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Stochastic Calculus and the Continuity of Local Times of Lévy Processes

Richard Bass* and Davar Khoshnevisan

1. Introduction. Let Z; be a one dimensional Lévy process with characteristic func-

tion
E exp(iuZ;) = exp(—ty(u)),
where
1 *®
(1.1) Y(u) = —iau + Eazu2 - / (e — 1 — fuzl(j;<1))v(dz).

Here v satisfies [(1 A 2?)v(dz) < co.

We are interested in those Lévy processes for which 0 is regular for {0} and either
o2 > 0 or (R — {0}) = co. In this case (see [K]) there exists a bounded continuous
function g that is a density for the 1-resolvent:

o0

(1.2) / f(2)g(z — y)dz = B /o etf(Z)dt,  f20, yeR.
(If G(z,y) is the Green function for Z; killed at an independent exponential time with
parameter 1, the relationship between g and G is given by g(z) = G(0,z) = G(a,a +z)
for any a € R and G(z,y) = g(y — x).)

For each z,

(13) ¢(z) = 51; / e_'.’”’-l_l_lT(u)du.

For each z,g(z — -) is the 1-potential of an additive functional L} that is continuous in
t. Moreover, a version of L¥(w) may be chosen that is jointly measurable in (z,t,w).
See [GK] for details. L7 is called the local time of Z; at z. L7 is also a density of

occupation time measure: if f > 0,

(1.4) /0 ' f(Ze)ds = / f(z)LEdz, as.

A number of people have studied the question of the continuity of L} in the space
variable (see [Bo], [Me], [GK] and [MT]), culminating in the works [B1], [BH], and [B2],
where a necessary and sufficient condition for the joint continuity of Lf in ¢t and z is
given.
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The purpose of this paper is to give a stochastic calculus proof of the following
sufficient condition for joint continuity. Let ¢ : R — [0,00) be defined by

(1.5) oi(z) = —/(1 cosu:t:)R)e1 +1,b(u)
Let d(a,b) = ¢(b— a) and let H(u) be the logarithm of the smallest number of d-balls
of radius less than u that are needed to cover [—1,1]. Define

8
(1.6) F(6) = /o (H(u))¥du.

Theorem 1.1. (a) If F(0+) < oo, then L} has a jointly continuous version.
(b) For each t,

: |Ls — L3l zy1/2
S e S0 Flola— by < MO HV T e
Theorem 1.1(a) was first proved in [BH], where it was also remarked that the
entropy condition was equivalent to one involving the monotone rearrangement of .
Part (b) was also proved in [BH], with, however, the constant 2 replaced by a larger
constant (namely 416). In [B2] it was shown that part (b) holds with the constant 2
under the additional assumption that ¢ is regularly varying (but not slowly varying)
and that the constant 2 is sharp. (The principle result of [B2] was that the condition
F(04+) < oo is necessary as well as sufficient for joint continuity.) Marcus and Rosen
[MR] have recently obtained necessary and sufficient conditions for the joint continuity
of local times of certain Markov processes. Theorem 1.1 for symmetric Lévy processes
is a special case of their results.
In Section 2 we prove Theorem 1.1 assuming that esssup, L§ < o0, a.s. We establish
this latter fact in Section 3.

2. Modulus of continuity. Our proof is modeled after that of [McK]. Let us begin
by assuming for this section that esssup,Lf < 0o, a.s. Let R be an exponential variable
with parameter 1, independent of Z;. Since g(z — -) is the 1-potential of L}, we have

(2.1) E°LY% = g(b— a).



Proposition 2.1. |g(a) — ¢(b)| < *(a — b).

