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SKEW PRODUCTS, REGULAR CONDITIONAL PROBABILITIES AND
STOCHASTIC DIFFERENTIAL

EQUATIONS : A TECHNICAL REMARK

J.C. TAYLOR

McGill University

ABSTRACT. It is shown that Malliavin’s transfer principle applies to the system of stochastic
differential equations given by a skew product. A minor modification of the definition of a
strong solution is required.

Introduction.
Malliavin’s "principe de transfert" [5] states that results from the theory of ordinary

differential equations are valid for stochastic differential equations in Stratonovich form.
There seems to be no metatheorem that shows this principle to be valid in general and as
a result its use in various circumstances requires justification.

Consider the system of ordinary differential equations

dXi = 

dX2 = 

Xl(~) = = x2~

in, for example, the plane. The system may be solved as follows: as the equation for the
second component does not depend upon the first component, it may be solved indepen-
dently ; substituting the solution cp(t} in the first equation gives rise to another equation
whose solution ~(t) depends upon Clearly, (~(t), cp(t)) is the solution to the system.

The transfer principle of Malliavin indicates that the same procedure should apply to a
system

q

dX1(t) _ ~Y~(t,X2(t})(Xl(t}) 0 dWi(t) 
i=l

dX2(t) = t 0 + 
(S)

.7=1

X o) - (X1 (U) ~ X2 (~)) _ (x1 n2 ).
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of stochastic differential equations in Stratonovich form where the Brownian motions W
and B are independent. Such systems arise when studying skew products of diffusions.

The purpose of this note is to show that the transfer principle does apply and that
hence, given the existence of the relevant strong solutions, the strong solution F for the
system may be written as

= ~ B))~ B))~ (F)

where is a strong solution for the equation

q

dXl (t) = ~~ ~~ ~ ~ 0 ~ 

(Llw2 )
X1 (o) = xn

with w2 a path on the second factor M2 of the underlying product space Mi x M2, and
F2(x2, B) is a strong solution of

r

dX2(t) = 0 + 
L2

X2 0 = x2.

Once the system (S) is converted to Ito form - Lemma 1- the formula (F) is obvious
provided that the appropriate measurability condition is verified. In other words, the
verification of the transfer principle amounts to checking the measurability of (F). This
requires a minor modification of the definition of a strong solution.

Given the existence of strong solutions, the formula (F) for the strong solution implies
that the regular conditional probabilities Pw2 which give the disintegration of the law P
of the solution for the system (S) relative to the law Q of the solution for the equation
involving the second component alone are Q-a.s. the laws of the equations 

In [4] Malliavin &#x26; Malliavin used this observation about the regular conditional prob-
abilities to determine the asymptotic behaviour of the Brownian motion on a symmetric
space of non-compact type. It is simpler, as is also shown here, to avoid discussing the
measurability of (F) and to directly obtain this disintegration result by using uniqueness
of the appropriate martingale problem. This proof also has the advantage of applying not
only to the case where all the lifetime is infinite, but also to the case where the lifetime
coincides with that of the equation (L2) (see Appendix 2).

In what follows all the stochastic differential equations are assumed to have solutions
in the appropriate sense.
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l.Skew products.

Definition. Let L denote a second order differential operator L defined on the product
M1 x M2 of two smooth manifolds of respective dimensions q and r. It will be said to have
a skew product representation or to be a skew product, if there is a smooth map
Li M2 ’-~ {second order partial differential operators on M1 } and a second order partial
differential operator L2 on M2 such that L = Li,. (D L2, i.e.

LF(xl, x2) _ ~Ll~x2F(~, x2)}(x1 ) + lL2F(xl~ ’)}(~2O ,

where, for example, ~)}(~2) is the value at x2 of the operator L2 applied to the
function u H F(x1, u). . Following Helgason ~2~, the operator L2 will be called the radial
part of L.

Note that the projection 7r of Mi x M2 onto the second manifold M2 intertwines L and
L2, i.e. for all C2 functions f on M2, L( f o 7r) = L2 f o 7r, and that all of the above can of
course be made time-dependent.

