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Abstract

For m ~ 1 let Im (h) denote the multiple Wiener-Ito integral of
order m of a square integrable symmetric kernel h. In this paper
we consider different conditions on a time-dependent family of kernels

0  t  1} which guarantee that the process 1m (ht) has continuous
sample paths and that the probability measures induced by 
satisfy a large deviations principle in C([0,1]).
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1 Introduction

The aim of this paper is to study the sample path continuity of stochastic
processes Xt which can be represented by multiple Wiener-Ito integrals of
time dependent kernels, and the.large deviations from 0 of ~Em~2~., E > 0}
in C(~0,1~).

Let be a 03C3-finite separable atomless measure space and denote
by H the Hilbert space L2(T, A, with inner product  ’, 

’ >H and norm
. Let W = W ( f ), f E H, be a zero-mean Gaussian field defined on a

complete probability space (S~, .~’, P) such that E W ( f 1 )W ( f 2) =  f i, f z >H
for all f1, f2 E H. Fix m > 1 and let be the space of all real valued

square integrable symmetric functions on T’~ (that is, f (8~~1~, ... , 9.,~~~~) =
f (91, ... , for any permutation ~r of ~1, ... , m~). Given a family of ker-
nels ht E  t  1 defi’ne the process Xt the m-th mul-

tiple Wiener-Ito integral of ht with respect to W (cf. [6]). For the sake of

uniformity when m = 0 we interpret to be 1R, and Im (h) = h, , h E R.
If ~p~ E H,1  i  t, the tensor product ~p1 0 ... 0 ~~ (or if

~p1 - ... _ ~~ _ ~p) denotes the element /(~i,... ? , 8~ ) of defined by
4~1(B1) ... ~p~(8~). Whenever the dimension j is selfunderstood we shall also
use the shorthand notation ? = (91, ... as, for example, in fT; 
If  is the Lebesgue measure we write d03B8 instead of 

In this work we first consider three different sufficient conditions on the

family ~ht, 0  t ~ 1} which will guarantee the sample path continuity of
Xt. As explained in Section 3, these conditions differ in nature and there is
no implication among them. Next we establish, assuming nothing more than
the sample path continuity of that the family ~Em~2X., E > 0} satisfies a
large deviations principle (LDP) in C((o, 1])with rate function

I ~T~m(~~ ht) = dt} (1.1)

where for any 1 E IN and g E L;(Tl)

03B2T,l(03C8;g) = Tlg(03B8)03C8~l(03B8)d (03B8), 03C8 E H. (1.2)

By this we mean, as usual, that for any Borel set G in C([0,1])

- () ~ lim inf  log P(m/2Im(h.) E G)

~ lim sup  log P(~m/2Im(h.) E G) (1.3)

 -A(G) .
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where for any set F E C([0,1]), A(F) = inff~F A( f ).
The above LDP is implied by recent results of M. Ledoux in [8] who,

employing different methods, considers large deviations related to families of
Banach space valued homogeneous random variables on an abstract Wiener
space. The methods used in the present work rely heavily on an extended
contraction principle and as a result deal with the continuity structure of
the multiple integral operation. We will expand on this point below and in
Section 4.

To heuristically motivate the normalizing factor and rate function

A suggested in (1.1) assume for the moment

(A) = (I = and is a standard Brownian
motion with W ( f ) = fI f (8)dWa, f E H. (Here and throughout B
is the Borel u-algebra and leb is the Lebesgue measure.)

Formally writing

m/2Im(h.) = 03B2I,m(1/2W; h.) = m/2 / d03B8 , 1.4

(although, almost surely, this makes no sense) a LDP with rate function
A given in (1.1) can be expected if one applies the contraction principle
(cf. [16]) to the family which is known to satisfy a LDP in Co([0,1])
with rate function = 2 ~~ tp whenever meaningful, oo otherwise.

This argument will be made precise later. We do, however, wish to
emphasize already at this point that even if sense could be made out of (1.4)
(for example "integrating by parts") this equation isn’t quite correct since
terms of lower degree of homogeneity are involved in what is usually known
as the Hu-Meyer formula ([5]). However it will turn out that these correction
terms are insignificant ill the exponential scale we are dealing with.

The contraction principle mentioned above and its various extensions
assume some sort of continuity (or "approximate" continuity) of the mapping
W E -~ Im(h.) E C((o,1~). Simple continuity of this lnap
occurs in the first of the above mentioned three situations we shall deal
with. Roughly speaking, they are:

1. (the "regular" case) Assuming (A), ht is generated for every t by
a multimeasure Vt and the mapping t is continuous for an
appropriate weak topology on multimeasures.
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2. (the "slow growth" case) The mapping t --~ ht E satisfies a
certain growth condition on its modulus of continuity (which is im-
plied, for example, by Holder continuity of any order).

