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ON TWO TRANSFER PRINCIPLES

IN STOCHASTIC DIFFERENTIAL GEOMETRY

M. Emery(*)

A well known rule of thumb in stochastic differential geometry is what

Malliavin calls "the transfer principle": Geometric constructions involving

manifold-valued curves can be extended to manifold-valued processes by replacing

classical calculus with Stratonovich stochastic calculus. This is explained by

Stratonovich differentials obeying the ordinary chain-rule, and also by an

approximation result when the random process is smoothed by some convolution or a

polygonal interpolation. Extending Bismut’s work on Brownian diffusions (1], , Schwartz

[10], (11] and Meyer [9] have given a rigorous content to this principle, the former

by defining intrinsic stochastic differential equations in manifolds and the latter by

establishing the approximation theorem in a very general setting. On the other hand,

Meyer [8] has shown how to. compute intrinsic Ito integrals in a manifold endowed with

a connection. This leads to another transfer principle, transforming ordinary into

Ito differential equations. We shall give an approximation scheme for this principle

too, generalizing at the same time the approximate construction of Ito diffusions by

Bismut [1] and that of Ito integrals of first order forms due to Duncan [4] and

Darling [2]. .

These two transfer principles don’t have the same properties. Whereas the

Stratonovich one respects all submanifolds (that is, every submanifold preserved by

the ordinary differential equation is also by the Stratonovich one), the Ito one

respects only the totally geodesic ones. On the other hand, the Ito transfer requires
less smoothness and extends better to operations depending upon t and w; but it also

requires a richer geometry: every manifold must be endowed with a connection.

The Ito transfer principle explains a posteriori the discovery by Meyer (9] of a

correspondence between all stochastic extensions of the equation of parallel transport
of vectors and all extensions to the tangent bundle TM of the connection on M; the

stochastic parallel transports studied by Meyer are exactly the Ito extensions of the

deterministic parallel transport, and they depend upon the choice of the connection in

TM.

In the case when the ordinary differential equation transforms geodesics into

geodesics, we shall see that the approximate constructions of the Stratonovich and Ito
extensions are one and the same. As a consequence, the Stratonovich and Ito equations
are identical, and the Stratonovich equation, being also an Ito one, transforms

(*) This work, written while visiting UBC and McGill University, stems from stimulating
conversations with J.C. Taylor.
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martingales into martingales. This can be used to explain why the development in a

manifold of a Brownian motion (or, more generally, a martingale) in the tangent space

is itself a Brownian motion (or a martingale), even though this development is defined

using a Stratonovich differential equation, simply by noticing that the development of

a straight line is a geodesic.

All the manifolds considered are real, finite-dimensional, of class at

least (all admissible changes of chart are c2, with locally Lipschitz second
derivatives), and arcwise connected. This last assumption is quite mild: since we

shall be interested in manifold-valued, continuous, adapted processes, by conditioning

on Eo’ everything happens in an arcwise connected component of the manifold. The

word "smooth" will mean "as smooth as possible", that is, having the same regularity
as the manifold itself. When using local coordinates, the Einstein summation

convention on once up, once down indices is in force.

I. . SECOND-ORDER GEOMETRY

This section recalls a few fundamental definitions in Schwartz’ second order

geometry.

If x is a point in a manifold M, the second-order tangent space to M at x,

denoted LxM, is the vector space of all differential operators on M, at x, of order at

most 2, with no constant term. If dim M = m, T M has m + 2 m(m+l) dimensions; using
local coordinates near 

x, every 
L e T M can be written in a unique way

L = liDi + lijDij, with lij = lji, where D. = ai and D.. = a . are differential

operators at x. The elements of T M are called second-order tangent vectors (or

tangent vectors of order 2) (*) ; the elements of the dual vector space T*M are called
second-order forms (or second-order covectors) at x; a covector field of order 2 is

simply called a second-order form on M.

If M and N are two manifolds, and : M ~ N is at least c2, tangent vectors of

order 2 are pushed-forward : for L s it is possible to define 03C6x L E 

by = dually, for 0 e N, one can define the pulled-back w 0 e T*M

by ~xA,L> _ 0,~ L> for all L. If x is a point in a submanifold M of a manifold N,

one says that L e is tangent(**) to M if L e where i : : M -~ N is the

identity; this is equivalent to requiring Lu = 0 for every smooth u : : N -~ R such that

u = 0 on M.

If r : I -~ M is a twice differentiable curve in M (with I an open interval in R),

(*) ~ A shorter, but less informative name, could be "diffusors"; and forms of order 2

could be called "codiffusors".

This definition is not ambiguous: it agrees with the classical one when L has

order one.
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for r e I the acceleration r(t) s 
) 
M is defined as rt (d ds 2 2); in other words, for

f : : M ~ R, r(t)f = d dt 2 2 [f(r(t))]. . Using local coordinates, one sees easily that

every L E 03C4xM is a linear combination of accelerations of curves (the set of

accelerations linearly spans all of if L is tangent to a submanifold, these

curves can be chosen in the submanifold.

Schwartz has noticed that, if X is a continuous semimartingale in M, the Ito

differentials dXl and 2 (where is a local chart and Xl the i-th
coordinate of X in this chart) behave formally in a change of coordinates as the

coefficients of a second order tangent vector: the (purely formal) stochastic

differential

dXt = dXit Di + 1 2 d[Xi,Xj]t Dij
is a (symbolic) second order tangent vector to M at . This is but a heuristic

statement, but it has rigorous consequences, the foremost one being the possibility of

integrating second-order forms along semimartingales: If X is a continuous

semimartingale and 8 a second-order form on M,the real semimartingale f8,_dX> can be
defined; in local coordinates, A,dX - t > = + 1 203B8ij(Xt)d[Xi,Xj]t (where 03B8i and

03B8ij are the coefficients of 8 in those coordinates). More generally, this extends to

the case where A is not everywhere defined, but only along the path of X, and may

depend predictably upon t and w. In this case, the above integrands Ai(Xt) ) and

) must be replaced with the coefficients and of the predictable

second-order form et(w) E (see Schwartz [10] prop. 2.7, Meyer [8] 4.6 or [6]

6.24). .

To each L e written + , in local coordinates, is canonically
associated the symmetric tensor L = ~ D. s T M o T M, characterized

intrinsically by

A 

 df ~ dg, L A > = 2 [L(fg) - fLg - gLf] .

If you know L, L is determined up to terms of order 1, so the quotient vector space

03C4xM/TxM is canonically isomorphic to TxM 0 TxM. This can be illustrated with an exact

sequence

0~TxM~03C4xM~TxM~TxM~0.

Definition Let M and N be manifolds, x be a point in M, y a point in N. A linear

mapping f : : XM -~ is called a Schwartz morphism if 
" h

(i) fL has order at most one if L has (equivalently : L = 0 => fL = 0); let

: T N denote the restriction of f to T M;

(ii) for every L e z M, f~ = (fi ~ 
x

x

The (non-linear) space of Schwartz morphisms from zX to ryN will be denoted
first two letters stand for "Schwartz Morphisms"; only the second M is
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the name of the manifold!).

Remark An attempt to merge these two conditions into one could f(A) 0 f(B)

where A e TXM and H is a (first order) vector field near x, since the only possibility
for this formula to make sense is by requiring that f(A) and f(B) are themselves first

order vectors; but of course this is cheating !

These conditions (i) and (ii) can be restated as existence of a f1 making the
following diagram commutative:

x x x x

lf1 lf lf1 ® f1

Y Y Y Y

In local coordinates near x, near y), a linear f : 03C4xM ~ t y N is
characterized by its coefficients fa , fa. , fa , (symmetric in i,j ’ or a,p ,

wherever possible), such that, if L = + E tX ’

fL = (f03B1ili + f03B1ijlij) D03B1 + (f03B103B2ili + f03B103B2ijlij) D03B1 03B2 
03C4y N;

and f is a Schwartz morphism if and only if

f03B103B2i = 0

{f03B103B2ij = 1 2 (f03B1if03B2j +f03B1jf03B2i).(SM)

f03B103B2ij = 1 2 (f03B1if03B2j + f03B1jf03B2i).

PROPOSITION 1. Given x E M and y e N, a mapping- f : 03C4xM ~ 03C4yN is a Schwartz morphism
if and only if there exists a smooth ~ : M -~ N, with ~(x) - y and f = ~x.
PROOF In local coordinates’’
- 

~ L = D + D . ,

= [liDi03C603B1 (x) + lijDij03C603B1 (x)]D03B1 + lijDi03C603B1 (x)Dj03C603B2 (x)D03B103B2,
so f = 03C6x is given by = Di03C603B1(x) , f03B1ij = and by conditions (SM);, it is a

Schwartz morphism.

Conversely, if f is any Schwartz morphism, the same formula shows that, for a

03C6 : M ~ N with 03C6(x) = y, f = 03C6x if and only if fa and and

the proposition holds since it is always possible to construct a function with

prescribed partial derivatives up to order 2 at one given point.

COROLLARY 2. Let M, N, P be manifolds and x s M, y s N, z E P. Let f : 03C4zP be
a Schwartz morphism and suppose ~ : : M -~ N is a C2 immersion at x with ~(x) - y. There

exists a Schwartz morphism g : tzP such that f = g ° 03C8x.
Proof. By Proposition 1, there is a 03C6 : M ~ P with f = 03C6x. Since 03C8 is an immersion
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at x, there are a neighbourhood V of x in M and a C2 function p : : N -~ P with p(y) - z

such that 03C6 = p ° 03C8 on V. This gives f = 03C6x = 03C1y ° 03C8x; the result follows since, by

Proposition 1 again, Tp is a Schwartz morphism. N

DEFINITION. Let M and N be manifolds, and P be a submanifold of the product M x N.

One says that a Schwartz morphism f e S Xy(M,N) is constrained to P if (x,y)E P and if

~ in Proposition 1 can be chosen such that (~,~(~))E P for every ~ in a

neighbourhood of x in M.

For (x,y)e f, the set of Schwartz morphisms from T X M to T N constrained to P will
be denoted SM xy (M,N;P) . Remark that SM (M,N) = SM (M,N;MxN). .

