), we obtain

$$(2.6) \langle N^d, N^d \rangle_t \leq \frac{2L_t^*}{\pi} \int (1 - \cos(u(b-a))) |\widehat{g}(u)|^2 \operatorname{Re} \psi^d(u) \, du.$$

Next we estimate $\langle N^c, N^c \rangle_t$. If f is a smooth function and we write K_t for the martingale part of $f(Z_{t \wedge R})$, then by Itô's formula,

$$K_t^c = \int_0^{t \wedge R} f'(Z_{s-}) \sigma dB_s,$$

where B_t is a standard Brownian motion. Then

$$(2.7) \langle K^c, K^c \rangle_t = \sigma^2 \int_0^{t \wedge R} (f'(Z_{s-}))^2 ds = \sigma^2 \int_0^{t \wedge R} (f'(Z_s))^2 ds$$

$$\leq \sigma^2 \int (f'(x))^2 L_t^x dx$$

$$\leq \sigma^2 L_t^* \int (f'(x))^2 dx$$

$$= \sigma^2 L_t^* \frac{1}{2\pi} \int |\hat{f}'(u)|^2 du (Plancherel)$$

$$= \sigma^2 L_t^* \frac{1}{2\pi} \int |u|^2 |\hat{f}(u)|^2 du.$$

Approximating $g_{ab}(\cdot) = g(a-\cdot) - g(b-\cdot)$ by smooth functions in a suitable way, taking limits, and noting that $\widehat{g}_{ab}(u) = \widehat{g}(-u)(e^{iua} - e^{iub})$, we get

$$\begin{split} \langle N^c, N^c \rangle_t &\leq \sigma^2 \frac{L_t^*}{2\pi} \int u^2 |\widehat{g}(-u)|^2 |e^{iua} - e^{iub}|^2 du \\ &= \frac{2L_t^*}{\pi} \int \frac{\sigma^2 u^2}{2} |\widehat{g}(u)|^2 (1 - \cos(u(b-a))) du. \end{split}$$

Adding to (2.6) yields

(2.8)
$$\langle N, N \rangle_{t} = \langle N^{c}, N^{c} \rangle_{t} + \langle N^{d}, N^{d} \rangle_{t} \\ \leq \frac{2L_{t}^{*}}{\pi} \int |\widehat{g}(u)|^{2} \operatorname{Re} \psi(u) (1 - \cos(u(b - a))) du.$$

Finally, from (1.1), $\operatorname{Re} \psi(u) \geq 0$. So

(2.9)
$$\varphi^{2}(x) = \frac{1}{\pi} \int (1 - \cos ux) \operatorname{Re} \frac{1}{1 + \psi(u)} du$$
$$= \frac{1}{\pi} \int (1 - \cos ux) \frac{\operatorname{Re}(1 + \overline{\psi(u)})}{|1 + \psi(u)|^{2}} du$$
$$= \frac{1}{\pi} \int (1 - \cos ux) |\widehat{g}(u)|^{2} (1 + \operatorname{Re} \psi(u)) du,$$

since $\widehat{g}(u) = (1 + \psi(u))^{-1}$. Comparing (2.9) to (2.8) proves the proposition. \square

Proposition 2.3. Let $\epsilon > 0$. There exists $J_0 > 0$ depending on ϵ such that if X_t is any square integrable martingale with jumps bounded in absolute value by J_0 and with $\langle X, X \rangle_t$ continuous, then $\exp(X_t - (1 + \epsilon)\langle X, X \rangle_t/2)$ is a positive supermartingale.

Proof. Take J_0 small enough so that $|e^x - 1 - x| \le (1 + \epsilon)x^2/2$ if $|x| \le J_0$. Let