3. (the "adapted case") (A) is assumed and ht = for some h E

Multimeasures were considered in [12] in connection with the continuity of
scalar multiple Wiener-Ito integrals. In our setup, the regular case provides
a LDP by direct application of the contraction principle, but is also instru-
mental in dealing with the other two cases via an "extended" contraction
principle in which the mapping W E Co(~0,1~) --~ Im(h.) E C((0,1~) is
allowed to be "approximately" continuous.

These general themes will be laid out in Section 2 which is devoted to
preliminaries. In it we summarize the main properties of multimeasures
which will be needed later, as well as some of the more important general
large deviations techniques. In Section 3 we enumerate and discuss the three
sets of sufficient conditions on {ht, 0  t  1} mentioned above from which
path continuity of Im(ht) may be deduced. This is done respectively in
subsections 3.1, 3.2 and 3.3. This section also includes an important tail
estimate for ~ Im(h.) I I due to C. Borell.

Section 4 deals with the large deviation principle. In broad lines, the
method employed is to approximate a given time dependent kernel by a
sequence of "regular" kernels - as denoted in subsection 3.1- for which a
simple contraction principle holds, while the Borell tail estimate takes care
of the approximation error as well as of the lower order terms present in the
Hu-Meyer expansion mentioned earlier.

Finally, in Section 5 some examples and applications will be presented;
in particular, in the scalar case a more explicit form of the large devia-
tions rate function may be obtained. In another direction, some particular
stochastic processes studied by T. Mori and H. Oodaira in [10] and [11] can
be incorporated into our general framework.

2 Preliminaries

In this section we shall state some preliminary results. The first lemma
will enable us in many instances to assume (A) without loss of generality.
For this purpose we shall temporarily include the particular field W in the
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notation of the multiple Wiener-Itô integral, i.e. W ). Let J : H =

L2 (T ) --~ H - be a fixed isometry and define

J®"’’ : .~®m C ~ L2 (I m ~

by
K h’

J®m ( ~, ... ® = ® ... ® 
k=1 k=1

which can be extended by continuity as a surjective isometry (also denoted
J®’~ ) on all of L2 (T’~ ) which satisfies J~m (Ls (T’~ )) - For the

given Gaussian field ~W( f ), f E H} define the corresponding Gaussian
field ~W ( f ), f E ~I~ by I%W ( f ) - W (J-1 f ). Clearly EW ( f 1 )W( f 2 ) -
 1, f 2 >H and

W ) = Im(h; W ) a.s. dh E H. (2.1)

Lemma 2.1 Let (T,,A, ) and W be given as in the Iratroduction, J,J~m,
and W as above. Let 0  t  1~ be a measurable family
of kernels. Then, almost surely,

Xt - h,~(J~’~ht; W ) - ~t = Im(ht W ) a,e.(t).

Proof: Define

N = f (~~w) E ~~~ l~ X ~ I 
Nt = 

N03C9 = {t E [0, 1] I (t,03C9) E N}.

Then by (2.1)
1

0 - % P(Nt)dt0
- dto 

i 
- ~ ~% 
- 

from which we conclude that = 0 a,s. 0
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2.1 General facts about large deviations

Proposition 2.2 (Schilder’s theorem ~15~) Let ~Wt, t E I} be a stan-
dard Brownian. motion. Then ~E1~2W ., E > 0~ satisfies a LDP in C°((o,1J)
with rate function

(2.2)~ otherwase

where is the space of functions in weak first derivatives
are in H.

Proposition 2.3 (Extended contraction principle, ~3J) Let S and S’
be two metric spaces and E > 0~ (resp. E > be a family of
S-valued (resp. S’-valued) random variables.
Assume > 0~ satisfies a LDP in S with rate function A(s), s E S,
such that for all r E (o, oo) the set

Lr = ~s E S  r} (2.3)

is compact in S.
Moreover, assume that the continuous Fn : S --~ S’, n E IN, and the
measurable F : - Lr --~ S’ satisfy,

(i~ Fn ILr --~ F uniformly for all r E ~0, oo),
limn~~ lim sup~~  log P(| Fn(U) - V |~ b) _ -oo 03B4 > 0.