The next proposition, a characterization of constrained Schwartz morphisms, will

make use of the following notations: ° for L e T X M and (x,y)E M x N, (L)M e 
, 

T (MxN)
will be the differential operator defined by (L)xU = Lv, where v(~) = u(~,y); that is,

by letting L act on the first variable only, the second one being kept fixed.

Similarly, for L e T Y N, one defines (L)N e T (M x N). .

PROPOSITION 3. Let P be a submanifold of M x N, (x,y)E P and f e SMXy(M,Ny. The

Schwartz morphism f is constrained to P if and only if, for every L E z M, the . 

A

second-order vector( ) (L)M + (fL)N + fL E (M x N) 
. 

is tanqent to where 
. 

f is

the linear mapping from T x MeT x X to x N) defined by

+ 

In the above product (fA)N(B)M, , the two first-order differential operators (fA)N
and (B) act on independent variables, so they commute, and the product is

well-defined even though each of them is only defined at the point (x,y). .

PROOF. Let Lf = (L)M + (fL)N + fL.
First, suppose f is constrained to P, so there exists a smooth ~ : : M -~ N, with

;(x) = y, ~X = f and graphic P. Letting ~(~) = (~,~(~)) f define a smooth
. : : M -~ M x N, we shall show that, for every other words,

L u = for every smooth u on M x N. As both sides depend linearly on L, it

suffices to see it when L is the acceleration 1(0) of some curve 1 : : 8 -~ M with

TT(0) = x. In that case, o x L = r(0), where r : : x -~ M x N is the curve

03C8°03B3(t) = (r(t),b(t)), with 6 = So its acceleration is the vector

u ~ d2 dt2
|t=0 

u(03B3(t),03B4(t)),

giving 03C8xL = + (03B4(0))N + 2(03B3(0))M(03B4(0))N. But T(0) == L, 6(0) = fL and L =
1(0) ~ r(0), so the last term is precisely fL, and $ x L = Lf.

( * )A probabilistic interpretation of this vector will be given in terms of stochastic
differential equations by Proposition 5.
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Taking now any u that vanishes identically on P gives u°~ = 0, hence Lfu =
L(u°~) - 0; this shows that Lf is tangent to P at (x,y).

Conversely, if Lf is tangent to P for each L, taking L E T M gives a
Lf s T (MxN) tangent to P, with first projection L. So the first projection
(~,z) -~ ~ from P to M is a submersion at x, and, replacing if necessary M with a
neighbourhood of x, we can suppose that the first projection is onto. By replacing N
with a neighbourhood of y and choosing suitably the chart (9), the equations of P
have the form

q  a S n

for some functions ea of m + q variables( * ). . Letting ua(~,r~) - na - ea(~,ql, " ,,~q)
gives 0 on P for a > q, whence Lfua - 0 for every L. This can be written

(*) f03B1i = f03B2i D03B2e03B1 + Die03B1

f03B1ij = Dije03B1 + f03B2ij D03B2e03B1 + 2f03B2i Dj03B2e03B1 + f03B2i f03B3j D03B203B3ea
(with a > q and the summation indices 03B2 and r ranging from 1 to q).

Now choose any  : : M -~ N such f (this is possible because f is a

Schwartz morphism). . Define $ : : M ~ N by

03C803B1(03BE) if a s q

03C603B1(03BE) = {
e03B1(03BE,03C81(03BE), ...,03C8q(03BE)) if a > q.

As the graph of 03C6 is included in P by construction, the proposition will be proved if

we verify that f = ~x, . But the Schwartz morphism g = ~x is constrained to P; so

(first part of this proof) 0 for every L, and g also verifies (*). .

Since these formulae give, for a > q, the coefficients fa and faj in terms of f~ and
f03B2ij with p s q, and since g03B2j = f03B2, g03B2 = f03B2 for 03B2 s q by definition of 03C6, all 
i~ i i ij ij

coefficients of f and g agree. /

II. INTRINSIC STOCHASTIC DIFFERENTIAL EQUATIONS

Suppose given two manifolds, M and N, a filtered probability space

) verifying the usual completeness and right-continuity conditions, ’ a

M-valued semimartingale X with continuous paths, and a Fa-measurable, N-valued random
variable yp.

We are going to deal with a stochastic differential equation of the form

(SDE) dXt(w), Y4 = Y~
where dX and dY are the symbolic Schwartz differentials of X and Y. Since, formally,

(*)If q = n, that is, if P is open in M x N, the result is trivial.
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and the coefficient should be a linear

mapping from 03C4Xt(03C9)M to 03C4Yt (w)N. Sp, in local coordinates, it will be given by

coefficients , , F03B103B2ij, all depending upon Y, t and w. Now express dX and

dY in local coordinates to transform (SDE) into the system

dY03B1 = F03B1i(Y)dxi + 1 2 F03B1ij(Y) d[Xi,Xj]

1 2 d[Y03B1,Y03B2] = F03B103B2i(Y)dxi + 1 2 F03B103B2ij(Y) d[Xi,Xj].1 + 1 °

But this system is overdetermined: the rules of stochastic calculus make it possible

to compute 1 2 from the differential dYa and more precisely, the first

equation(s) implies
d[Y03B1,Y03B2] = F03B1i(Y) F03B2j(Y) d[Xi,Xj].

To make this compatible with the second equation(s), it is reasonable to assume that

F03B103B2i = 0 , F03B103B2ij = 1 2 (F03B1i F03B2j + F03B1j F03B2i),

or, equivalently, that each F(Y)t(w) is a Schwartz morphism.

With a Lipschitz hypothesis on F, we shall state and prove an existence and

uniqueness theorem for equations of this type. Although the proof consists only in

extending to manifolds results that are well-known in the vector case, it is long and

boring; so it is worth trying to maximize the efficiency of the theorem by gaining

generality, and we shall also take into account the case when the solution Y remains

linked to X by one or more relation. Technically, this is done by considering a

closed submanifold P of M x N and considering only Schwartz morphisms F(y)t(UJ) that

are constrained to P. This situation arises, for instance, when the stochastic

differential equation represents a lifting of X in some fiber bundle N above M; in

that case, the solution Y has to live above X, the equation is defined for those Y

only, and the constraint P is the submanifold of M x N consisting of the points (x,y)

such that y is above x.

THEOREM 4. Given M, N, Q, F, X, y0 as above, let P be a closed submanifold of

M x N, and suppose that e P. For every predictable time ~ and every N-valued,

continuous semimartingale Y with YD = y0, defined on and verifying (X,Y) e P

in this interval, suppose given a predictable process F(Y), also defined on 

such that

(i) for every (w, t) e 

e (M, N; P) ;

(ii) F(Y) is locally bounded : there are stopping times Tn with limit ~ such that
the imaqe by F(Y) of each random interval [[4,Tn]]f1(tTn>0}xR+) j is relatively compact

(in the manifold SM(M,N;P)); 
~ ~ 
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(iii) F is non-anticipatinq : for any predictable time T, the restriction of F(Y)

to [(0,~[[f1[[O,TJj depends only upon the restriction of Y to this interval;^ 

(iv) F is local( * ): : for every non-negligible A e F, the restriction of F(Y) to

((0,~[(~ (A x R+) depends only upon the restriction of Y to this set;

(v) F is locally Lipschitz : for every compact K c N, there exists a measurable

(not necessarily adapted) increasing process L(K,t,w) such that, if and YS(w)
are in K for 0 ~ s ~ t,

d(F(Y’)t (03C9) , F(Y")t (03C9)) ~ L(K,t,03C9) sup d(Y’s(03C9), Y"s(03C9)).
0~s~t

There exists a unique pair (Y,~) as above, with 0  ~ 5 ~, such that Y e lodes

at time ~ if ~ is finite (i.e, the path is not relatively compact in N)

and verifies on ((0,~([ the stochastic differential equation

dXt(w)
(this means, for every smooth second-order form 0 on N,

J  e, dY > = J  F (Y) *8 (Y) , dX >).

Moreover, if (Y’,~’) is another solution to this equation starting from the same

initial condition ya, then ~’ s ~ and Y’ = Y on ([0,~’([.

REMARKS. In hypothesis (v), d denotes any Riemannian distances on the manifolds N

and SM(M,N ;P) ; the statement does not depend on the specific choice of d since the

ratio of any two Riemannian distances on a manifold is always bounded above and below

on compact sets.

Hypothesis (iv) is used only once, to transform the process L(K,t) in (v) into a

deterministic process. When L(K,t) does not depend on w, that step is not necessary,

and the result holds without assuming (iv). .

PROOF.

First step: The theorem is true with the additional assumptions that M = Rm,
N = Rn, P = M x N (that is, no constraint at all).

Taking the canonical global coordinates on M and N

transforms the given equation into a system

dY03B1t = F03B1i(Y)t dxit + 1 2 F03B1ij(Y)t d[Xi,Xj]t

1 2 d[Y03B1,Y03B2]t = F03B103B2i(Y)t dXit + 1 2 F03B103B2ij(Y) t d[XiXj ]t.

As observed above, the last n2 equations are a consequence of the first n ones and of

F(Y)t being a Schwartz morphism; so we may forget about them.

(*)This hypothesis is not necessary if the increasing processes L(K,t) in (v) are

deterministic.
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; [0,1] be compactly supported in [0,p] and equal to 1 on [O,p-1]. .

Define a new system of equations

(*l + 1 
by Gp03B1ij(Y)t

For each p, this new system is globally Lipschitz in space. Indeed, supposing

sup ~Y’s~ ~ sup IIY"II (else, exchange Y’ and Y"),
0~s~t 

° 
0~s~t

|Gp03B1i(Y’)t - Gp03B1i(Y")t| ~ 03C8p(sup~Y’s~)|F03B1i(Y’)t - F03B1i(Y")t|

_ 

P P 
| |F

03B1i
(Y") t|

~ L (B (p) , t, w) supllY’ - Y"11
sst 

~ ~ 
-

+sup ( (supIlY’1I - sup~Y"s~) L(HIP1 ,t,03C9)
s~t 

~ 
sst 

~

S L’ ( t, w ) sup IIY’ - Y"II I
0~s~t

with L’ (t,w) = L(B(p),t,w) sup ld(0) |)]; and similarly for Gpk.
~~

For t,q > 0, let Q tq = {~a : : q) E F. Since F, and hence also Gp, is

local, it is possible to solve the globally Lipschitz system (*) on Q x[0,t] with
the given initial condition y (see Metivier [7]); and for q1  q2 the solutions agree
on 03A9tq1 x[O,t] by uniqueness. Letting q ~ ~ shows that (*) has a unique solution on

[[O,t]], . Similarly, letting t -~ ee and using the non-anticipation assumption gives a

unique solution to (*) on Q x 8+, , starting from y0. Let Y(p) denote this solution.