One way to obtain time-dependent skew products L is to be given a finite number
of time-dependent vector fields on Mi that depend also on x2 E M2, i.e. smooth maps
Yi : M2 ~ {time-dependent vector fields on M1 }, 0  i  q and time-dependent vector
fields Eo, Ei, E2,..., Er on M2, where a suitable degree of smoothness in t is imposed, for
example - if X(t) denotes a time-dependent vector field - t ~ X(t)f(x) is measurable
for all smooth f and x in the manifold. The radial part is Lt , 2 = L2 = 2 E~ (t) + Eo (t)
and = = 2 x2) + Yo(t, x2),

The tangent space T(xl,x2)(Ml x M2) ~ x ~x2}) E9 x M2), where for
example, Mi x {x2 ~ may be identified with Mi. With this identification the vector fields
can be viewed as defined on Mi x M2 : set = E Txl(M1 x ~x2}) and

= E x M2). With these identifications, 

Let B(t)t~0 and be independent q-dimensional and r-dimensional Brownian
motions on a probability space (S~, ~, Po) equipped with a filtration (~t)t>o. . Using these
Brownian motions, the diffusion associated with L may be obtained by solving the
Stratonovich stochastic differential equation

q

o + Yo(t)(X (t))dt
i=l

+ Eo(t)(X(t))dt, ~~~
j=1

X o) - (X1(0), X2(~)) - (xl, x2).
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For simplicity, it will be assumed that a.s. the lifetime is infinite. It is shown in Appendix
2 that, in fact, it suffices to assume that a.s. the lifetime is the same as that of the solution
of the stochastic differential equation

r

= Ej(t)(X2(t)) o + 
L2

x2 0 = x2.

The equation (L) is equivalent to the following holding Po-a.s., for all F E x M2 ),

F(x(t)) = F(x(o)) + / o + / {Yo(s)F}(X(s))ds
r t 

~"~ ° 

t 

° 

(LF)
+ t0{Ej(s)F}(X(s)) o dBj(s) + t0 {E0(s)F}(X(s))ds,

and also to the following holding P0-a.s., for all 03A6 ~C1,2c (R  M1  M2),

ta
03A6(t, X(t)) = 03A6(0,X(0)) + 

03A6(s,X(s))ds

+  t0 {Yi(s)03A6}(s,X(s)) o dWi(s) + t0{Y0(s)03A6}(s,X(s))ds

+ t0{Ej(s)03A6}(s,X(s)) o dBj(s) + t0 {E0(s)03A6}(s,X(s))ds.

9=1 . 0 
0

The equivalent form applied to {Yt(t)F}(X (t)) shows how to compute
the martingale component of terms like f o {Y (s)F}(X(s)) o dW=(s).

Therefore, the Ito formulation of (LF) is that Po-a.s.

q t

= F(x(o)) + ~ 
~-1 0 

,

+ - 1 ~ q 
t 

{Ya2(S)F}(X(S))ds + 
t 

{Yo(s)F}(X (5))ds
2 

~=1 0 
~ 

0 

(ILF)
r t

+ £ 
7=1 0

+ - 1 ~ r 
t 

+ 

2 .-1 0 
3 

0
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Remark. These formulas extend to arbitrary smooth F and 03A6 with the martingales re-
placed by local martingales.

The solution has two components Xi and X2, and it is useful as pointed out in [6] to
write (L) as a system of stochastic differential equations.
Lemma 1. . The Stratonovich differential equation (L) is equivalent to the following system
of Stratonovich differential equations:

q

( Ll )
e=1

r

dX2(t) = o + Eo(t)(X2(t))dt, L2
j=i

X o) - (X1(o), X2(o)) - 

where (Xl (t), X2(t)) will be said to be a solution of (Ll ), (L2) if Po-a.s., for all ~p E 

q t
_ + ~ / (ILlSo)

+~E + 0 t 
f(X2(t)) = f(X2(0)) + t0 {Ej(s)f}(X2(s))dBj(s)

7=1 0

+ - 1 ~ r + . (IL2f)2 
.=1 0 0

Proof. If (X(t))t>o solves (L), then (ILF) implies that and (IL2f) are satisfied.
This is because, for example, ~Y (s)cp}(X(s)) _ XZ(s))cp}(Xl (s)).