$$Y_t = X_t - (1 + \epsilon)\langle X, X \rangle_t / 2.$$

By Itô's formula,

$$\begin{split} e^{Y_t} &= 1 + \int_0^t e^{Y_{s^-}} dY_s + \frac{1}{2} \int_0^t e^{Y_{s^-}} d\langle Y^c, Y^c \rangle_s + \sum_{s \leq t} (e^{Y_{s^-}} - e^{Y_{s^-}} - e^{Y_{s^-}} \Delta Y_s) \\ &= 1 + \int_0^t e^{Y_{s^-}} dX_s - \frac{(1+\epsilon)}{2} \int_0^t e^{Y_{s^-}} d\langle X, X \rangle_s + \frac{1}{2} \int_0^t e^{Y_{s^-}} d\langle X^c, X^c \rangle_s \\ &\quad + \sum_{s \leq t} e^{Y_{s^-}} (e^{\Delta Y_{s^-}} - 1 - \Delta Y_s) \\ &= 1 + \text{ local martingale } - \frac{\epsilon}{2} \int_0^t e^{Y_{s^-}} d\langle X^c, X^c \rangle_s - \frac{(1+\epsilon)}{2} \int_0^t e^{Y_{s^-}} d\langle X^d, X^d \rangle_s \\ &\quad + \sum_{s \leq t} e^{Y_{s^-}} (e^{\Delta X_s} - 1 - \Delta X_s) \end{split}$$

Since $(X^d, X^d)_t - \sum_{s < t} (\Delta X_s)^2$ is a local martingale,

$$(2.10) \quad e^{Y_{\epsilon}} = 1 + \text{ local martingale } -\frac{\epsilon}{2} \int_{0}^{t} e^{Y_{s-}} d\langle X^{c}, X^{c} \rangle_{s} + \text{ local martingale } -\frac{1+\epsilon}{2} \sum_{s \leq t} e^{Y_{s-}} (\Delta X_{s})^{2} + \sum_{s \leq t} e^{Y_{s-}} (e^{\Delta X_{s}} - 1 - \Delta X_{s}).$$

But $e^{\Delta X_s} - 1 - \Delta X_s - (1 + \epsilon)(\Delta X_s)^2/2 \le 0$ by our selection of J_0 . Hence (2.10) exhibits $\exp(Y_t)$ as a local martingale minus an increasing process. \square

Write P for P^0 .

Corollary 2.4.
$$P(\sup_{s \le t} |X_s| > \lambda + (1 + \epsilon)\langle X, X \rangle_t / 2) \le 2e^{-\lambda}$$
.

Proof. Reducing the continuous part of X_t by stopping times, we may assume X_t bounded, as long as our probability bound does not depend on the L^{∞} norm of X_t . We can then write $e^{Y_t} = K_t - V_t$, where K_t is a martingale with $K_0 \equiv 1$ and V_t an increasing process with $V_0 \equiv 0$. Then by Doob's inequality,

$$P(\sup_{s \le t} e^{Y_s} > e^{\lambda}) \le P(\sup_{s \le t} K_s > e^{\lambda})$$

$$< e^{-\lambda} E K_t = e^{-\lambda} E K_0 = e^{-\lambda}.$$

This proves $P(\sup_{s \le t} X_s > \lambda + (1 + \epsilon)(X, X)_t/2) \le \exp(-\lambda)$. Applying the same argument to -X proves the corollary. \square

Under the assumption $L_t^* < \infty$, a.s., we can now prove Theorem 1.1.

Proof of Theorem 1.1. Let $N_t = M_t^a - M_t^b$ as above, $F(\delta)$ defined by (1.5). Since the potentials of $L_{t \wedge R}^a$ and $L_{t \wedge R}^b$ are bounded. N_t is square integrable ([DM], p.193).

Clearly $F(\delta) \to 0$ as $\delta \to 0$. Also, $\varphi(\delta) \to 0$ as $\delta \to 0$ by the continuity of g, hence $H(u) \to \infty$ as $u \to 0$, hence $\delta/F(\delta) \to 0$ as $\delta \to 0$.

Let α, β be > 0 such that $\alpha\beta > 1$, let $\epsilon > 0$, set $\delta = |b - a|$, and set $\eta = \varphi(\delta)$. Let

$$X_t = \beta F(\eta) \eta^{-2} N_t.$$

Since the jumps of N_t are bounded by $2\sup_x |g(x-a)-g(x-b)| \leq 2\varphi^2(b-a)$, the jumps of X_t are bounded by $2\beta F(\eta)$, which will be less than the J_0 of Proposition 2.3 if δ is small.