Proof. Let T, = inf{t: Z; = 2}, 5 = T, AT}. Since L} increases only when Z, is at z,
the strong Markov property at time S yields

lg(a) — g(b)| = |[E°L% — E°LY| = |E°[E?s Ly — E?L; S < R]|
< E°|E%SLy — EZS L]
= E°[|E*Ly, — E°L%|; S = T.] + E°(|E°L% — E*L%|; S = Th)
= 19(0) — g(b— a)|P°(S = T.) + |g(a — b) — g(0)|P*(S = Ts)

Since g(z) = E°L% < E*L% = ¢(0), then
lg(a) — g(b)] < 29(0) — g(b — a) — g(a — b).
By (1.3) and (1.5), the right hand side equals p?(a — b). O
Using (2.1) and the Markov property,
(2.2) M{ = g(a— Zirr) — 9(a — Zo) — Linr
is a martingale with My = 0. Fix a and b and let Ny = M? — M?. Let L} = esssup,L?.

Proposition 2.2. (N,N), < 2¢%(a — b)L}

Proof. Let N¢, N be the continuous and purely discontinuous parts of Ny, respectively.
We first estimate (N4, N¢),.
Let

(2.3) W(z,2) = [{g(a— (z +2)) —g(a = 2)} — {g(b— (z + 2)) — g(b - 2)}].

Since L§ and L? are both continuousin ¢, the jumps of Ny are the jumps of g(a—Z;)
—g(b— Z;). Hence

[N, N4 =Y ANZ= Y (W(Z,-,AZ,)).

s<t s<tAR
By the definition of Lévy measure, EY", ., 14(AZ,) = v(A)t if A is a subset of R
that is a positive distance from 0. By the Markov property and the translation invariance

of the increments of Z,, 2 s<t 14(AZ,) — v(A)t is a martingale. Taking the stochastic
integral of 1p(Z,-) with respect to this martingale, we see that Yt M(Z,-,02,) —



fot J M(Z,-, z)v(dz) ds is again a martingale, where h(z,z) = 1p(z)14(z). Taking linear
combinations and limits, we deduce that

[Nd,Nd]u\R-—/OMR/W(Z,_,z)Zu(dz)ds

is a local martingale. Hence it follows that

tAR
(N, Ny, = /o / W(Z-, 2))v(dz)ds.

Since Z; has only countably many jumps, we get

(24) (N4 NY, = /o " / (W(Z,,2))v(dz)ds
< / / (W (s, 2))* L¥dz v(dz)
<L} / / (W (z, 2))*dz v(dz)
= g‘—;r / / |W(u,2)[?duv(dz)  (Plancherel’s theorem)

where W(u,z) is the Fourier transform of W (-, z), z fixed.
By (2.3),

W(u’z) — ’g‘(_u)({eiu(a—-z) _ eiua} _ {eiu(b—z) _ eiub})
= §(—u)e™e(e7™ — 1)(1 — e™(b-9),

Since |e"*? — 1|2 = 2(1 — cos §),
(2.5) / / [W(u, 2)|*v(dz)du = 2 / [G(—u)[?|1 = e*G-a)2 / (1 — cos uz)v(dz) du
=4 [ (1= cos(u(b - @)W Rew(u) du,
where ¥%(u) = 1(u) — ;0?u®. Substituting (2.5) in (2.4), we obtain
(2.6) (v, N4 < 22 [0 - cos{u(b - @)/au)*Re(u) du.

Next we estimate (N¢,N¢),. If f is a smooth function and we write K; for the
martingale part of f(Z:ar), then by Ité’s formula,

tAR
Ke= / f(Z,-)odB,,
0



where B, is a standard Brownian motion. Then

tAR tAR
27) UﬁKm=HA wwkwa=fl (F'(Z))*ds
sﬁ/MuWMh
<o’L; [(F@)ies
2% 1 Y 2
o L‘Z_ / |f'(u)|’du  (Plancherel)
= Lo [ WPl

Approximating g.s(-) = g(a —-) — g(b — -) by smooth functions in a suitable way, taking
limits, and noting that gas(u) = g(—u)(e*** — i*?), we get

(Nc Nc _/ 2|g(_u)|2|cm¢_ mblzdu

oL}
- ™

(2.8) (N,N)¢ = (N¢,N°¢), + (N¢,N%),
Re¥(u)(1 — cos(u(b — a)))du.

(1 = cos(u(b — a)))du.