If T(p) = inf f t : : p-1), is a solution to (*) with X replaced

by so it is also a solution to dY = F(Y) dXIT(P); conversely, if Y is any

solution to dY = F(Y) dX starting from y.. and if S(p) is the first time when

~Y~ ~ p-1, then, on [[0, T (p)AS (p)]] , Y and Y (p) are two solutions of (*), hence

Y = Y(p) on this interval, and S(p) = T(p). . This implies that T(p) S T(p+l) and

Y(p) = Y(p+l) on [[O,T(p)]]. . So letting ~ = sup T(p), the conclusion of Theorem 4

peN

holds; ( is predictable as the explosion time of the continuous, adapted process Y.

Second step: We still assume M = R and N = Kn, but P is now a closed submanifold in
M x N (it is not arbitrary: the very existence of the Schwartz morphism F(Y) t (w)
constrained to P implies that the projection of P on M contains a neighbourhood of
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Xt(w)). .
We are now given F(Y) only for those semimartingales Y such that (X,Y) is

P-valued; we shall first extend the definition of F(Y) to all N-valued continuous

semimartingales. Let p : : M x N -~ N denote the second projection.

There exists an open neighbourhood Q of P in M x N such that the mapping

n : : Q -~ P with n(z) the point of P closest to z (for the Euclidean distance on M x N)

is well-def ined and smooth on Q. 
(*) ) 

Let ~ : : M x N -~ [0,1] be smooth, with ~ = 1 on P

and support 03C8~Q. For every N-valued continuous semimartingale Y defined on some

[ [0, ~ [ [, letting Z = (X,Y), define, for (w, t) e [[0,~[[ [

= inf 03C8(Zs)

Gaj (Y) t= Faj (pnZ) t inf 03C8(Zs)
with the convention " undefined x 0 = 0".

This G is an extension of F to all N-valued continuous semimartingales. Each

G(Y) is a locally bounded, predictable process in SM(M,N), above (X,Y); clearly, G is

also non-anticipating and local. It is also locally Lipschitz for, if Y’ and Y" are

semimartingales in N, taking their values in a compact K, letting C(t,w) denote the

compact (X (u), and r(t,w) the compact [C(t,w) x support(~), one has,

if for instance inf inf ~(z"),
0~s~t 0~s~t

inf 

inf 03C8(Z"s)| |F03B1i(03C103C0Z")t |

s A(r(t,w)) sup Y"s~
sst 

~ ~

+ sup sup IIYs - Y"s~ ( 

(where A(r) is a Lipschitz constant for pn on the compact r), and the last factor

I is estimated by 
1 

[sup + diam(K)], ’

using the fact that is locally bounded.

So the first step, applied to this G, shows the existence of a unique Y in N,

solution to dY = G(Y) dX, exploding at some time ~. Using .the hypothesis that F is

constrained to P, we proceed to show that the (M x N)-valued process Z = (X,Y) spends

all its life-time in P.

If such is not the case, there is a stopping time T  ~ with ZeP on [[O,T]} and

P[T = P}] > 0.

Without loss of generality, it is possible to suppose that T = 0 (define Ft = 

(*) This argument corrects a mistake in Emery [6]: : I erroneously assumed the

existence of a neighbourhood of P diffeomorphic to P x Rq, but there may be

topological obstructions to this.
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Xt and, for aN-valued (Ft)-semimartingale Y with 0 = YT,
Yt if t ~ T

Yt = {

Yt-T if t ~ T
and F(Y)t = F(Y) T+t ; all the hypotheses are preserved by this time-translation). °

Let P’ be the open subset of P consisting of the points z such that the first

projection p : P 1 M is a submersion at z; by hypothesis (i), SMX0,y0 (M,N;P) is not

empty and so (XQ,ya) is in P’. But P’ is the union of countably many open sets each
of them diffeomorphic to a product M’ x R, with M’ open in M and the first projection
preserved by the diffeomorphism.

Hence, for one of these open sets, say D, the F0-event {Z0D and 0}
is not negligible; conditioning on it allows us to suppose.it has probability 1. Call

8 the diffeomorphism from M’ x R to D.

The equation dY = F(Y) dX will now be transformed, using this 8, into an equation
dU = H(U) dX with unknown U in R. If U is a R-valued continuous semimartingale with

define Y in N by 8 (X, U) ( that is, Y = p8 (X, U) ) , and, for

fixed t and 03C9, 03C6 : M ~ N such that (03BE,03C6(03BE)) s D for 03BE close enough to Xt(w) and

~Xt (w) _ 
define O : M’ -~ R by 8(~,~(~)) - and call the Schwartz morphism

E (M, R) .

By a bicontinuous time-change, the first time when X exits from M’ can be made

infinite, and the first step of the proof, applied this time to equation dU = H(U) dx,
produces a solution U _ on some interval ([O,~U[[ 

Now the N-valued Y = p8(X,U) verifies

dX,
so it is also a solution to dY = G(Y) dX and it must agree with Y; but Y leaves P at

time 0 whereas Y does not, giving the required contradiction.
Third step : Getting rid of the hypothesis that N is a vector space.

Since N is arcwise connected, it is paracompact, and hence it can be imbedded as
a closed submanifold of some Rn. So M x N is imbedded in M x Rn, and P is a closed
submanifold of M x Rn. Denote by i . N  Rn and j : P -~ M x Rn those imbeddings;

For be defined by f : 0 . This is a

Schwartz morphism constrained to jP. Indeed, there is a 03C6 : M ~ N with p

and 03C6 = f; for 03C8 = jp and f = . So the equation dY = F(Y) dX can be
transformed into an equation dZ = F(Z) dX, with unknown Z in Rn, constrained to jP;

= j 1Z is the unique solution to the given equation; since ’P is closed in
M x Rn, both Y and Z explode at the same time
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Last step: Removing the assumption M = 8m.

By Lemma (3.5) of [6], there is an increasing sequence of predictable times Tk,
with 0 and sup Tk = co, such that, on each interval [[Tk,Tk+1]]’, X remains in the
domain of some local chart (we denote by [[S,T]]’ the interval [[S,T]] ~ ((T>S}x R+),
equal to [S,T] if S  T and empty if S ~ T). By induction on k, the equation

dY = F(Y) dX has a unique solution on [[O,Tk]] (with a possible explosion). Indeed,

supposing that this holds on [[O,Tk]], letting Õ = [Tk+1 > Tk, ~ > 

Ft - , Xt (on the interval [[O,Tk+1-Tk]]’, this process lives in

the domain of a local chart, so we may see it as Rm-valued), F(Y)t = F(Y) T +t’ where

Yt = {the 
solution to dY = F (Y) dX on [[0, Tk] ]

~ 

(this is defined only for Yp = YTk e Fp) gives a solution Y on (with a

possible explosion); and the process equal to

Yt if t ~ Tk

is the unique solution to dY = F(Y) dX on [[O,Tk+1]]. As its restriction to 

is the solution to the same equation on the latter interval, these processes can be

patched up together, thus proving the theorem. *

Given L and f E SM (M,N), the second-order vector
x 

~ xy AA

Lf - (L)M + (fL)N + fL E 
introduced in Proposition 3 can be given an interpretation in terms of stochastic

differential equations.

PROPOSITION ~ 5. a) Gi~ ven f E SM xy (M,N), the linear mapping f : x N)

defined by fL = L is a Schwartz morphism : f e x N).

b) Let (X,Y) be a continuous semimartingale in M x N and F be a locally bounded,

predictable process in SM(M,N) such that for all t and c~, E (M,N).

The stochastic differential equations

dYt (w) - 
and

d X,Y t(w) - Ft(w) dXt(w)
are equivalent : Y solves the former if and only if (X,Y) solves the latter.

PROOF. a) By Proposition 1, there is a smooth ~ : M -~ N with ~(x) = y and f = ~x.
Define ~ : M -~ M x N by ~(~) = (~,~(~) ) . We have seen, in the proof of Proposition 3,
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that f = x; so applying Proposition 1 again gives the result.

b) Of course, the rigorous meaning of dY = F dX is that, for every smooth

second order form 8 on N,

f  8, dY > = f  F*8 (Y) , dX >;
and similarly for d X Y - F dX. In local coordinates ((xl) on M, (ya) on N), using
the fact that F and F are Schwartz morphisms, dY = F dX is equivalent to

dY03B1 = F03B1i dxi + 1 2 F03B1ij d[ Xi,Xj]
and F dX to

{dXk = Fki dXi + 1 2 
Fkij d[Xi,Xj]

dY03B1 
= F03B1i dXi + 1 2 F03B1ij d[Xi,Xj],

F + 2 ’

and if suffices to check that Fi = 8i, Fi, = 0, F - Fa and F . - Fa.. These formulaei i ij i i l~ y
are direct consequences of

F(Di) = (Di)M + (FDi)N
A 

= + 1 2 (Di o D.)
and of the fact that Q D~) is in the vector space apanned by the and does

not contribute to Fi. J nor F J .. ’

III. ORDINARY DIFFERENTIAL EQUATIONS

Since our goal is to transform deterministic geometric constructions into
stochastic ones, this section describes those deterministic operations. Everything is
similar to what has been seen in the stochastic case, and may be much simpler, since

only first-order geometry is involved.
*

Let M and N be manifolds. The vector space TxM ~ T y N of all linear maps from TxM
to T y N will also be denoted by L xy (M,N); remark that Proposition 1 has no interesting
analogue at order 1, since every element of LXy(M,N) has the form ~x for a smooth
~ : : M -~ N with ~(x) - y. If P is a submanifold of M x N and (x,y) a point in P, a

linear e : TXM ~ TyN (that is, an element of Lxy(M,N)) is said to be constrained to P
if there exists a smooth 03C6 : M ~ N, with 03C6(x) = y, x = e, and (03BE,03C6(03BE)) p for 03BE close
enough to x in M. The so-defined (affine) subset of will be denoted

Lxy(M,N;P). . Of course, the analogue of Proposition 3 holds °

PROPOSITION 6. Let P be a submanifold of M x N, (x,y) a point in P, and e E L (MxN)
The linear mapping e is constrained to P if and only if, for every A E TxM, the
tangent vector (of order 1 ) (A)M + is tangent to the submanifold P.
The proof is quite similar to that of Proposition 3, with simpler computations since
second-order terms are no longer considered; so we omit it.