Now apply Corollary 2.4: if δ is sufficiently small,

$$(2.11) P(\sup_{s \leq t} |M_s^a - M_s^b| > \alpha F(\eta) + (1 + \epsilon)\beta F(\eta) L_t^*)$$

$$\leq P(\sup_{s \leq t} |N_s| > \alpha F(\eta) + \frac{(1 + \epsilon)}{2} \beta \frac{F(\eta)}{\eta^2} \langle N, N \rangle_t) \qquad (Proposition 2.2)$$

$$= P(\sup_{s \leq t} |X_s| > \alpha \beta F^2(\eta) / \eta^2 + \frac{1 + \epsilon}{2} \langle X, X \rangle_t)$$

$$\leq \exp(-\alpha \beta F^2(\eta) / \eta^2).$$

A standard metric entropy argument (see, e.g., [D]) and (2.11) shows that we can find a version of M_t^x that is jointly continuous in $t \in [0, R)$ and $x \in \mathbb{Q}$ and such that for each K > 0,

$$(2.12) \quad P(\limsup_{\eta \downarrow 0} \sup_{\{a,b \in \mathbb{Q} \cap [-K,K]: \varphi(a-b) < \eta\}} \sup_{s \le t} \frac{|M_s^a - M_s^b|}{F(\varphi(a-b))} > c(\alpha + (1+\epsilon)\beta L_t^*) = 0$$

for each α , $\beta > 0$ such that $\alpha\beta > 1$. Here \mathbb{Q} denotes the rationals. By being a bit more careful with the constants in the metric entropy argument, one can show that one can in fact take c = 1.

Fix an ω not in the null set for any α, β, ϵ rational, K a positive integer, take $K \geq \sup_{s \leq t} (|Z_s| + 1)$, $\alpha \in [(L_t^*(\omega))^{1/2}, (1 + \epsilon)(L_t^*(\omega))^{1/2}]$, and $\beta = (1 + \epsilon)/\alpha$, and then let $\epsilon \to 0$. We thus get

(2.13)
$$\limsup_{\eta \downarrow 0} \sup_{\{a,b \in \mathbb{Q} \varphi(a-b) < \eta\}} \sup_{s \le t} \frac{|M_s^a - M_s^b|}{F(\varphi(a-b))} \le 2(L_t^*)^{1/2}, \quad \text{a.s.}$$

By Proposition 2.1, $|g(x-a)-g(x-b)| \leq \varphi^2(\delta)$. Since $\eta = o(F(\eta))$ as $\eta \to 0$, (2.2) yields (2.13) with $M_s^a - M_s^b$ replaced by $L_{s \wedge R}^a - L_{s \wedge R}^b$. Arguing as in [GK], one can

find a version of L_t^x that is jointly continuous in $t \in [0, R)$ and $x \in \mathbb{R}$, that is still an occupation time density, and that satisfies

$$\limsup_{\eta\downarrow 0} \sup_{\{a,b: \varphi(a-b)<\eta\}} \sup_{s\leq t\wedge R} \frac{|L^a_s-L^b_s|}{F(\varphi(a-b))} \leq 2(L^*_t)^{1/2}, \quad \text{a.s.}$$

Finally, using the strong Markov property at R and performing a renewal argument yields Theorem 1.1. \square

3. Essential boundedness. It remains to show that $L_t^* < \infty$, a.s., under the hypotheses of Theorem 1.1. Let

(3.1)
$$J_t^x(r) = \int_0^t \frac{1}{2r} 1_{[x-r,x+r]}(Z_s) ds.$$

Clearly $J_t^x(r)$ is bounded by t/2r. Let $\rho(x) = 1_{[-1,1]}(x)/2$, $\rho_r(x) = r^{-1}\rho(x/r)$. Note $J_t^x(r) = L_t^x * \rho_r(x)$, where * denotes convolution.

Proposition 3.1. If $\epsilon > 0$, there exists K > 0 such that

$$\sup_{r\leq 1} P(\sup_{x} J_t^x(r) > K) < \epsilon.$$

Proof. Since $J_t^x(r) = L_t^* * \rho_r(x)$, the 1-potential of $J_t^x(r)$ is $g * \rho_r(x-\cdot)$. By Proposition 2.1,

$$|g * \rho_r(a) - g * \rho_r(b)| \le \varphi^2(a - b).$$

Let $W_r(x,z) = \int W(y,z)\rho_r(x-y)dy$. If we let $N_t(r)$ be the martingale part of $g * \rho_r(a-Z_{t\wedge R}) - g * \rho_r(b-Z_{t\wedge R})$, then as in the proof of Proposition 2.2,

$$\langle N^d(r), N^d(r) \rangle_t \leq \int \int (W_r(x,z))^2 L_t^x dx \, \nu(dz).$$