Adding to (2.6) yields

Finally, from (1.1), Rey(u) > 0. So

(2.9) oi(z) = /(1 cos u:l:)Re1 n ¢( )
R+ ¥(u))
=2 [0 )

-1 / (1 — cosuz)[§(u)*(1 + Re $(u))du,
since g(u) = (1 + ¥(u))~'. Comparing (2.9) to (2.8) proves the proposition. [J

Proposition 2.3. Let € > 0. There exists Jo > 0 depending on € such that if X, is
any square integrable martingale with jumps bounded in absolute value by Jy and with

(X,X)¢ continuous, then exp(X, — (1 + €)(X, X)¢/2) is a positive supermartingale.
Proof. Take Jy small enough so that |e* — 1 —z| < (1 + €)z?/2 if |z| < Jo. Let

Y = X; — (1+ )(X, X)¢/2.



By It6’s formula,

t t
e =1 +/ e¥-dY, + l/ e¥'-d(Ye,Y°), + Z(ey‘ —e¥i- —e¥-AY,)
0 2 0 s<t

t t t
= 1+/ ey‘“dX,—M/ ey'-d(X,X),,+-l-/ eV-d(Xe, X°),
0 2 0 2 [}

+) el (eAY —1-AY))
s<t

t t
=1+ local martingale — %/ e¥-d(Xe, X°), - (1—-2'-6)-/ eV -d(Xx? X4,
0 0

+Zey“(eAx' -1-AX,)
s<t

Since (X¢, X%): — 0, <,(AX,)? is a local martingale,

¢
(2.10) e¥* =1+ local martingale — —;- / e¥*-d(X°,X°), + local martingale
0
l1+e Y, 2 Yoo (BXe _ 1 _AY
D e (AX) + ) et (e 1-AX,).
s<t s<t

But e2X: —1-AX,—(14¢€)(AX,)?/2 < 0 by our selection of Jy. Hence (2.10) exhibits
exp(Y?) as a local martingale minus an increasing process. [

Write P for P°.

Corollary 2.4. P(sup,<; |Xs| > A + (1 + €)(X, X):/2) < 2.

Proof. Reducing the continuous part of X; by stopping times, we may assume X,
bounded, as long as our probability bound does not depend on the L*® norm of X;.
We can then write e¥* = K; — V;, where K, is a martingale with Ko = 1 and V; an
increasing process with V5 = 0. Then by Doob’s inequality,

P(supe¥ > e*) < P(sup K, > ¢e*)
<t s<t
< e EK,=e?EK, =¢™.

This proves P(sup,<; Xs > A + (1 + €)(X,X):/2) < exp(—A). Applying the same
argument to —X proves the corollary. O

Under the assumption L} < oo, a.s., we can now prove Theorem 1.1.



Proof of Theorem 1.1. Let N; = M# — M} as above, F(§) defined by (1.5). Since
the potentials of L¢,z and L!, ; are bounded. N, is square integrable ([DM], p.193).
Clearly F(6) — 0 as § — 0. Also, ¢(6§) — 0 as § — 0 by the continuity of g, hence
H(u) — oo as u — 0, hence §/F(6) — 0 as § — 0.
Let a, 8 be > 0 such that af > 1, let € > 0, set § = |b — a|, and set n = ¢(6). Let

X = BF(n)n~%N,.

Since the jumps of N; are bounded by 2sup, |g(z — a) — g(z — b)| < 2¢%(b — a), the
jumps of X, are bounded by 28F(n), which will be less than the Jp of Proposition 2.3
if 6 is small.

Now apply Corollary 2.4: if § is sufficiently small,
(2.11) P(Slir: |M$ — M| > aF(n) + (1 + €)BF(n)L})

Fg ) (N,N):) (Proposition 2.2)

l1+4e€
2

1
< P(sup N, > aF(r) + 12
s<t

= P(sup|X.| > afF*(n)/n* + (X, X)e)

< exp(—aBF?(n)/n%).