Conversely, if and (IL2f) hold then (ILF) is verified for F(x1, x2) = 
Since every function in is a limit in C2 of polynomials, - (cf.[8] Coollary 2 p155)
- it follows that for all F E C;(Ml x M2), (ILF) is satisfied. 0

Remark. . The Stratonovich equation (Ll ) looks to be incomplete because its Ito correction
term could involve X2 (t). However, because of the independence of the two Brownian
motions, this correction term involves only Xl (t), the other process entering as a parameter.
This becomes obvious if is applied to c)(t,x) = {Y (s)cp}(x). One may also see this
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directly by embedding the manifolds and considering the situation on a product of euclidean
spaces. Then has an explicit expression and the computation is obvious.

Let W,w2) be a strong solution for the equation

q

Xl (t), w2(t)) o + Yo(t, Xl (t)dt, 

X1(0) = x1,

with w2 a path on the second factor M2 of the underlying product space Mi x M2, and let

F2(x2, $) be a strong solution of (L2). As an immediate formal consequence of Lemma 1
one has

Corollary. Let

(F)

Then, modulo the measurability requirement, F is a strong solution of (L).

Remark. This question of measurability is a little delicate and will require a minor mod-
ification of the definition of a strong solution as shown in Appendix 1. .

2. The transfer principle and regular conditional probabilities.
If M is a manifold, denote by W(M) = (W(M), ~) the space C([0, oo), M) of continuous

functions from R+ to M, equipped with the ~-algebra ~ _ ~(W(M)) of Borel subsets
determined by the metric associated with uniform convergence on compact subsets or

equivalently generated by the evaluation functions w - w(t) = Xt(w), t > 0.
Denote by P the law on W(Mi x M2) of the solution of the Stratonovich differential

equation (L).
Then, the natural map W(Mi x M2 ) H W ( M2 ) - induced by the projection 7r of

(xl, x2) on its second coordinate x2 - pushes P forward to the law Q on W(M2) of the
solution of the Stratonovich differential equation (L2).

Since W(Mi x M2) and W(M2) are standard measure spaces, P may be disintegrated
over Q. It is natural, in view of Lemma 1, to expect that the relevant regular conditional

probabilities have something to do with equation (Llw2). Malliavin &#x26; Malliavin in [4]
stated that they were the laws of (Llw2 ) and made no use of (F).

Consider any probability space n and let X = (Xi, X2) : S~ H W1 x W2 be a random
variable. Assume that there is a map Xl : n x W2 - Wi such that X 1 (w) = X 1 (w, X2 (w) ).
Let P be the law of X and Q be the law of X2. Denote by ~(w2, .) a regular conditional

distribution of P given w2. Then P = ~r(cv2, ~)(~(d,w2). When is there any connection
between the probabilities ~r(w2, .) and the laws PW2 ® E~,2, where is the law of the

random variable w - 
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Example. Let 03A9 be [0,1] with the uniform distribution, Wi = W2 = R and =

t, for 0  t ~ 1. Then the laws P~ are all uniform on [0,1]. Let X2(t) = 1/3, on [0,1/2),
and = 2/3 on [1/2,1]. In this case there is no connection between the P~ 0 6~ and the

7r(.r,’). The same is true if say J~~) = t, for 0 ~ t  1.

When the probability space H is a product space 03A91  03A92 and Po = Pi 0?2? as indicated
by Emery, the following result holds.

Lemma 2. . Let = x (~2,?2,P2). and let (Xi.~2) : : Hi x ~2 ~
Wi x W2 be a random variable such that

(1) X2(~y) = X2(~ ~ = (~1,~2); and
(2) Xi(yy) = Xi(7y,X2(~))? where Xi is a random variable on H x W2. .

Let P~ be the law of the random variable yy ~ Xi(7y,~2). Then, Q-a.s., P~ 0 is the

regular con ditional probability 7r(~2)’) given by the disintegration of the law P 
with respect to the marginal Q of X2.

Proof. First note that cu2 ’2014~ P~~ is a kernel as is jointly measurable. Let

Ai x A2 G Wi x W2 and r = {(~1,~2) ! Xi(~) C E ~2}. Then

P[A1 x A2] = P0[0393] = 

where F~) = (~1,~2) ~ F}. Since r(~2) = Xi(?y,~2) ~ = ~2 0 Az},
it follows that Pi [r(~)] = P~ [~i]. D

As pointed out by Emery, Lemma 2 gives the desired disintegration result.