But by Jensen's inequality,

$$(W_r(x,z))^2 \le \int W(y,z)^2 \rho_r(x-y) dy,$$

hence

$$\begin{split} \langle N^d(r), N^d(r) \rangle_t &\leq \int \int \int W(y, z)^2 \rho_r(x - y) L_t^x dx \, \nu(dz) \, dy \\ &= \int \int W(y, z)^2 J_t^y(r) \nu(dz) dy \\ &\leq (\sup_x J_t^x(r)) \int \int W(y, z)^2 dy \, \nu(dz) \end{split}$$

With a similar change to estimate $(N^c(r), N^c(r))_t$, we get

(3.3)
$$\langle N(r), N(r) \rangle_t \leq 2\varphi^2(a-b) \sup_x J_t^x(r).$$

Proceeding as in Section 2, we get the joint continuity of $J_t^x(r)$ in x, with probability estimates independent of r. Take K_0 large so that $P(\sup_{s \le t} |Z_s| > K_0 - 1) < \epsilon/2$. Using the probability estimates for the continuity of $J_t^x(r)$ in x, take $K > K_0$ large enough so that

$$P(\sup_{|x|\leq K_0}J_t^x(r)>K)<\epsilon/2.$$

This proves the proposition. \square

Theorem 3.1. Under the assumptions of Theorem 1.1, ess sup $L_t^x < \infty$, a.s.

Proof. Let $r_n = 2^{-n}$. Let $\epsilon > 0$ and choose K as in Proposition 3.1. Let

$$A_n = \{\sup_{x} J_t^x(r_n) > K\}$$

If $J_t^x(r_n) > K$ for some x, then since

$$J_t^x(r_n) = \frac{1}{2} [J_t^{x+r_{n+1}}(r_{n+1}) + J_t^{x-r_{n+1}}(r_{n+1})],$$

we get $\sup_{y} J_t^y(r_{n+1}) > K$. Therefore $A_n \subseteq A_{n+1}$.

It follows that

$$P(\sup_{x,n}J_t^x(r_n)=\infty)\leq P(\bigcup_{n=1}^\infty A_n)=\lim_n P(A_n)\leq \epsilon.$$

Since ϵ is arbitrary, $\sup_{x,n} J_t^x(r_n) < \infty$, a.s. Our result then follows by Lebesgue's differentiation theorem. \square

References

- [B1] M. T. Barlow, Continuity of local times for Lévy processes. Z. f. Wahrsch. 69 (1985) 23-35.
- [B2] M. T. Barlow, Necessary and sufficient conditions for the continuity of local time of Lévy processes. Ann. Probab. 16 (1988) 1389-1427.
- [BH] M. T. Barlow and J. Hawkes, Application de l'entropie métrique à la continuité des temps locaux des processus de Lévy. C. R. Acad. Sci. Paris 301 (1985) 237-239.
- [Bo] E. S. Boylan, Local times for a class of Markov processes. Illinois J. Math. 8 (1964) 19-39.

- [DM] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel: Théorie des Martingales. Paris, Hermann, 1980.
 - [D] R. M. Dudley, Sample functions of the Gaussian process. Ann. Probab. 1 (1973) 66-103.
- [GK] R. K. Getoor and H. Kesten, Continuity of local times of Markov processes. Compositio Math. 24 (1972) 277-303.
 - [K] H. Kesten, Hitting probabilities of single points for processes with stationary independent increments. Mem. A. M. S. 93.
- [MR] M. R. Marcus and J. Rosen, Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. Preprint.
- [McK] H. P. McKean, Jr., A Hölder condition for Brownian local time. J. Math. Kyoto Univ. 1-2 (1962) 195-201.
 - [Me] P.-A. Meyer, Sur les lois de certaines fonctionelles additives: Applications aux temps locaux. *Publ. Inst. Statist. Univ. Paris* 15 (1966) 295-310.
- [MT] P. W. Millar and L. T. Tran, Unbounded local times. Z. f. Wahrsch. 30 (1974) 87-92.

Department of Mathematics University of Washington Seattle WA 98195 U.S.A.