THEOREM 7. Suppose given two manifolds M and N, a closed submanifold F _of MxN, a

curve (x(t))tZ0 °f= C1 in M and a point y in N, with (x(0),y ) s P. For ever
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0  ~ ~ co and every C1 curve with y(0) = y0 and (x(t),y(t)) e P for t  ~,

suppose given a family such that

(i) is in 

(ii) e(y) is locally bounded: for e > 0, the set {e(y)s, , 0 s s ~ 03B6 -E] is

relatively compact in the manifold U 

x, y ~

(iii) e is non-anticipating : for each t  ~, the restriction of e(y) to [O,t]

depends only upon the restriction of y to (O,t];

(iv) e is locally Lipschitz: for every compact K C N there is an increasing

function L(K,t) such that, if y’(s) and y"(s) are in K for 0 5 s 5 t,

then

5 (s),y"(s)).

There exists a unique pair (y,03B6) as above, with 0  03B6 ~ ~, such that y ex lodes

at time ~ if ~  " and verifies on [0,~) the ordinary differential equation

y(t) = e(y) t x(t)
Moreover, uniqueness holds for this equation : for ever 0  ~’ S ~ and ever

curve (y’(t)) ~ with y’(0) 
= y~ and (x(t).y’(1)) e P verifying

Y’(t) _ e(y’)t x(t), one has ~’ S ~ and y’ = y on [0,~’l. .

The proof is very similar to that Of Theorem 4 (with simpler computations since

first order geometry only is involved); we omit it.

IV. THE STRATONOVICH TRANSFER PRINCIPLE

This section deals with transforming an ordinary differential equation between

manifolds into a stochastic one, via Stratonovich stochastic 
calculus. This is, of

course, quite classical and has been extensively used by many 
authors (a typical

example is Bismut [1]), mostly in the framework of Brownian motions or diffusions; 
it

was extended to manifold-valued semimartingales by Schwartz [10] and Meyer [8]. . The

setting chosen here is borrowed from [6]; ; the only new feature is the constraint P.

Notice that the ordinary differential equations to be transferred by 
Theorem 8 below

are much less general than those considered in Theorem 7. This is the main weakness

of the Stratonovich transfer principle: it requires some smoothness(*) and the

coefficients in the equation should not depend on the past values 
of the curves

considered (though time itself can be incorporated in these curves, by 
the usual

space-time trick). .

If X is a continuous semimartingale in a manifold M, and if we are given for each

t and w a 1-form ~Y t (w) on M at Xt(w) (that is, ~Yt(~) E such that the

T*M-valued process f is a continuous semimartingale, it is possible to define the

Stratonovich integral 6Xg as a real semimartingale (see [8] or [10]). It is

characterized by the two properties, where f is an arbitrary smooth function on M

f ~ df(Xs) 6xs = f(Xt) - 

( * )but T. Lyons told me that, for reversible Dirichlet processes X, the Stratonovich

integal can be defined for any bounded, Borel f.
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if It = then = aIs;
the last integral is a Stratonovich integral of real semimartingales.

This makes it possible to give a meaning to Stratonovich stochastic differential

equations of the form

6Y = e(Y)5X

where X is a given M-valued, continuous semimartingale, the unknown Y is a N-valued

continuous semimartingale, and e(Y)t(w) is a linear mapping from T . M to :

A solution Y to this equation is a semimartingale Y such that, for every 1-form a on

N, the Stratonovich integrals fa(Y)aY and a(Y)] 5X exist and are equal (e (Y)
* *

is the adjoint of e(Y), so it transforms a(Yt) ) e TYt N into an element of TXt M).
The Stratonovich transfer principle for equations between manifolds of the type

considered here can now be stated.

THEOREM 8 (Stratonovich transfer principle). . Let M and N be manifolds, P be a closed

submanifold of MxN, and, for each (x,yisP, e(x,y) be in Lxy(M,N;P). Suppose that the

mapping e:P -~ L(M,N;P) is of class 

There exists a unique family where 

mapping from TxM to TyN, such that for every curve (x(t),y(t)) of class C in P

verifying the ordinary differential equation y(t) - e(x(t),y(t)) x(t), one has also
y(t) = f (x(t),y(t) ) X(t) . .

Moreover each f(x,y) is a constrained Schwartz morphism : f(x,y) E S Xy(M,N;P),
depending in a locally Lipschitz fashion upon (x,y); and the intrinsic stochastic

differential equations

dYt = dXt
and

aYt = e(Xt’Yt) axt
are equivalent: given X and Y~, every solution Y to one of them is also a solution to
the other.

Remark that Theorem 4 applies here, showing existence and uniqueness of the
solution of dY = f(X,Y)dX ; so these existence and uniqueness properties transfer to
the Stratonovich equation aY = e(X,Y)6X.

PROOF. The case when P = MxN (no constraint at all) is proved in (7.22) of [6]; ;
so we just have to reduce the general case to that one. [Observe that the proof of
this particular case consists, first in computing the f such that y = ex implies
y = fx, second in computing the f such that dY = fdx and 6Y = e6x are equivalent, and

finally in verifying that both results agree. But not only are both results the same:
the computations are step by step identical; and this suggests that some

computation-free proof might predict that both f agree without actually calculating
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them.] ]

In the general case, since P is closed, it is possible to extend the given family

e = e on P, e(x,y) e LXy(M,N) - TxM~TyN, and e is of class 
[This can be done, for

instance, using a partition of unity (03C603B1) of some neighbourhood of P in MxN such that
each ~a is compactly supported in a domain Da with the following two properties: ° Da is
included in a product with D~ (respectively D") the domain of some local chart

in M (respectively N), and Da is diffeomorphic to a vector space, with P n Da
corresponding to a linear subspace. Using these local coordinates, extend the

restrictions ea of e to Da into some ea defined in D , a and set e = e a .] 1
The unconstrained theorem (P = MxN) gives a family (f(x,y)) 

xM,YN 
of unconstrained

Schwartz morphisms, such that y = f(x,y)x for every curve (x,y) verifying y = e(x,y)x.
Denoting by f the restriction of f to P, one has y = f(x,y)x for every curve (x,y) in

P verifying y = e(x,y)x, whence existence. Uniqueness stems from the fact that

accelerations of curves linearly span the vector space : given a point (x,y) in P

and an acceleration a e T x M, there is a.curve x(t) in M with x(0) = x and x(0) = a;
solving the differential equation

Y(t) - Y(~) - Y

gives a curve y(t); and y(0) is the only possible value of f(x,y)a.
To verify that the Schwartz morphism f(x,y) is constrained to P, we shall use

Proposition 3: it suffices to verify that, for every L e T M, L = (L) M + (fL) N + fL
is tangent to P. As L depends linearly on L, it suffices to verify it when L is the

acceleration X(0) of some curve x(t). . In that case, fL is the acceleration y(0) of

the curve y(t) just constructed, L is just the tensor product and, since f

restricted to first order is e, fL = 2(y(0))N(x(0))M. Finally,
L = + 2 (x1~) )M(Y(~) )N + 

is nothing but the acceleration in MxN of the curve (x(t),y(t)). As this curve sits

in P, Ler P as was to be shown.

Last, since equations dY = f(X,Y)dX and 6Y = e(X,Y)6X are equivalent, and since

every solution to the former starting in P remains in P (by identification with the

solution to dY = f(X,Y)dX), it also holds for the latter, which can hence be replaced

with 6Y = e(X,Y)6X. t
Observe that the Stratonovich transfer principle (Theorem 8) deals with ordinary

equations less general than Theorem 7. This is not a minor technical difficulty, but

an essential limitation of the method itself (emphasized by Schwartz [10] p.111j : : if

e(Xt,Yt) ) is also allowed to depend on t (in a non-smooth fashion) or on w (for

instance as a functional of the past of X or Y), the construction of f from e

described in the above statement does not give an intrinsic stochastic differential

equation equivalent to the Stratonovich one--if it can be performed at all!

As is well known to practitioners of stochastic differential geometry, this
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transfer principle is as easy to apply as it is general: Write the ordinary
differential equation you have to transfer in local coordinates (multiplying
everything by dt if necessary to replace derivatives with differentials), then make

everything random, with Stratonovich differentials 8Ya and aXl instead of dya and dxl,
For the sake of a future comparison with the Ito transfer principle, this section

ends with a deterministic approximation to Stratonovich equations. We shall need
three definitions.

DEFINITION. An interpolation rule on a manifold M is a measurable mapping
such that

( i ) I(x,x,t) = x , , I(x,y,O) = x , , I(x,y,l) = y;
(ii) I(x,y,’) is a curve of class CZ;
(iii) for every compact K c M and every smooth there are a constant c and

a function ~K on KxK, with 0 when d(x,y)-~0 such that, for all s andKt in
[0,1] and x and y in K, the function h(t) = f(I(x,y,t)) verifies

|h’ lt) - h’ (s) - (t-s)h"(s)| ~ 03C6K(x,y) d2 (X’Y) .
(As above, d denotes any Riemannian distance on M; the choice of d is irrelevant since
any two such distances are equivalent on compacts). ’

This definition is slightly more general than the one in [6]: : the bound (of order
3) on the third derivative has essentially been replaced with a Lipschitz condition
(with a constant of order more than 2) on the second derivative. Notice than an easy
integration gives here

~h(t) - h(s) - ( s 
.