Proposition (Disintegration). Assume that the equation (~) has a strong solution F
given by (F). Then

P=P~’~= /P~~0~Q~(~2)~
where P~~ is the law 

Proof. Let Wand B be two independent Brownian motions on 03A9 valued in Rq and Rr
respectively. Apply Lemma 2 to ~i = Mi x W(IRq) and ~2 = M2 x W(IRr) with the
product 03C3-algebra, Pi = ~x1 0Wi, Wi Weiner measure on Rq and P2 = ~x2 0W2, W2
Weiner measure on 

The law - relative to Pi 2014 of the random variable ~ is 
and the law - relative to P2 - of the random variable (~2~2) ~ F2(.r2? ~2) is Since

by assumption, the process = (Fi(~i,W,F2(.r2)B)))F2(.C2~))(~) is a solution to
(L), (2) follows. D

The measurability question remains . It is settled in Appendix 1 where the formula
(F) for the strong solution is proved.

However, this measurability question can be avoided by using a result of Stricker and Yor
[7] which shows that the equation has a solution that is jointly measurable. From
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that it follows immediately - see Proposition A.I.I in Appendix 1 - that w2 - P"’2
is a kernel. Using this fact, the disintegration result will now be proved using the (L)-
martingale problem. It is to be noted that this proof extends to cover the case where one
does not assume that a.s.the lifetimes are all infinite as shown in Appendix 2.

Theorem 1. Assume that there is a unique solution on W(Mi x M2 ) to the martingale
problem corresponding to (L ). Then, for all Borel subsets r of W(M1 x M2) = W(Mi) x
W(M2), .

P(0393) = W(M2)P03C92(0393(03C92))Q(d03C92),
where r(w2) _ ( (wi , w2 ) E 0393}. In other words,

P(dwl, dw2 ) = ® ).

Proof. Let p E and f E C~ (MZ). Define

m03C6t(03C91,03C92) = 03C6(03C91 (t)) - 03C6(03C91(0)) - t0{L1,03C92(s)03C6}(03C91(s)ds
and 

nft(03C92) = f(03C92(t)) - f(03C92(0)) - t0 {L2f}(03C92(s)))ds.

Then m03C6t o X = and nt oX =1Vt , where Mt = 10 

and Nft {Ej(s)f}(X2(s))dBj(s).o ~==1

Since and (Mi Ni )t>o are all martingales - the independence of the
two Brownian motions is relevant here - the processes and 

are all martingales with respect to P and the natural filtration where is

generated by the coordinate functions for 0  s  t.

Since P03C92 is a kernel, - cf. Proposition A.I.I in Appendix 1 - one may define a

probability P’ by the formula P’[r] = PW2~r(w2)~(~(dw2) = ® ~~,2~r~~(dw2).
Since Q-a.s the probability PW2 (g)e~ is concentrated on W(Mi) x ~w2~ , it follows that, for
all w2, is a -martingale and nt is PW2 ®sW2- a.s. constant. Consequently,

= 

since for all A E ~9, ,

= = 
’
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where denotes expectation with respect to Q9 .

Now

~ ~9l = ~~~ = 

Since is a P’-martingale, it follows that for F(x1, x2) = cp(x1) f (x2),

is a P’-martingale. The density result alluded to in the proof of the Lemma 1 and the
assumption of a unique solution to the martingale problem gives the result. 0

Appendix 1. Measurability of the strong solution.
Let Yo, Y 1, Y 2, ... , Ym be time-dependent smooth vector fields on 1~~ that depend on

a parameter w2 from a measurable space (5~2, ~2 ). Let Yk (t, x, w2 ) denote the value at
x E ]Rn of the k-th vector field Yk corresponding to the parameter w2 at time t.

Let (03A9,J, P) be a probability space equipped with a filtration and an m-
dimensional Brownian motion B(t)t>o .

Consider the solution of the Stratonovich differential equation

q

. dX (t) _ ~ ==1 Yi(t, X (t), w2(t)) 0 + Yo(t, X (t)dt, 
(Llw2 )

X(o) = x,
The lifetime will be assumed to be infinite.