Then E > 0} satisfies a LDP in S’ with rate function

A’(s’) = ( F(s) = s~~. (2.4)

Remark 2.4 (a) The classical contraction principle corresponds to the
case Fn = F YE = F(UE). Another particular instance occurs
when S’ = S and Fn(s) = s for all n E IN and s E S in which case
one obtains the well known fact that exponentially close families of
random variables (i.e. (ii) is satisfied) share the same large deviations
principle.
We also remark that Proposition 2.3 was formulated in slightly more
restrictive terms in 13J; however the same proof works just as well for
the present formulation.
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(b) Large deviations estimates often involve quantities of the type

= lim sup  log a()

(as for example in condition (ii) of Proposition 2.3), where a(E) is

some nonnegative function. For future reference it will be useful to
record the straightforward fact that whenever a = then

 max (2.5)’" 

2.2 Continuous extensions of multiple Wiener-Ito integrals

The multiple Wierner-Ito integrals we are concerned with are measurable
functionals of W, the Brownian motion. It is suggested by (but certainly
not only by) Proposition 2.3 that it is important to understand when (i.e.
for which kernels h) this functional has a continuous version. For the scalar
case, that is when h doesn’t depend on t, this question was fully answered
in [12] and we shall now summarize the main relevant results obtained there.

For the remainder of this subsection, thus, we assume (A) and moreover
that there exists an h E such that for each t E [0,1], h~(~) = h(.)
almost everywhere in .

Proposition 2.5 There exists a continuous F : Co(I ) - IR such that
Im(h) = F(W) a.s. if and only if there exists a multimeasure vh on ,~’~
that generates h in the sense that

= vh((91,1~, ... , (8~,1J) a.e.(.1~’’). (2.6)

A multimeasure of order I on I is a function v(B1, ... Bi E ~i, which
is separately a measure in each component; not all multimeasures can be
extended to measures on (h,,~~). A more complete account of this concept
as well as of the corresponding integration theory may be found in [12] and
references therein. We shall just point out the following facts for future use:

(i) For any multimeasure v it turns out that

I~

II v IIMM= sup L Ezl  oo

il ,...,i~ =1

where the supremum runs over all measurable partitions ... , 

of I and all choices of signs E ~-1, l~j~ . Moreover, equipped with



18

the norm j) the space of all such multimeasures, which we shall
denote here MM(7; /) is a. Ba.na.ch space which may be identified with
the topological dual of Co([0,1])~B the Mh projective tensor power
ofCo([0,l]).

(ii) For /i,...,/, 6 L~([0,1]) and 03BD 6 l)

) Il (~li=1fi) d03BD |~~ 03BD ~MM 11 !! /. ~~. (2.7)

(iii) Any 03BD 6 MM(7;J) induces for each 1 ~ k ~ [l/2] a multimeasure
!/~ ~ MM(7J - 2&#x26;) denned by

~)(~i,...,~2t)= (2.8)

~(~i A ~)... (~-i A ~)1~ (~+1)... lB~(~)~)
for B1,...,Bl-2k 6 B. Furthermore, for each appropriate k there
exists a positive ~ such that

!t 03BD(k) ~MM~ 03B3k ~ 03BD ~MM 03BD e MM(I; /). (2.9)

(iv) In Proposition 2.5 the function jF is given by

F(03C6) = 03B1m,k Im-2k 03C6~(m-2k)(03B8)d03BD(k)h(03B8) (2.10)
~=o ’’~

with 

03B1m,k = (- 1 2)
k 

m! k!(m- 2k) ! 
° (2.11)

Here and throughout 03BD(0)h = 

(v) Whenever a kernel h is generated by a multimeasure 03BD as in (2.6) it
turns out that it possesses a trace /~) e Z~(Jr~’~) (see [12] for
the definition of this trace), which is given by

h(k)(03B81,...,03B8m-2k) = Im (2i-1 A 7-2.) 1(03B8j,1](2k+j)d03BD(I)
t=l J==l

(2.12)
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and moreover 03BD(k)h = vhk> , 0  k  im/2i Furthermore the integral
involved in the k-th summand of (2.10) is the (m - 2k)th multiple
Stratonovich integral of h(k), denoted m-2k (h(k)), so that (2.10) is
nothing else but the Hu-Meyer formula (cf. [5], [7])

Im(h) " £ am,k im-2k (h(k)). (2.13)
k=1

As mentioned earlier, there are examples of multimeasures which are not
identifiable with measures (the question here is whether the set function
J(fl[_i Bk) = v(Bi, ... , Bi) can be extended to a measure on (Il,Bl));
however, such examples do not come by naturally (see for example [I]).
The multimeasures exhibited in the next example can thus be extended to
measures, and they will later serve as approximation to arbitrary kernels.