Examples of such interpolation rules are the Euclidean interpolation, if M is

equal (or diffeomorphic) to 9, or, more generally, the geodesic interpolation, where
M is endowed with a connection and I(x,y,t) is the small goedesic linking x and y if x
and y are close enough, and an arbitrary smooth curve if (x,y) is outside some
neighbourhood of the diagonal. (See Proposition (7.13) of [6].)
DEFINITION. Given subdivision is an increasing sequence 
of stopping times such that TO = 0 and sup Tn = co 

~ ~°
0 

n 
n ’ ’

The size ~o~ of a subdivion o = is the number

A (Tn^k))]
(so that, for a sequence (aq) of subdivisions, if and only if, for every
compact K c= [0,co), the distance inf inf ft-sf between K and the subdivision tends to

t~03C3 ssK
zero in probability). .

DEFINITION. Let N be a manifold. On the set of all pairs (Y,~), with ~ a random
variable in (0,~] and Y a N-valued, continuous, measurable process
defined on [[0,03B6[[, the topology of uniform conver ence on co acts in probability is
defined by the following property: A sequence (Yn,~) converges to a limit (Y, ) iff
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03B6n^03B6 tends to 03B6 in probability and, for every k > 0, the random variable

sup d(Ynt,Yt)
tends to zero in probability.

Remark that this does not depend on the choice of the Riemannian distance d.

Since 03B6n^03B6 tends to 03B6 in prbability, the random variable above is well-defined except

on an event whose probability tends to zero, and convergence in probability makes

sense. As each point has a countable basis of neighbourhoods, the topology can be

defined with sequences only.

THEOREM 9. (Stratonovich approximation). . Let M,N,P,e be as in Theorem 8, X be a

continuous semimartingale in M, and yo a Fo-measurable random variable in N such that
) belongs to P. Let I be an interpolation rule on M and, for each subdivion a,

let X denote the (non adapted) piecewise smooth process
t-T

Xt = ~ Tn S t S Tn+~
When the size to! tends to zero, the piecewise smooth solution Y° to the

(pathwise ordinary) differential equation
Y = ’ YO = y0

converges uniformly on compacts in probability to the solution Y to the Stratonovich

differential equation

5Y = ’ Yo = 

yo .
This general form of a classical result may be found in [6], , so we won’t prove

it. Though the definitions of an interpolation rule and of the size of a subdivision

are stronger in [6] than here, it is easily verified that only the weaker properties

taken here as definitions are used in the proof.

Remark that Theorem 9 easily bootstraps itself: Y° converges to Y, not only
uniformly on compacts in probability, but also in a stronger sense: For every other

Stratonovich stochastic differential equation from N to another manifold Q,

8Z = g(Y,Z)6Y, the solution Z° to the equation driven by Y° converges to the solution

Z. This is obtained by considering the process (Y,Z) in NxQ as the solution to an

equation driven by X, and applying Theorem 9 to this enlarged equation.

V. THE ITO TRANSFER PRINCIPLE

In this section, ordinary differential equations between manifolds are

transformed into stochastic ones using what Meyer calls Ito integrals on manifolds.

They extend the usual Ito calculus in a flat space, not to an arbitrary manifold, but

to a less general geometric structure: a manifold endowed with a connection.

Recall Meyer’s interpretation of a connection in the frame of second order

geometry [8]: ; If a manifold M is endowed with a connection, there exists for each xeM

a linear mapping such that, if A and B are vector fields on M, F(A) = A

and F(AB) = VAB - 2T(A,B) (all these vectors are evaluated at x; AB is the second
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order differential operator obtained when composing the first order ones A and B; T is

the torsion of V) .This F does not characterize the connection, but only its

torsion-free part: two connections yield the same F if and only if they have the same

geodesics (or the same convex functions, or the same martingales). Conversely, every

family of linear mappings depending smoothly on x, and such that F(A) = A

for every first-order vector A can be obtained this way, from a unique torsion-free

connection. (The letter F stands for "first-order part".) In local coordinates, if

r~k are the Christoffel symbols of the connection,J 
(~,i+ ] Di.

If M is a vector space with the flat connection, FL is obtained from L by keeping

only the first-order terms, and killing the second-order ones (in any system of linear

coordinates). . If M is an arbitrary manifold (with an arbitrary connection), every xem

is the origin of a system of normal coordinates (they are linear functions of the

inverse exponential map at x); the functions rlk + rk, for this chart vanish at x, so,

at x, FL consists simply in reading L in some normal coordinates and deleting the

second-order terms.
*

For each xeM, the linear F : : 03C4xM ~ TX has an adjoint F* : zX that makes

first-order forms into second-order ones. This enables Meyer (8l to define the Ito

integral of a first-order form a along a continuous, M-valued semimartingale X as

f  Fa,dX > (the first definition of those Ito integrals is due to Duncan (4l,

in the Riemannian case) . Clearly, this requires no regularity for a : the Ito

integral f  F03C8 , dX > can be defined if 03C8 is any locally bounded, predictable,

T*M-valued process above X.

DEFINITION. Let M and N be endowed with connections, xem and y~N. A linear mapping
f : : T M -~ ~r N is semi-affine if

x y

l - f(FML)
for every L~03C4XM.

The previous description of F in normal coordinates can be restated with this

definition : for xEM, denoting = exp and 03C8 = exp-1x the exponential mapping at x
and its inverse, the inverse linear mappings

03C60 : " x : " 03C40TxM
are semi-affine (the vector space T M is endowed with the flat connection). .

The prefix semi in ’semi-affine’ recalls that f does not necessarily commute with the
connections themselves, but only with their torsion-free parts; nothing is said about
how f carries over the torsion. This is expressed more rigorously in the next
proposition, that will not be used in the sequel (so we content ourselves with a very

elliptical proof, leaving the details as an exercise to the reader). .

PROPOSITION 10. Let M and N be endowed with connections V and v ; denote by

~ : ’ M -~ N a smooth mapping. The following statements are equivalent:
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(i) for every xeM, the push-forward x : T x M ~ 03C403C6(x)N is semi-affine;

(ii) for every geodesic g ; : U -~ M, with U an open interval in R, ~°g ; : U -~ N is a

geodesic;
is affine from to where oM and VN are the torsion-free parts

of ~M and ~N.
PROOF. r’a - the Christoffel symbols of

~’M and ~’N respectively, it is easy to check in local coordinates ((x ) on M, (y ) ) on

N) that each of the three conditions amounts to the relations

rik = 0

for all indices a, i and j. t!

Before stating the Ito transfer principle itself, here is its geometric part. It

is simpler than the Stratonovich one in that it is punctual (and not only local); on

the other hand, it is more complicated to constraint it to submanifolds since they

must be totally geodesic.

LEMMA 11. Let M and N be endowed with connections, x e M and y E N. Let e be a

linear mapping from TxM - to TyN. There exists a unique Schwartz morphism f e SM Xy (M,N)
such that

(i) f is semi-affine ;

(ii) e is the restriction of f to first order vectors.

It is given by f = 3 where 03C6, defined in a neighbourhood of x, is the mapping

03C6 = exp Y ° e 
° exp-1x.

In local coordinates ((xl) on M, (ya) on N), f is given by the coefficients

fi = fij = 2 ej .

If moreover (x,y) is in a totally geodesic submanifold P of M x N (for the

product connection), and if e is constrained to P, then f too is constrained to P.

PROOF. The coefficients of e and f are defined by

e(D. ) - ea D~ ; " f (D. ) - " f (D.. ) - fa. fa f; 
Condition(ii) means ei = fi , , and (i~ is equivalent to f(FMDij) - that is,

to

yielding fk fi fj terms of 

connections. This proves existence, uniqueness and gives the expression in local

coordinates.

To verify that f = x, if suffices to check that x has properties (i) and (ii). .

The first one holds because the push-forward by exp-1x and exp are semi-affine at the
centre, and e is linear (hence affine); the second one because the push-forward by
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exp-1x and exp Y at the centre are the identity on first-order vectors.
If e is constrained to a totally geodesic P, let ~EM be close enough to x and let

n = ~(~). . Let u(t) and v(t) denote respectively the geodesics in M and N such that

u ( o ) = x, v ( o ) = y, = v ( o ) = exp 
y 

1 ( r~ ) = e ( u ( o ) ) . The curve

g(t) - (u(t),v(t)) is a geodesic in the product manifold M x N; its velocity at the

origin is g(o) - (u(0), v(0)) - (u(o), e(u(0))). As e is constrained to P, g(0) is

tangent to P; as P is totally geodesic, the whole geodesic is in P, and

(~,r~) - g(1j e P. So the graph is included in P (at least, near (x,y)), and

f = x is constrained to P..
As the Stratonovich one, the Ito transfer principle transforms ordinary

differential equations into stochastic ones, involving this time the Ito differentials

FMdX and FNdY instead of the Stratonovich ones bX and 8Y.

DEFINITION. Let X (respectively Y) be a continuous semimartingale in a manifold M

(respectively N) endowed with a connection. For each (t,w), let et(w) be a linear
mapping from to dually, maps to One says that

Y is a solution to the Ito stochastic differential equation

FNdY = 
if, for every first order form a on N, the real semimartingales f  a(Y), FNdY> and
f  e*a(Y), FMdX> are equal.

The reader familiar with manifold-valued continuous martingales (see Meyer [8))

will remark immediately that Ito differential equations make martingales into

martingales : if X is a M-valued martingale, every Ito integral along X is a local

martingale, so by the above definition every Ito integral of a smooth first order form

along Y is a local martingale, and this in turn shows that Y itself is aN-valued

martingale.

A A

THEOREM 12 (Ito transfer principle). If the process e is predictable, the Ito

stochastic differential equation FNdY = e FMdX is equivalent to the intrinsic
stochastic differential equation dY = fdX, where : is the

unique semi-affine Schwartz morphism with restriction et(w) to first order.

PROOF. Given the continuous semimartingales X and Y, let T be the first time when

exactly one of the equations is satisfied. If with positive probability T is neither
infinite nor an explosion time for X or Y, there are local charts (xl) on M and (y )
on N such that XT and YT are in the domains of those charts with positive probability.
So, by conditioning, we may work in local coordinates.