Then, by Stricker and Yor [7], there is a solution X (t, w2 ) of the stochastic differential
equation which is a measurable function of (t, w, w2 ).

It follows from this that the following result is satisfied for cylinder sets and hence for
all Borel sets on path space W(R") = C([0, +00), 
Proposition A.1.1. Let be the law on of the solution of (L1w2). Then, for
any Borel subset r ofW(R.n), the map Pw2(r) is measurable, i.e. PW2 is a kernel:
(~2n2) ~--> .

Corollary A.1.2. Let M be a submanifold and assume that all the vector fields Yk
are tangent to M. If x0 E M, is a kernel : (03A92,J2) ~ (W(M), 
Remark A. 1.3. The result of corollary A. 2.2 is valid for an arbitrary manifold M in view
of Whitney’s embedding theorem cf. Emery [1].

To prove the measurability of the strong solution (F), i.e. of the right-hand side of the
formula (F), it is clearly enough to verify the measurability of the first component. This
basically amounts to checking that the proof of Theorem 1.1 in Chapter IV of [3] carries
through when a measurable parameter is added. While this goes through easily enough,
to get the required measurability of F1(xl, r~l, F2(x2, ~2)) it is necessary to make a minor
modification to the concept of a strong solution.
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Let M be a manifold and consider the stochastic differential equation

d

dX (t) = L X(t)) o + Yo( t, X (t)dt, 
(*)

X(0) = x,

where the Yi are vector fields on M.

Definition A.1.3. Definition 1.6 p149 ) A solution X of the stochastic differential
equation (*) will be called a strong solution if there are integers q,r such that q + r = d
and a function
F: M x W o(lRd) = M x W o(lRq) x W(M) with the following properties:

(1) for any probability p on M, there is a function ~ = which is

8(M) Q9 measurable and such that if r = ~F ~ then
= ( = r} is a PW1-null set  ® Pf-a.s., where

PW is Weiner measure on Wo(JRq) and P2 is Weiner measure on 
(2) for each x E M and all t > 0, r~ H is /~t(W(M)) measur-

able; and
(3) X(.) = F(X (o, .), B(.)) -a.s., where as in ~3~, F(X(o, .), B(.)) =

. ), B(.)), with  the law of 03BE = X(0).
Further, the family has a unique strong solution if the function F has the additional
properties:

(4) for any Brownian motion = 0 on a filtered probability space
and o-measurable random variable ~, X(.) = F(~(~), B(~)) is a

solution of (*) with X (o, ~) = ~(~) Po-a.s. ; and
(5) for any solution (X,B), X(.) = F’(X(o, ~), B(.))-a.s.

The minor modification in this definition consists of the sense in which r is a null

set. This does not change the fact that for a given law  and any two integers ql,q2 the
functions and differ on nullset in which is why
one may still define the random variable F(X (o), B) via a representative function 
Now consider the family of stochastic differential equations (L1W2 ), where w2 E (S~Z, ~2 ). .

Let X = X (w, w2 ) denote a jointly measurable function x S~2 H W(M1 ). It will be

said to be a solution of the family of equations, if for all w2, the function X(., w2) is
a solution of (L1"-’2). .

Definition A.1.5. The family of stochastic differential equations has the property of

pathwise uniqueness of solutions if for each w2 E n2, , the equation has this

property.

Assume that (5~2, ~2) _ (W(M2), ~2), ~2 - ‘~(W(M2)). Then there is a natural

filtration (~32,t)t>o~ 232,t =’~t(W(M2)) on 5~2. Let 23l,t = denote

the corresponding filtration for W(Mi).
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Denote by the space of continuous paths w on 1~q with w(0) = 0, by ~t the
a-algebra generated by the coordinate functions for 0  s  t, and by P~’ Weiner measure
on the 03C3-algebra B generated by all the coordinate functions..

Definition A.1.6. A solution X of the family of stochastic differential equations is called
a strong solution if there is a function F : : Mi x x S~2 H W(Mi) with the
following properties:

(1) for any probability A on Mi x 03A92, there is a function 03A6 = 03A603BB which is
0 ~3 0 measurable and such that ifr = {F ~ ~},

then A-a.s. = a PW1-null set;
(2) for each w2, F(., ~,w2) is a strong solution of (L1úJ2) in the usual sense;
(3) for each :ri E Mi and all t > 0, (w, w2) H F(xl, w, w2) is ~t ~2,t~~l,t mea-

surable; and
(4) for each w2, X (~, w2) = F(X (0, ~, w2), B(~))-a.s.