Example 2.6 Let fi e have continuous derivatives of all orders and
assume its support is contained in the interior of Im. Then there exists a
measure 03BDh which generates h (I.e, satisties (2.6) ). Its density is given by
( ~ i )~ 80$...#0m 

,m h
11 " ~MM=~ ,g 1 ... ~03B8m llLl I"’> . (2.14)

The traces h(k) can be computed explicitly from (2. 12); one obtains

h(k) (0) # Ik h(0, 1, 1, ... , Tk , Tk )dT
(here the dimensions of 0 and T are respectively (m-2k ) and k; also h(°) = h )
and (2.10) becomes

["~/~] am-2kh(k)
= ~ ~~~ o °°1 ... 80m-2k ~~~~~~’~~~ ~~~ ~~ ~~’~

Corollary 2.7 The class of kernels li which satisfy the conditions of propo-
sition 2.5 is dense in L2s(Im).
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3 Path continuity of the integral process
In this section we shall consider the issue of sample path continuity of the
process

Xt (3.1)
Three sets of sufficient conditions on the time dependent kernels

e E > t E fo~ ll~

will be provided which ensure the path continuity of Xt neither one of which
imply any of the other two. The first one imposes a certain regularity struc-
ture in the fl variable ( (2.6) holds) and only a mild continuity assumption
on the t variable. This case is particularly important in the next section
because it provides precisely those kernels for which not only X. E C([0,1])
but also W E --~ X E C(~0,1J) is continuous. The second set
of conditions makes no assumption on the fl variable (other than square in-
tegrability) but imposes restrictions on the modulus of continuity in the t
variable. Lastly, in the third it is the very particular joint behavior of h in
the ? and t variables which causes X to be a continuous martingale.

The basic space to which all our time dependent kernels will belong is
C( ~O,1]; which we shall denote (or C2 when m and Tare
selfunderstood), namely

C2 = ~ht(8) ~ t E [0,1] -~ ht(.) E is continuous} (3.2)

and equip C2 with the norm ~~ h !)oo,2= ~~ ht The reason
for restricting ourselves to this space arises from the following

Lemma 3.1 If the process Xt given by (3.1~ has continuous sample paths
almost surely, then ht (8) E C~ .

This lemma will follow as a corollary from a remarkable Fernique-type
result obtained by C. Borell ([2]), which will also serve us later for some
large deviations estimates, and which we now state.

Lemma 3.2 Assume the process Xt in (3.1~ has continuous sample paths
almost surely. Then X E L2(S~; C((0,1J)) and moreover,

hm sup x log X x)  -1 2 ~ h ~-m/2~,2 . (3.3)
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Proof of lemma 3.1: Let tn - t in [0, 1]. Then Yn z - - 0

almost surely. Moreover Yn  4 [[ X [[£ and by Lemma 3.2 [[ X [[£ is

integrable. Thus Yn ~ 0 in L1 which is equivalent to [[ [[ L2 Tm) -
o~ D

3.I The "regular" case

Here we shall assume (A). As in subsection 2.2, the first step will be to
identify time dependent kernels h for which the integral process is given by
a continuous C( [0, 1])-valued functional of the underlying Brownian motion.

Definition 3.3 We shall say that a time dependent kernel fi e C2 is regular
if for every 0  t  I them exists a multimeasure vt e m) which
generates ht(.), I.e.

ht (°) " "t((°l ’ ~l > ° ° ° > (°m > ~l ) (3°~)

and t - vt is continuous in the weak star topology of MM.

Proposition 3.4 Assume h e C2 is regular. Then there exists a continuous
F : Co([0, 1]) - C([0, 1]) such that F(W) is a modification of X.

Remark 3.5 Whenever h is regular it will be assumed without further men-
tion that the process X has continuous sample paths.

Proof: First note that by the uniform boundedness principle and (2.9)

S # SUP )) ~MM °°. (3.5)
°klm/21

Define F : Co([0, 1]) - C([0, 1]) by

[m/2]

F(w). " £ £3m k / p~~>("~~~~)(0)dV$~~(0) 0  t  i.
k=o 

~ 

~"’ 

By (2.10) and Proposition 2.5 we see that F(I4’) is indeed a modification of
X. Now, by (2.8), F(p) may also be written

~ jIm W(01 ) ... W(0m-2k)
°m-2k+1 A 0m-2k+2 ... 0m-1 A 0m] dvt(0)
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and since the integrand can easily be seen to belong to Co([0, 1])~~, 
is a continuous function for every p. Moreover, for every Co([0,l]),
we may write