Denoting by rlk and ra the Christoffel symbols of the connections, the It
equation is equivalent to

ea(~1+ ~ 
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where the symmetry of the brackets and d[xj,Xk] make it possible to use the
Christoffel symbols of the given connections, without having to remove the torsion.

Since this implies 

d[Y03B2,Y03B3] = e03B2j e03B3k d[Xj,Xk],
it is equivalent to

dY03B1 = e03B1i(dXi+1 20393ijk(X) d[Xj,Xk]) -  1 2039303B103B203B3
1 r"(Y) e? e03B3k d[Xj,Xk];

direct inspections of the coefficients show that this intrinsic equation is but

dY03B1 = fa dXl + 1 2 fa, d[X1,XJ],
with f. and f?. given by Lemma 11.
COROLLARY 13. In theorem 4, assume furthermore that both M and N are endowed with

connections, and that P is totally geodesic ; replace the constrained Schwartz

morphisms by the constrained linear mappings
s 

verifying the same hypotheses.

The Ito stochastic differential equation 
’

FNdY = E(Y) FMdX, YO = y0
has a unique maximal solution, exploding at some predictable time ~ s ~.

PROOF. Use Theorem 12 to transform this Ito equation into dY = F(Y) dX, and apply

Theorem 4. /

REMARKS. 1) As shown by the proof of 11, the Ito transfer principle is as simple to

use in practice as the Stratonovich one. To transform an ordinary differential

equation y = e(x,y)x into a stochastic one, simply rewrite it dy = e(x,y) dx and

replace x, y, dx and dy by their stochastic counterparts X, Y, FdX and FdY; in local

coordinates, dxl is to be transformed into dXl + ~ rl jk (X) d[xj,Xk}. .
2) The stochastic differential equations we have dealt with are of three types:

dY = f dX (intrinsic), bY = e 8X (Stratonovich) and FdY = eFdX (Ito). . Is it possible

to define equations of mixed types, for instance 6Y = eFdX or FdY = e 6X? It seems

that the only mixed equations that make sense are those of the form

FdY = g dX,

with a coefficient g : : and a connection on N. Two particular cases

of this equation are the integral of a second-order form along X (here, N = R) and the

Ito equation FdY = eFdX (here, M is endowed with a connection too and g = eF). . But

besides these two examples, these equations don’t look very interesting.

As is the case with Stratonovich equations, it is possible to approximate the

solution of an Ito equation by discretizing time, interpolating X, and performing a

deterministic operation on the so obtained piecewise smooth curve. In the

Stratonovich case, much freedom was left in the choice of the interpolation rule;

here, the geodesic interpolation only can be used: this is where the connection on M
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comes in. The connection on N will be used in the deterministic construction yielding

the approximate Y: this operation will involve the construction of a geodesic with

prescribed initial position and velocity. Remark that, since both connections are

taken into account through their geodesics only, this construction is insensitive to a

change of torsion (we already know that such is the case for Ito integrals, and hence

also for the Ito equation itself).

Recall that an interpolation rule is called geodesic if there is a neighbourhood

V of the diagonal in M x M such that for (x,y) in V, the curve t -~ I(x,y,t) is a

geodesic. Given a connection, a geodesic interpolation rule always exists, and is

essentially unique: any two agree on some neighbourhood of the diagonal.

THEOREM 14 (Ito approximation) Let M and N be endowed with connections, and P be a

totally geodesic, closed submanifold of M x N. Let e : : R+ x ~ x P -~ L(M,N;F) be such

that

(i) e (t,w,x,y) e 

(ii) w ~ e(t,w,x,y) is F -measurable for fixed t,x,y;
(iii) t ~ e(t,w,x,y) is left-continuous with limits on the right for fixed w,x,y;

(iv) for each compact KC P, there is a measurable (not necessarily adapted)

increasing process L(K,t,w) such that, for (x,y) and (~,r~) in P,
~ 

1 S d (x~Y) ~ ~

Let X be a continuous semimartingale in M, and y0 a F0-measurable, N-valued random
variable with e P. Let I be a geodesic interpolation rule on M, and, for

every subdivision o = define 
t-T

and denote by Xt the right derivative of Xt. Define inductively a continuous,

N-valued process Y° on each interval ~

Yo = Y0 
on each interval Y° is the geodesic with initial condition

e(Tn,w,XT ,YT ) ~ XT . "
n n n n

When the size ~o) tends to zero, the process Y°, well-defined up to a random time
~° s converges uniformly on compact sets in probability to the solution

(Y,~) of

FdYt(03C9) = e(t,03C9,Xt(03C9),Yt(03C9)) F dXt(03C9) ,

Y0 = y0.
REMARKS. 1) A particular case of this Ito equation is the computation of an Ito

integral

Yt = f Q  as ’ , ,

where a is a first-order form on M and N = R. In that case, Theorem 13 reduces to

~ * If N is not complete, some geodesics may explode in finite time.
(**1 Recall the definition before Theorem 9.
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Darling’s approximation result [2]. .

2) In the case when M is a Euclidean space, X a Brownian motion and e does not

depend on 03C9 or x (this is meaningful since, M being a vector space, all tangent spaces

T M can be identified with M), this result is due to Bismut [1] (and Y is called an

Ito diffusion). .

PROOF. First, by induction on the interval , remark that the process

(X°,Y°) takes its values in P, so the very definition ,YT n 

is

meaningful. Indeed, since both curves X° and Y°are geodesics in the interval

[[Tn,Tn+1]], (X°,Y°) is also a geodesic (for the product connection ) ) in this

interval; and since P is totally geodesic and closed, the geodesic (X°,Y°) remains
in P (as long as it is itself defined) provided its initial velocity (XT ,YT ) ) is

tangent to P. But this is a consequence of the definition of 03C3T and the fact that e
n

is constrained by P. 
_ 

.

Observe also that the Ito differential equation given by e is a particular case

of those considered in Theorem 11; whence the existence and uniqueness of Y on a

maximal interval [[0,~[[.

The first step in the proof consists in replacing M and N with the vector

spaces Rm and Rn respectively. Indeed, it is possible to imbed properly M and N into

such vector spaces, and by Lemma 15 below to extend to Rm and Rn the connections v
and v. Since the injections Rm and Rn are affine, P is still (closed

and) totally geodesic in the larger product Rm x Rn, Y is still the solution to

~~ = e(t,X,Y)FdX (with F denoting now the extended connections), , and Y° remains the

same. So no generality is lost when supposing M = Rm and N = Rn; we shall freely use
the global coordinates (xi) on M and (ya) on N, the Euclidean distances and norms, the

vector-valued velocities and accelerations.

For a compact K cP and a positive a, let T = K). It

suffices to show that Y° tends to Y uniformly on [[O,T]], , and, by replacing (X,Y) with

we may suppose that (X,Y) takes its values in compact set, and restrict

ourselves to a compact time-interval. Also, replacing e(t,w,x,y) with

where ~ is a scalar function with compact support, equal to 1 on a

neighbourhood of K, we may suppose that e = 0 on a neighbourhood of infinity.

Now, it suffices to prove Y° -~ Y along a sequence of subdivisions with size

tending to zero; and a classical argument shows that we need to prove convergence for

some subsequence only ; so we may suppose that tends to zero a.s. This

implies sup 2 ,XTl+1 ) ~ 0 a.s. by uniform continuity of the paths; and, using a
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property of interpolation rules, sup !!x !t ~ 0 a,s. In particular, all the vectors

03C3Tl remain in a (random) compact set, independent of o and A. Using now the

boundedness of e(.,u),.,.) on compacts (this is a consequence of (iii) and (iv); the

existence of right limits is used), this shows that e(T.,u,X ,y)X,p remains in a
" ’A ’A

random compact R c TN when o,A and y vary with y in a fixed compact and (X ,y)eP.

.0 
"

But for y outside some compact, e(...,y) = 0; so e(T.,X ~ 
remains in R U Null

(where Null is the null section in TN, the set of all null tangent vectors) when o, A

and y vary, and in particular Y~ is in R U Null for all o and A such that Y exists
~ A

(that is, ~ > T~).
Now, the life-duration of a geodesic ~ is a lower semi-continuous function of the

initial condition T(0)~ so the set U~ of all vectors veTN such that the geodesic T
with T(0) = *v is well-defined on [0,e], is open. As U~~TN when the compact R is

included in U~ for some (random) e > 0; as U~~ Null, Y~ is in U~ for all o and A

such that Y~ exits. Neglecting a (random) finite number of terms in the sequence of
A

subdivisions, we have sup(T. - T )  e; this implies that each geodesic arc

(Y03C3t)Tl~t~Tl+1 is well-defined; and the life-duration 03B603C3 of Y03C3 is identically

infinite.

[In the Riemannian case, the above argument is not necessary since the connection

on N can easily be made complete by a modification near infinity; but for arbitrary

connections, geodesies may "explode" while remaining in a compact set, because their

speed may become infinite.]

To simplify the notations, let A~Z stand for the increment of the process Z from

T " to Tl+1
: A.Z " = - 

ZTl (all our processes are now vector-valued). As Y03C3 and its

velocity Y live in a (random) compact independent of o,
= + + ~-(JA~Y~) with a depending upon o and

A. Using the equation of geodesies Y~ = -r° (Y~ )Y~Y~ and the boundedness ofX "’ A A A
ttA Y !t/tA Xt! for (T - T ) small enough gives

= - T + ~03C303B103B3
with 03A3|~03C303B103B3| ~ 0 a.s.

A
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Similarly,

039403B3Xi = (Tl+1-Tl) 03C303B1Tl - 1 2 (T + ’T 12 0393ijk(XTl) 03C3jTl 03C3kTl + (~0394lX~2),
whence

(Tl+1-Tl) 03C3iTl = 0394lXi + 1 2 0393ijk(XTl) 0394lXj 0394lXk + 03C3il
with another ~03C3il verifying also 03A3 |03C3il| -. 0 a.s.