A standard metric entropy argument (see, e.g., [D]) and (2.11) shows that we can
find a version of M that is jointly continuous in t € [0, R) and z € Q and such that
for each K > 0,

a _ b
(2.12) P(limsup sup M7 — M|

sup ——3- > c(a+(1+€)BL}) =0
1710 {a,b€QN[-K,K]:¢(a—b)<n} s<t F(p(a — b)) (oot (1+ )LD

for each a, # > 0 such that af > 1. Here Q denotes the rationals. By being a bit more
careful with the constants in the metric entropy argument, one can show that one can
in fact take ¢ = 1.

Fix an w not in the null set for any e, B, ¢ rational, K a positive integer, take
K 2 sup,<,(|Zs| + 1), @ € [(L}(w))*/2,(1 + €)(L}(w))*/?], and 8 = (1 + €)/a, and then
let € — 0. We thus get

a __ b
(2.13) lim sup sup sup M

<2ALNHY?, as.
o T (ascetty<n) o Flpla = b)) = LD

By Proposition 2.1, |g(z — a) — g(z — b)| < ¢?(6). Since n = o(F(n)) as n — 0, (2.2)
yields (2.13) with M7 — M} replaced by L2, — L!, .. Arguing as in [GK], one can



find a version of L} that is jointly continuous in t € [0, R) and = € R, that is still an
occupation time density, and that satisfies

. |Ls — L} 1/2
limsup sup sup —————— < 2(L})%, as.
710 {a,b:p(a—b)<n} s<taR F(p(a — b)) ‘

Finally, using the strong Markov property at R and performing a renewal argument
yields Theorem 1.1. O

3. Essential boundedness. It remains to show that L} < oo, a.s., under the hy-
potheses of Theorem 1.1. Let

t
1
(3.1) JE(r) = / o Lamr,e4r1(Z0)ds.
0 T

Clearly J#(r) is bounded by t/2r. Let p(z) = 1j_1,5()/2, pr(z) = r~1p(z/r). Note

JE(r) = L; * pr(z), where * denotes convolution.

Proposition 3.1. If € > 0, there exists K > 0 such that
sup P(sup J{(r) > K) < e.
r<1 z

Proof. Since J{(r) = L;*p.(z), the 1-potential of J¥(r) is g* p.(z —-). By Proposition
2.1,

(32) lg % pr(a) — g * pr(B)| < ¥*(a—b).

Let Wi(z,z) = [W(y,2)pr(z — y)dy. If we let N¢(r) be the martingale part of
g * pr(a — ZiaR) — g * pr(b — ZiaR), then as in the proof of Proposition 2.2,

(Nd(r),Nd(r))t < //(Wr(:t,z))szd:c v(dz).

But by Jensen’s inequality,

(Wo(z,2))? < / Wy, 2)2 pr(z — v)dy,

hence
W) < [ [ [W2ente - n)Lidevidz) dy
= [ [wa7 s wtaady
<GupJi(r) [ [ Wiw,sPdyuiaz)



With a similar change to estimate (N¢(r), N°(r)), we get
(3.3) (N(r), N(r))e < 2¢*(a—b)sup JF(r).

Proceeding as in Section 2, we get the joint continuity of J(r) in z, with probability
estimates independent of 7. Take Ky large so that P(sup,<;|Zs| > Ko—1) < €/2. Using
the probability estimates for the continuity of J¥(r) in z, take K > Ko large enough so
that

P( sup J{(r) > K) <e/2.
|zI<Ko
This proves the proposition. O

Theorem 3.1. Under the assumptions of Theorem 1.1, esssup L} < 0o, a.s.
x

Proof. Let r, =27". Let ¢ > 0 and choose K as in Proposition 3.1. Let
Ap = {supJ{(ra) > K}
z
If J¥(rn) > K for some z, then since

1 E 2 b 7Y T—Tp .
TE(ra) = ZUET (rags) + TETH i)y

we get sup, J{(rn+1) > K. Therefore A, C Any1.
It follows that

P(sup Ji(rn) = 00) < P( U Ap)=lmP(A,) <e

n=1

Since € is arbitrary, sup, , J¥(ra) < o0, a.s. Our result then follows by Lebesgue’s
differentiation theorem. O
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