F(03C8)t - F(03C6)t =  03B1m,k / 03C8~(i-1)(03C8-03C6)03C6~(m-2k-i)d03BD(k)t
~=o .=i

so when jj 03C8 - 03C6 ~~~ 1, and by (2.7) and (3.5),

~F(03C8)-F(03C6)~~~[ (2m-k)|03B1m,k|(~03C6~~+1)m-2k-1] ~03C8-03C6~~II F(’l/;)-F(p) 1l00:S; A:=0 (2m - k) I 03B1m,k I (II p 1100 +1)m-2k-1] 1I’l/;-p 1100

which proves that F is continuous. D

We are at present unable to prove that a time dependent kernel h for
which is a continuous C([0, 1])-valued function of the Brownian mo-
tion is necessarily regular. Fix t 6 [0, 1]. Since the point mass measure at
t is a continuous functional on C([0,1]), the existence of a multimeasure 03BDt
which generates /~(’) follows from the results stated is subsection 2.2. How-
ever, it is not clear to us whether ~ is necessarily weak star continuous in
t.

Example 3.6 For each t 6 [0,1] let ht(.) e have closed support in
the interior and moreover assume that

t ~ [0, 1] ~ ~mht ~03B81... ~03B8m 
~ L1(Im)

is continuous. Then following Example 2.6, h is regular. (Actually, the
associated multimeasure is norm continuous in t).

We conclude this subsection with a simple observation. When h 6 C2 is
regular, for fixed t e [0,1] and 1 ~ &#x26; ~ [~/2]? the k-th trace of ht exists
(see item (v) following Proposition 2.5), and the Hu-Meyer formula (2.13)
holds. We claim that for each 0 ~ ~ ~ [~/2], , is also a regular kernel of
the appropriate order and that the tail behavior of the Stratonovich multiple
integral (~ ) is similar to that of the corresponding Ito multiple
integral. The following weakened statement will suffice for our purposes.

Lemma 3.7 Assume h is a regular kernel in C2. Then for each 0 ~ ~ ~
[m/2]
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(a) is a regular kernel in C2,m-2k(1)

(b) (h.(k)) has continuous sample paths a.s.

(c )
(h(~~) [[oo> z)  0. (3.6)

x-oo

Proof: Statement (a) immediately implies (b) and (c) via the "inversion
formula" (cf. [5]; here I = m - 2k and g = h(~)):

~ 
ll/21

Il (g) " (3.7)
I=0

and applying (2.5) to the sum in (3.7). As for (a), is indeed gener-
ated by the multimeasure 03BD(k)t, for each 0  t  I (see item (v) follow-
ing Proposition 2.5). To verify that 03BD(k)t is weak star continuous in t, let
g e Co([0, 1])~03C0(m-2k). Then by (2.8)

’it # Im-2k g(T1 , ... , (d1 , ... , dm-2k)

" Im g(Tl , ... , Tm-2k)(01 A 02) ... (02k-1 A02k)

03BDt(d1, ... ,dT m-2k, d03B81, ... , d02k ) .
Since f(0, 0’) m 0 A 0’ e Co([0, 1])~03C02 it follows that f~k Q§ g E C0([0, 1])~03C0m
and thus yt is continuous in t since t - vt was assumed to be weak star
continuous. D

3.2 The "slow growth" case

Here (A) is not assumed. In this subsection we shall obtain continuity of X ’s
sample paths by imposing growth conditions on t e [0, 1] - ht e Lfl(Tm ),
the tool we use being the metric entropy concept introduced by Dudley.
Namely, let

p( u) = sup [[ ht - h~ 
]t-s]u

and

= inf{u : P(u) > vl.
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It then follows from [4] that Xt will be almost surely continuous as long as

°° 2-  oo. (3.8)
n=o

Condition (3.8) is satisfied, for example, if p(u) = 0 ((- log u)-«) as
~c -~ 0, for any a > m/2. It should be pointed out that sample path
continuity was proved by T. Mori and H. Oodaira in [10] using Kolmogorov’s
criterion in the case where p(u) = 0 as u -~ 0, for any ~i > 0. Mori and
Oodaira .also proved (3.3) in this particular case. This Holder assumption
satisfies (3.8) and is clearly stronger than the logarithmic growth mentioned
above.