Further, the family has a unique strong solution if the function F has the additional
properties:

(1) for any Brownian motion B(O) = 0 on a filtered probability space
(03A9, J, Po), and J0-measurable random variable 03BE, and for each w2, X(.,W2)
= F(~(~), B(~),w2) is a solution of (Llw2) with X(O, ~,w2) = ~(~), P-a.s.; and

(2) for any (measurable) solution (X,B ), X (~, w2) = F(X(O, ~, w2), B(~))-a.s, for each
w~ .

With these modifed definitions to hand, one may go through the argument of Theorem
1.1 in [3] and verify that a family of stochastic differential equations has a unique strong
solution if and only if the family has the property of pathwise uniqueness. The main point
to note is that the probabilities and E now have an extra

parameter w2 E S~2 and are jointly measurable in (r~,w2).
Recall that (5~2, ~2 ) = (W (M2 ), It is clear that the given family of sto-

chastic differential equations has the property of pathwise uniqueness. Let 
be a strong solution of the family and set F1(xl, x2, ~?1, ~?2) = Fl(x1, ~1, F2(x2, ~?2)), where
F2(x2, r~2)- a strong solution of (L2)- is defined on M2 x WO(IRT).
Now let  =  x2v(dx2) be a probability on Mi x M2, where v is its marginal on M2

and is a regular conditional probability on Mi of , given x2. Let be the law
of ~2 ~ ’F2(~2, ~2) and set a = ® Then .1 is a law on Ml x W(M2)
disintegrated with respect to the law v of the random variable (xl,w2) ~ w2(0). Now let
~2(x2 ~ ~2 ) be a representative of F2 corresponding to v and ~1 be a representative of Fl
corresponding to A.

Define P2 to be Weiner measure on 
Proposition A.1.7. Let ~1(xl, ~2, ~?1, ~2) _ ~i(x1, ~?1, ~2(~2, ~2))~ Then ~1 is a repre-
sentative of Fl in the sense of Definition A.1.3 (1).

Proof. r = {F1 ~ C rl U r2, where rl - ~1, F2 = ~2 } and r2 = Ml x
Wo(IRq) x {F2 ~ ~2}.



124

Now r(x1, x2, r~2) = if and only if (x2, r~2) E r2 and otherwise = ~. Therefore,
~ 0 r(xl, x2, rj2) is a P f-null set if and only ® P2 -a.s. r(x1, x2, r~2) = ~.

Let A = ~(xl, x2, ~2) ~ r(x1, x2, r~2) # 0}. Then A = Ml x r2. If Ao is a Borel subset of
A then Ao(xl, x2) c r(x2) and so P2 (Ao(xl, x2)J = 0. This implies that , ® P2 (Ao) = 0
since = = 0. The last equality holds since F2
is a strong solution.

Let r = ~F1 ~ ~1}. Then A-a.s is a Pf nullset. Now ri C r1, where I‘1
is the inverse image of r under the measurable map (xi, x2, ~1, ~?2) - (xl, ~11, ~2(x2, ~2)).
Since A-a.s is a P W null set, and A is the image 0 Pz under the map
(xl, x2, ~2) t"’3 (x1, ~2(x2, ~2)), this implies is a Pw null set.
In view of the modification in Definition A.1.3 (1), this completes the proof. 0

This proves the following result

Theorem A.1.8. The function F defined on Mi x M2 x by the formula
F(xnx2~~?1~~121 = a strong so-
lution of (L) in the sense of Definition A.1.3.