Now the definition ea ,YT ) XT of y° gives
’A 

~ " ~ ~ ~

FiT 0394lXi + 2 F03B1jkTl e Xj e Xk + E°a

with 03A3|~03C303B1l| ~ 0 and with coefficients
FaT = 

F03B1jkTl= F03B1iTl 0393ijk(XTl) - F03B2jTl FTkTl039303B103B203B3(Y03B1Tl).
For t  , let u(t) - T~ and

Z°a = Yoa + Fa + 1 Fa (Xj_Xj ) (Xk_Xk ).t B ~ t ~~ ~ 2 t ~T~ 
The process Z° is a (non-continuous) semimartingale, verifying

Hta "- 
2 ’0 ) 

with y~ + ~ E°~a. Since H° -~ 

y~ uniformly a.s., we claim that Z° tends
T~St

uniformly on compacts in probability to the (continuous) solution Z of the equation

Z03B1t = y03B10 + t0 G03B1is dXis + 1 2 t0 G03B1jks [d(XjXk)s - Xjs dXks - Xks dXjs],
with G03B1it = a03B1i(t,Xt,Zt) and

G03B1jkt = G03B1it 0393ijk(Xt) - G03B2jt G03B3kt 039303B103B203B3(Zt).
This claim is a particular instance of Theorem i.d of [5], except that we have a

family H° with limit H instead of just a fixed H. But it is very easy to see that 1.d

remains true in that case, since the proof of 1.d consits in applying Proposition 5 of

the same paper, which in turn refers to Proposition 4 where H is allowed to 

Now, since J* J* = [X~,Xk), and since the coefficients Ga and

G~k of the equation giving Z are identical to those giving Y (see the proof of Theorem

12), Z = Y; since YT ’

(*) This shows once again that one should never give up generality for the sake of

simplicity ... or laziness:
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II z u 0 ( t ) - Zu(t)II + IIYt - Y u ( t) . II
All three terms tend to zero uniformly in probability: the second one by what has

just been seen, the third one by uniform continuity of the paths of Y, and the first

one since geodesics with initial velocities in a (random, but) fixed compact and

time-duration at most n > 0 have their Euclidean lengthes tending to zero uniformly

when ~ tends to zero.

The proof of Theorem 14 is now complete, but for the next Lemma, that was

admitted a moment ago.

LEMMA 15. Let M be endowed with a connection and i : : M -~ Rn be a proper
imbedding. There exists a connection on Rn such that i is affine (in particular, M is

totally geodesic in Rn, for this connection).

PROOF. Since the imbedding is proper, iM is a closed submanifold of Rn. So each

point of iM has an open, relatively compact neighbourhood V in Rn diffeomorphic to
Rm x Rn-m, with iMCV corresponding to Rm x (0); and each point of Rn - iM has an

open, relatively compact neighbourhood that does not meet iM. All these open sets

form a covering of Rn; there exists a partition of unity (~ ) ) subordinated to that

covering (to each a is associated one of these sets, Va, , and 03C803B1 is compactly supported
in V ; ; the sum ~~a is locally finite and identically equal to 1). If Va meets iM, it

is possible to endow Va with a connection Oa such that i is affine from i (V ) ) to V : :
Using the above mentioned diffeomorphism, this amounts to extending a connection Vm
from 9 x (0) to Rm x Rn m, and this can be done by taking the product of Dm with an
arbitrary connection on If ~does not meet iM, just endow V with an

arbitrary connection Va. Now the sum ~~ 
a 

Va is locally finite and defines a
a

connection V on Rn; if A and B are vector fields on M, iA and iB are the corresponding
vector fields on iM, and

(ix) = = B(x)) = ?(V~B(x))
shows that i is affine. t

As in the Stratonovich case, this Ito approximation result can be bootstrapped to

show that, if Y is used to direct another differential equation FdZ = e(Y,Z) FdY to

a third manifold, then, to construct the appromixation Z° of Z we may use, instead of

the geodesic interpolation of Y, the Y° constructed in Theorem 14.

VI. COMPARING BOTH TRANSFER PRINCIPLES; APPLICATION.

Given an ordinary differential equation y = e(x,y)x between manifolds, we have
seen two ways of extending it into a stochastic one dY = f(X,Y)dX. Both agree of

course at order 1, which means that, in local coordinates, the first coefficients f?
of the Schwartz morphism f are just the coefficients ef 1 of e. But they don’t agree in
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general at order 2: the coefficient ff. of the Stratonovich extension is given by
(to be symmetrized in i,j) and that of the Ito extension is 

(to by symmetrized in i,j if the connections are not torsion-free). The geometric

condition, linking e with the connections, that ensures equality between both

extensions, is easy to see on those formulae in local coordinates: the ordinary

equation y = e(x,y)x must make geodesics into geodesics. But all the computations

have been done previously, so this result is an immediate consequence of what we

already know:

COROLLARY 16. Let M and N be endowed with connections, and P be a closed, tot-_ ally _

geodesic submanifold of M x N. Let e : : P -~ L(M,N;P) be of class and such that 

,,

e(x,y) is in L (M,N;P) for all (x,y) in P.

Suppose that, if x(t) is any geodesic in M and y any point in N with
the solution y to the ordinary differential equation

~ x(t) ~ YI~) - ~ y0.
is a geodesic too. Then, for every continuous semimartingale X in M and every

=0 F -measurable y.. with the stochastic Ito and Stratonovich equations
FdY = e(X,Y) FdX, YD = y0
6Y=e(X,Y) 8X, YO = y~

are equivalent.
PROOF. The solutions Y and YS to these equations can be approximated by discretizing
time and applying respectively Theorems 14 and 9. But the approximation Ya to Y is
piecewise geodesic (hypothesis on e), so it coincides identically with the

approximation to YI; finally, letting 0, Y = YI.
REMARKS. 1) This result is still true if e is only once differentiable, with

first-order partial derivatives locally bounded. In that case, uniqueness of YS is
not obvious, but existence and uniqueness hold for Y by Corollary 13, and the

equivalence between both equations can be verified directly, in local coordinates. So

uniqueness holds also for YS; the reason is that, though the partial derivatives of e

are not locally Lipschitz, some combinations of them are, namely 

(symmetrized in i,j) because, by the geometric hypothesis on e, this is precisely

ek e~ (symmetrized); and these combinations are of course those appearing

in the Stratonovich equation.

2) If X is a continuous semimartingale in M and $ a continuous semimartingale in

T*M, above X, the Stratonovich integral 03A603B4X and, if M is endowed with a connection,

the Ito integral 03A6FdX can both be defined. They are showh in Lemma (8.24) of [6] to

be equal if, for every parallel transport U e TM along X, the real semimartingale

 U,~ > has finite variation. This result does not seem to be obtainable as a

consequence of Corollary 16. The reason is that the Stratonovich integral is not

a particular case of the Stratonovich stochastic differential equations considered in

Theorem 8; as mentioned earlier, this is not due to our hypotheses being too
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restricted, but to an essential limitation of the Stratonovich transfer principle
itself.

3) In Corollary 16, the hypothesis that the ordinary differential equation e

transforms geodesics into geodesics can be replaced by

for every (S~,F,P,(Ft)t20)~ every martingale X in M and every F -measurable y.. e N

with P, the solution Y to the Stratonovich equation

5Y = YO
is a martingale in N.

Indeed, this new hypothesis implies the former. For let x : : I ~ M be a geodesic,
where I is an open interval, and let y : : J -~ N be a solution to y = e(x,y)x , , with

Jd an open interval. For every J-valued continuous local martingale U, X = x°U is a

martingale in M. Denote by Y the semimartingale y°U. As the push-forward y
factorizes as e(x,y)°x (applied to at e TR, this reduces to the equation giving y),

one can write for every smooth form a on N

f  a(Y),6Y > = f  a(Y), > = f  Y a (Y) , 6U >

= f  x e*(X,Y) a(Y), 6U > = f  e*(X,Y) a(Y), >

= f  e*(X,Y) a(Y), 6X > ; ;

so Y is also a solution to SY = e(X,Y)6x, and our hypothesis implies that Y = y°U is a

martingale. Since U is arbitrary, y must be a geodesic.

But one can say a little more: this new hypothesis is in fact equivalent to the

old one. This is obvious by remarking that, by Corollary 16 itself, the hypothesis
that the ordinary differential equation preserves geodesics implies that the

associated Stratonovich equation is in fact an Ito one, so it must preserve

martingales. This is an extension to differential equations of the equivalence
between preserving geodesics and preserving martingales for smooth functions between
manifolds (both amount to the function being semi-affine).

4) For a given X in M, the proof and the conclusion of the corollary still hold
if one does not require all geodesics of M to be made into geodesics of N by e, but

only those geodesics that are needed to interpolate X (or, in the bootstrap case when
X is already the result of a previous equation, those geodesics used in the

approximation X of X). .

As an application of all this, we now turn to the problem of extending to

semimartingales such geometric operations as parallel transport of vectors and rolling
without slipping.

If M is endowed with a connection, the parallel transport u(t)e Tx(t)M of a
vector u(0)e along a curve x(t) can be considered as the solution to the

ordinary differential equation u(t) - e(x(t),u(t))x(t), ’ where e(x,u) : " . T TM ’
defined for nu = x only (that is, u e TxM) is the horizontal lifting: e(x,u)
transforms a vector A e TxM into the only horizontal vector in TuTM with projection A
itself: ; u e(x,u) is the identity on T x M. This equation is constrained to the
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submanifold P of M x TM consisting of all (x,u) with nu = x. (Remark that P is

trivially diffeomorphic to TM itself!) The Stratonovich transfer principle applied to

this ordinary differential equation yields the Stratonovich stochastic parallel

transport along semimartingales. All this is classical, save the name: The eponym

’Stratonovich’ is usually omitted, so one is not tempted to worry about the possible

existence of an Ito one. But this is of course what we are going to do.

To construct the "Ito stochastic parallel transport" along a semimartingale, that

is, to apply the Ito transfer principle to the equation ù(t) = e(x(t),u(t))x(t) of
parallel transport, we need a connection on M and a connection on TM. We already have

one on M; so the Ito transfer principle explains a posteriori a phenomenon emphasized

by Meyer [9]: : there is a one-one correspondence between extensions of ordinary

parallel transport to semimartingales and extensions of the connection in M to TM

(Meyer’s work is more general, TM being replaced with an artitrary vector bundle over

M; this makes no essential difference).