3.3 The "adapted case"

We now again assume (A). The kernels we shall deal with here are of the
form

ht(H) = h(8)lfo,tlm(9)
for some h E and we shall call such kernels adapted. Clearly adapted
kernels are in C2. It is well known that in this situation Xt = Im (ht ) may
be represented as the Ito integral

Xt = 03B820 h(03B8)dW03B81...dW03B8m-1 dW03B8m (3.9)

which implies that X has a modification wllich is a continuous martingale
with increasing process

 X >t= (m!)2t0{03B8m0 ... 03B820 h(03B8)dWs1 ... (3.10)

It is worth mentioning that in this case the tail estimate (3.3) may be
obtained directly by using an exponential inequality for martingales (see,
for example, [14, (IV.37.8)] .

4 The large deviations

We recall the definition (3.1) of the integral process Xt. In this section we
shall show that whenever X has continuous sample paths a.s., the family
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~E~’~2X, E > 0} satisfies a LDP in C((0,1~) as suggested in the Introduction,
with the rate function (1.1). To prove this fact we apply the extended con-
traction principle (Proposition 2.3) to Schilder’s theorem (Propsition 2.2),
approximating the given kernel by regular kernels and using Borell’s tail
estimate (3.3) to verify condition (ii) in Proposition 2.3.

The above result is actually implied by recent work of M. Ledoux ([8];
it is assumed there a priori that [ Xt j)~ but this always
holds in our case due to Lemma 3.2). While both approaches rely on the
asymptotically homogeneous property of the multiple integral functional,
the explicit manifestation of this fact provided here by the Hu-Meyer for-
mula ([5]) as well as the more systematic nature of contraction principles
should, hopefully, provide some added insight.

In order to apply Proposition 2.3 we first need the following approxima-
tion lemma.

Lemma 4.1 The regular time dependent kernels are dense in C2.

Proof: Let h E C2 be arbitrary. We shall approximate h by regular kernels
of the type exhibited in Example 3.6. First observe that due to the continuity
in the t variable, the families ~ht , t E ~0,1~} and {hi, t E ~0,1~} are compact
in L1 ( I’~ ) and in respectively. Here 0 denotes the Fourier transform.

Next, we claim that it may be assumed that for some 6 > 0 and for
all t E [0,1], ht is supported in [6, 1 - 6]m. Otherwise h may be

approximated in C2 by such kernels. Indeed, for any n > 4 let qn E 
be such that 0 ~ qn ~ 1, qn |D2/n ~ 1, qn 0 and define Un E C2 by

gnt (03B8) = 

which is clearly supported in Dl/n. Moreover

~h-gn~2~,2~ sup DC2/n h2t(03B8)d03B8 ~ 0
because of the compactness argument mentioned above.

Now, choose any nonnegative j E with compact support which
satisfies f~m =1, set jn(,~) = n E IN and define

= h * jn n E IN
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(where the convolution is in the 0 variables). For large enough n and for all
t e [0, 1] , is C" and supported in the interior of Im. Moreover, using
a standard convolution inequality,

jj 801 ~mh(n)t ~03B81...03B8m - 801 ... S 0m 
" ll ~mjn ~03B81...03B8m * (ht - hS) llL2I"’>
~ ll ~mjn ~03B81...03B8m ~L1(IRm)~ ht - hS llL2 I"’> (4°1)

so that for large enough n, is indeed regular as in Example 3.6.
Finally, for any t e [0, 1] and R > 0,

11 ht - h(n)t ~2L2(Im) ~ ll t(1 - in) l1l21%"’>
 ji((g)( - I - + / iii>R ji((Q)dg. - -

Once again our earlier compactness argument enables us to choose R large
enough to make the second integral arbitrarily small uniformly for all t e

[0 , 1] , and we may then choose ?i large enough to make the first integral small,
since jn - I uniformly on compacts. This shows that [[ h - ~~,2~ 0.

D

Theorem 4.2 Let h e C2 and assume Im(h.) has continuous sample paths
almost surely. Then the family (E = e > 0) satisfies a LDP in
S’ = C([0, 1]) with rate function given by (I . I ).

Remark 4.3 The estimate (3.3) which, as will be seen, is originally needed
for the proof of this theorem, can then be viewed as a consequence of it. In-
deed the large deviations principle (1 . 3 ) applied to the set G = (Bc(jo,q) (1))C ,

the complement of the unit ball in C([0, 1]), yields (setting z = -m/2 and
using the notation (1.2) )

lim x-2/mlog P(~ Im(h.) ~~> x) = -1 2  SUP (" "°)°
x--+oo 

1 
’

(Actually, this stronger version of (3.3) was the one stated in f2J).
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Proof: By Lemma 2.1 we may assume (A) witliout loss of generality. In
order to apply Proposition 2.3 set S = and U = E > 0.
From Proposition 2.2,

)j ~ r} r ~ 0.