Appendix 2. Finite lifetimes.
The disintegration result (Theorem 1) is also valid if the lifetime of (L) is determined

by the lifetime of (L2).
To prove this a few preliminary remarks on path space will be useful. Let M be a

manifold and let M = M U A M = M U A denote its one-point compactification. Denote
by W(M) = W(M) the space of continuous functions w : 1~+ H M such that w(s) =
A, s  t =~ w(t) = A. Let W(M) be the space of functions w : l~+ H M such that
w(s) =  t ==~ w(t) = A, and which are continuous while they are in M. For both
path spaces let denote the Borel u-algebra determined by the coordinate functions

Xs(w = w(s) for 0  s  t and ~° _ ~~ . The lifetime e of a path w in either path space
is defined to be the w(t) _ ~}. Then one has

Lemma A.2.1. . W(M) is a measurable subset of W(M).

Proof. Let be a dense subset ofCc(M). If e(w)  T then w is continuous on [0,T]
if and only if, for all n, s t-~ cpn(w(s)) is continuous on [0,T]. A function s t-~ cp(w(s)) is
continuous on [0,T] if and only if it is uniformly continuous on [O,T]nQ. Now
{w I e(w)  T, and s ~ cp(w(s)) is uniformly continuous on [0,T] n Q} E JoT(W(M)).
Hence, {e  W(M) E ~T(W(M)). D

Consider M = Mi x M2. Define pr2 : (Ml x M2) U 0394M1 M2 = (Mi x M2) U 0 H
M2 U = M2 U A2 = = 22 and ~2. This is a Borel map and so
the induced map W(pr2) : W(Mi x M2) ~ W (M2 ) is measurable.

The complication produced by finite lifetimes is that there is no longer an immediate

product structure. However, if 03C9 ~ W(Mi x M2), then w(s) =  e(w).
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Lemma A.2.2. Let A C W(Mi x M2) be the set of paths w such that w2(s) =
A2. Then A = E x M2)). Furthermore, for each W2 E
W(M2), the set A(w2) = {03C91 E |pr c (wl,w2) E } E 

Proof. The path W(pr2)(w) E W(M2)) if and only if the path s H W2(S),S  e(w) has a
continuous extension to R+ which is in W(M2) with lifetime equal to e(w). Note that if
W(pr2)(w) E W(M2)), then w E W(M1 x M2).

To each path w E A corresponds a pair of paths: wi E W(Mi), and w2 E W(M2)
where (i) e(wl ) = e(w2) = e(w), and (ii) w(s) = (wl (s), w2(s)), s  e(w). Since A E

x M2)), it is in x M2)) and so A(w2) E D

The basic assumption about the lifetimes for (L) states that, for all x E M1 x M2,
= 1, where A is defined in Lemma A.2.2. Since A is a Borel set in W(Mi x M2), it

is a standard measure space. Furthermore, the projection 7r of Mi x M2 onto M2 induces
the projection of A onto W(M2) given by The image of Px is then the law Q~2
of the solution of (L2) and there is a corresponding disintegration.

The probabilities E W(M2) are defined on W(Mi). Since the one-point
compactification is the smallest compactification of a locally compact space, there is a
unique continuous map a : 1 x M2 H (Mi x M2)" which is the identity on M1 x M2.
It induces a continuous map W(a) : : W(Mi) x W(M2) ’-~ W(Mi x M2). Notice that

= e(wl ) A e(w2).
Theorem 2. Assume that there is a unique solution on W(Mi x M2 ) to the martingale
problem corresponding to (L) and that PX[A] == 1 for all x = (xl, x2) E Ml x M2. . Then,

(1) Qx2 -a.s the lifetime of (Llw2 ) is greater than or equal to the lifetime of (L2), i.e.
= 1, where Ao = W(Mi ) x W(M2) e(w2 ))~~

and

(2) for all Borel subsets F C A ofW(Ml x M2 ),

I 

,}W(M2)
where r(w2) = {03C91 E |pr2 o (wl,w2) E r}.

Proof. Let be the image of ® ~03C92 under the map W(a). Define P’ =
f ?~xl’W 2 Qx2 (f,~w2 ). The argument used to prove Theorem 1 shows that this probability
solves the (L)- martingale problem.

Since P’ = P = Px, this implies that QX2 -a.s ~xi’~2 [A] = 1. From this (1) and (2)
follow. For (1) note that w = E A 4==~ e(w2 ).

The set r(W2 ) E Since W(Mi) is a Borel subset of W(M1),
= n - Px1,03C92 ~ ~03C9s[(03B1)-10393] as 

e r c A 4=~ wl E r(w2) n w(M1). 0
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