To make the above statement a little more precise, observe first that the

connection on TM cannot be completely arbitrary: since the ordinary equation is

constrained to the submanifold P M x TM, we must choose the connection on TM in such

a way that P is totally geodesic in the product M x TM. This is clearly equivalent to

the requirement that the map u -~ (nu,u) from TM to M x TM transform geodesics into

geodesics; in other words, ir : TM -~ M must be semi-affine. Since, when applying the

Ito transfer principle, the torsions of the connections are not taken into account,

there is no loss of generality in requiring n to be affine.

[Another requirement of Meyer is that each fiber T x M, with its flat connection of
vector space, be a totally goedesic submanifold of TM, with the induced connection.

With this proviso, the equation of stochastic parallel transport will be linear. This

requirement is quite reasonable, but not logically necessary - and not used in the

sequel.] ]

Now, given any such connection on the manifold TM, it is possible to define the

Ito stochastic parallel transport associated with this connection; moreover, this

transport can be approximated in the following way, as a direct application of Theorem

14: Given the subdivision Q and the continuous semimartingale X in M, and supposing

that the approximate parallel transport U° along X has already been constructed up to

time Tn , ’ its restriction to the interval [[Tn,Tn+1]] is the geodesic in TM, above the

geodesic X° (because P is totally geodesic), starting from the previously obtained

UT , ’ with the same initial velocity UT as a (ordinary) parallel transport along the
n n

curve xc. Two particular choices of this connection on TM are specifically

interesting in stochastic (and ordinary) differential geometry.

The first one, called by Yano and Ishihara [12] the horizontal lift to TM of the

connection in M, can be characterized (up to a torsion term, but the Ito transfer

neglects it) by the property that each parallel transport along a geodesic of M is a

geodesic of TM. For a proof, see Bismut [1] page 450. As a consequence, by Corollary
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16, the Ito parallel transport (defined with this horizontal connection) is the same

as the Stratonovich one. (This can also be seen as a consequence of Meyer’s Theorem 5

in [9], using the third remark following Corollary 16.) Of course, for this

connection, the approximate parallel transport is exactly the ordinary parallel

transport along the very proof of Corollary 16, the Ito and Stratonovich
approximations are identical).

The other important connection on TM is the "complete lift" of Yano and Ishihara

[12]. . Meyer has observed in [9] that the stochastic parallel transport corresponding
to this connection is (an extension to the non-Riemannian case of) the one introduced

by Dohrn and Guerra [3] under the name "geodesic correction to parallel transport".
It is defined by the same approximation procedure as above, but the geodesics in TM
are replaced with Jacobi fields along geodesics in M. This strongly suggests the

following explanation:

LEMMA 17. Let M be a manifold endowed with a connection; endow TM with the complete
lift of this connection. The geodesics of TM are exactly the uniform motions in each
fibre and the Jacobi fields along the geodesics of M.

PROOF. From the explicit formulae I.6.2 of [12], it is clear that removing the
torsion of the connection commutes with extending it to TM. So, noticing that this
does not change the geodesics or the Jacobi fields, we may and will suppose that the
connections are torsion-free.

Now, in local coordinates, still using I.6.2, the equation of geodesics in TM is

{üi 
= - ulDl 0393 ijk j k - (0393ijk+0393ikj)j k

i = - 0393ijk j k,
where rlk are ’the Christoffel symbols of the connection in M. Since the connection
has no torsion, the equation of a Jacobi field u along a geodesic x is

V V u = R(x,u)x.
, 

x x

It is not difficult to rewrite this equation in local coordinates and to identify it
with the first equation above; the computation is still simpler if one performs it at
the center of some normal coordinates. There, because the connection is torsion-free,
all Christoffel symbols vanish and one is left with

(V V u) 1 - ul + l Dl0393ijk j uk .

Using (R(x,u)x)1 - R.lk x x u~’ with = gives the result, t

So the general theorem on Ito approximations sheds a new light on the
Dohrn-Guerra construction and explains in particular why the first derivative V u is
reset at zero at every step: this is where the ordinary equation comes in; this x
initial condition (common to all these procedures, whatever the connection on TM) is
the one that forces the stochastic parallel transport to agree with the ordinary one
on smooth curves.



438

A

A last remark on Ito stochastic transports: one might be tempted to rewrite the

equation of ordinary parallel transport as

dt Atf = Vdf(x,At)
(At is a parallel transport along a curve x(t), and f a smooth function on M; Af is

just  A,df >). This amounts to using only functions of the type df as test-functions

on TM, instead of all possible smooth functions on TM. Rewritten

Atf - AQf = f~  dxs >,

everything is M or R-valued and one may forget about TM. Applying the Stratonovich

transfer gives 6A =  Vdf (e,At)’ 8Xt >, which is of course equivalent to the

Stratonovich parallel transport; so one might hope to define an Ito parallel

transport, without any connection on TM, by

Vdf(e,As)’ FdXs >.

But this fails, simply by lack of intrinsicness: if this holds for some functions

fl,...,fP, it need not hold for a function of the form the reason is

that both sides of this equation do not obey the same change of variable formula, the

left-hand side involving the third derivatives of g, the right-hand one stopping at

order 2. Another way of saying it is that the left-hand side cannot be considered as

an Ito integral along A; the Hessian of .the function df on TM cannot have a null

projection on M simultaneously for all smooth functions f.

As an application of parallel transport, we shall now discuss lift in s and

developments. Recall that the lifting y(t) in of a curve x(t) in a manifold M

endowed with a connection, is constructed by choosing a frame F = (UZ,U2,...,Um) of

T M, transporting it as F(t) = (Ua(t))lsasm along the curve x(t), in such a way

that each U (’) is a parallel transport, reading the velocity x(t) in the frame F(t)

(this gives x(t) - . = va(t)U a (t), with va(t)s R), and finally letting

y(t) = (fp E Since the equation of parallel transport is linear,

it is very easy to see that the curve y in Tx(O)M does not depend upon the choice of
the frame F = F(0). .

Using the Stratonovich transfer principle, the extension to semimartingalesis

straightforward: If X is a M-valued continuous semimartingale with X~ = x, choose a

frame F of transport it as Ft = (U .) along X using the Stratonovich stochastic

parallel transport, define the dual frame by ~03B1t E TX M and  > = aa, and

let Y =  5X »U . . All of this is well-known, and widely used. See Bismut

[1] for a general presentation when X is a Brownian diffusion.

The development is the inverse operation: given the continuous semimartingale Yt
in T M with Y = 0, find X. Of course, this is done by following the same path

backwards, ’ that is, ’ constructing simultaneously Xt and the attached parallel moving

frame F . . We shall not go into details here, referring the reader to [6~ for 
.instance. Liftings and developments are both used in the definition of rolling

( * )In classical mechanics, rolling and slipping are defined in terms of instantaneous

rotations, and the definition given here is, for 2-manifolds imbedded in R3, a

theorem.
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without slipping: Given two manifolds of M and N with connections, two points x e M
and y e N, a linear bijection 1 : : TYN and a continuous semimartingale (or smooth
curve) X in M starting from x, the semimartingale in N obtained by rolling M on N
along X without slipping is by definition the development in N of the curve 1(Z)E T N,
where Z is the lifting of X in TxM. So this operation of rolling without slipping Y is
just obtained by composing a lifting, the linear mapping 1, and a development; lifting
and development are two particular cases of rolling without slipping.

Rolling without slipping preserves geodesics (in other words, the lifting in
curve x(t) in M is a uniform motion if and only if x is a geodesic) and

manifold-valued martingales 
’ 

(in other words, the lifting in TX0 M of a continuous
semimartingale Xt in M is a local martingale if and only if X is a martingale). This
result, implicit in Bismut [1], is explicitly stated by Meyer [9]; but its Brownian
version is much older: stochastic developments have long been used to construct
manifold-valued Brownian motions from Euclidean ones. It is also a little surprising:
why should such a Stratonovich procedure preserve martingales? Corollary 16 seems to
imply that this can be derived from the preservation of geodesics, for in that case
the Stratonovich equation is also an Ito one, therefore it preserves martingales. But
it does not apply here, at least not directly, since liftings (and developments, and
also a fortiori rolling without slipping) are not operations of the type considered in
that corollary, but combinations of such operations. Lifting, for instance, is not
constructed directly from M to T x M, but needs an intermediate step in a larger
manifold, the frame bundle FM. Hence, to derive rigorously martingale preservation
from geodesic preservation by using Corollary 16, one needs the existence of a
connection on FM such that geodesics are preserved at each step of the construction
M -~ FM -~ TxM. And in general, such a connection does not exist! The reason is that
the only possible choice, the obvious extension to FM of the horizontal connection on
TM described earlier, does not work. Indeed, by Proposition II.9.1 of [12], its
geodesics are exactly the curves F(t) = (U a (t)) lsasm in FM such that x(t) = nF(t) is a
geodesic in M and each Ua(t) has the form Va(t) + tWa(t), ’ where Va(t) and W 

a 
(t) are

parallel transports along x. But only if Wa= 0 does the second step 
Y(t) - ( 0 (0)

(where (Da) is the frame dual to (Ua)) transform the geodesic F into a strai g ht line.
The point is, of course, that those geodesics with Wa = 0 are the only ones obtained
from the first step M -~ FM; so even though Corollary 16 does not apply, Remark 4
following it does, and gives the result.

More generally, if TM is endowed with a connection of the type considered above
(that is, making n affine), and if the Stratonovich parallel transport is replaced
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with the corresponding Ito one in the definition of liftings, the same proof shows

.that martingales are still preserved. This can also be seen as a consequence of

Lemma (8.24) of [6]. . Indeed, in local coordinates, the equation of any stochastic

parallel transport (Stratonovich or Ito) is

~ = - ~t’ ~  ~ ~-
where fv denotes a correction term with finite variation: hence the dual frame (n~) to

a stochastic parallel frame (U ) is made of forms verifying
= ~kB’ ~ ~it ~’-

So, if U is a Stratonovich parallel transport and n an element of the dual frame to an
Ito parallel frame, the pairing  > = Uit n. has finite variation; and by Lemma

(8.24), the Stratonovich integral J*  n,5X > is identical with the Ito one

J*  ~,FdX >, yielding the result.
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