By Lemma 4.1 choose a sequence (hn) C C2 of regular kernels such that 
h in C2 and for each n E IN and t E [0,1] denote by (vn)t the multimeasure
which generates (hn)t in the sense of (3.4).

Next, define Fn : S -~ S’ by

= Im03C6~m(03B8)d(03BDn).(03B8).
Restricted to Lo = {03C6 E S | cP E H} we can integrate by parts to obtain

Fn(03C6). = 03B2I,m(03C6;hn.) = Im 03C6~m(03B8)(hn).(03B8)d03B8 .

Defining F on Lo by F(p)t = ht), t E [0,1], it may readily be
verified that for each (s,t) E ~0,1~2, I F(cp)t - ht - hs 
(p so that indeed F : : Zco --~ S’ = C(~0,1)). Moreover by the same
Cauchy-Shwartz argument

II F(03C6) - Fn(03C6) ~~=~03B2I,m(03C6;h - hn) ~~~~ h - hn Iloo,211 03C6 ~mH (4.2)
so that condition (i) in Proposition 2.3 is satisfied.

Concerning (ii), we recall the notation .C(a) = lim sup~0  log a() and
shall apply (2.5) below. For arbitrary 6 > 0 and small enough e > 0, and by
Lemma 3.2 

’

’C _ ,C ~m(hn) - Im(h)~~~ 03B4))
~ L (P(~ Im(h) - Im(hn) ~~~ 03B4 2m/2)

+P(  | 03B1m,k |~m-2k (h(k)n) ~~~ 03B4 2m/2))

~ -1 2(03B4/2)2/m ~ h - hn ~-m/2~,2
V max £(P(~m-2k (h(k)n) ~~~ 

03B4 m | 03B1m,k | m/2
. (4.3)
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However, each one of the [m/2] terms involved in the last maximum is -~.
Indeed, for a given 1  ~  [?~/2] we may split the corresponding term into

( (h(k)n) ~~~03B4 m | 03B1m,k | m-2k 2))
which tends to -~ since by (3.6) the second factor is strictly negative. Thus
from (4.3) we obtain

lim limsupe (~) - ~) = -oo.
~_o

Our result now follows directly from Proposition 2.3 by recalling that
the family ~ > 0} satisfies a LDP with rate function given by (2.2). D

5 Examples

Example 5.1 Assume h 6 and ht = h ,0 ~ t ~ 1. Obviously
h. 6 C2 and has continuous sample paths. We view the process

as the scalar random variable X = Im(h). From Theorem 4.2 we
conclude that {c~~X, 6 > 0} satisfies a LDP in IR with rate function

, (5.1)

(recall the definition of the function /? given in (1.2)) which is easily seen to
satisfy

= ~ > 0. (5.2)

Being lower semicontinuous, A must necessarily be of the form

f if x > 0

(x) = 0 if x = 0 (5.3)
_(-x)2/m if x  0

Moreover, straightforward manipulations yield

A+ =A+(~) 

A- =A-(~) 

If h = 0 then A+ = A- = +00 so for the following observations we shall
assume 0.
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(i) For odd m, X is a symmetric random variable and A+ = A- E ( II
h II -2/m, ~ ). For even m, ~x can be highly skewed (for example, for
any 03C6 E H, I2(03C6~2) = ~ 03C6 ~2H is bounded below) and indeed
A+ and A- might differ. Moreover one (but at most one) of them
might be +00.

(ii) In this scalar case a tail estimate of the form of (3.3) is given in [9],
namely, there exist Km > 0 and 0  1/2 such that

P(I Im(h) !> 2/m}
(Although the result was stated somewhat differently in [9, Section 8],
the formulation above appears implicitly in the proof there. A similar
bound may be found in [13]). The LDP then yields a finer one-sided
tail estimate: for any E > 0 there exists an .~o > 0 such that

e-(++)x2/m ~ P(Im(h) > x  e-(+-)x2/m x > x

with a similar estimate holding for the negative tails (A- replacing
A+ )..

(iii) For m > 2, is not a convex function.

Example 5.2 As special cases of Theorem 4.2 we are able to obtain LDPs
for the stochastic processes considered in [10] and [11] with two particular
types of kernels. Recall from subsection 3.2 that Holder continuity of the
time dependent kernel as a function from [0,1] to guarantees almost
sure continuous sample paths of the integral process.

(1) In [10] T. Mori and H. Oodaira considered the large deviations of
self-similar processes represented by multiple Wiener-Ito integrals as
follows:

Xt = Qt(u1, ... ... dW~m

where for some a E (0,1) and any t > 0 and u E IRm the symmetric
kernel Q satisfies

Qct(cul, ... = c~ ’~~2Qt(u1, ... c > 0

and

~t-f-k(ul~...,?~m)-~t(2L1,...,u~,) _ ~k(2L1-t,...,2Gm-t) k > 0.
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Theorem 4.2 gives a LDP for E > 0} since

jj ’w t ~2L2 lR,m - 

IRm 
Q1 (u1 - t k, ... , ---) du( ) ~m ~ k

_ k203B1 ~ Q1 ~2L2 R"z . °

(2) Mori and Oodaira ~11~ have also studied the large deviations of a class
of stochastic processes represented by multiple Wiener-Ito integrals
with respect to a two-parameter Wiener process W(’,’). Let T =

~0,1~2 and for h E LS(~0,1~’~) define

htC(ul, vl), ... , (u~~ vm ) ) = ... , ... , 

and

E’~~2 U~l)2)’~‘ ht ((un vl ), ... , (um ~ vm ,v~ . .. ,vm . .

A LDP for ~Xf , E > 0} follows from Theorem 4.2 in this case since

1~2

~~ ht hs ~IL2t~m)-~~ h ~~L2~~m) ( )
- II h I t~ - Sm l1~2 ??21~2 II h I t - s 

References

[1] R.C. Blei (1985): "Fractional dimensions and bounded fractional

forms", Mem. Amer. Math. Soc. 5, 331.

[2] C. Borell (1978): "Tail probabilities in Gauss space", in Vector space
measures and applications, Dublin 1977, (L.N. Math. 644), pp. 73-
82, Springer Berlin-Heidelberg-New York.

[3] J.D. Deuschel and D.W. Stroock (1989): Large Deviations, Aca-
demic Press, New York.

[4] X. Fernique (1983): "Regularite de fonctions aleatoires non Gaussi-
ennes", in Ecole d’Eté de Probabilités de Saint-Flour XI - 1981,
(L.N. Math 976), pp. 1-74, P.L. Hennequin, ed., Springer Berlin-
Heidelberg-New York.



31

[5] Y.Z. Hu and P.A. Meyer (1988): "Sur les intégrales multiples de
Stratonovich" in Séminaire de Probabilités XXII (L.N. Math. 1321),
pp. 72-81, J. Azéma, P.A. Meyer and M. Yor, eds, Springer Berlin-
Heidelberg-New York.

[6] K. Itô (1951): "Multiple Wiener integrals", J. Math. Soc. Japan, 3,
pp. 157-169.

[7] G.W. Johnson and G. Kallianpur (1989): "Some remarks on Hu and
Meyer’s paper and infinite dimensional calculus on finitely additive
cannonical Hilbert space", Th. Pr. Appl. ,34, pp. 679-689.

[8] M. Ledoux (1990): "A note on large deviations for Wiener chaos",
in Séminaire de Probabilités XXIV (L.N. Math. 1426), pp. 1-14, J.
Azéma, P.A. Meyer and M. Yor, eds, Springer Berlin-Heidelberg-
New York.

[9] H.P. McKean (1973): "Wiener’s theory of nonlinear noise", in

Stochastic Differential Equations, Proc. SIAM-AMS, 6, pp. 191-
289.

[10] T. Mori and H. Oodaira (1986): "The law of the iterated logarithm
for self-similar processes represented bu multiple Wiener integrals",
Prob. Th. Rel. Fields, 71, pp. 367-391.

[11] T. Mori and H. Oodaira (1988): "Freidlin2014Wentzell type estimates
and the law of the iterated logarithm for a class of stochastic pro-
cesses related to symmetric statistics", Yokohama Math. J., 36,
pp. 123-130.

[12] D. Nualart and M. Zakai (1990): "Multiple Wiener2014Itô integrals
possessing a continuous extension", Prob. Th. Rel. Fields, 85,
pp. 131-145.

[13] A. Plikusas (1981): "Properties of the multiple Itô integral", Lithua-
nian Math. J., 21, pp. 184-191.

[14] L. C. G. Rogers and D. Williams (1987): Diffusions, Markov Pro-
cesses, and Martingales, vol. 2, J. Wiley &#x26; Sons.

[15] M. Schilder (1966): "Some asymptotic formulae for Wiener inte-
grals", Trans. Amer. Math. Soc., 125, pp. 63-85.

[16] S.R.S. Varadhan (1984): Large Deviations and Applications CBMS
series, SIAM, Philadelphia.


