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On Semi-Martingales Associated with Crossings

B. RAJEEV, Indian Statistical Institute

Introduction. Let (Xt)tgo be a Brownian motion, XO = X
almost surely, x < a < b. Let o4 be the last exit time
of X before t from (a,b)® , defined in sec, l.l. We
note that when b = , X, - X_ = (X, - a)¥ and by
Oy t
Tanaka's formula it follows that xt - X0 and hence xc ,
t

are semi-martingales. It is easy to see from Theorem 1 of [6]

that when b ¢ = , IXt - X | is a semi-martingale given by
t

t
(bma)e(t) + IXgXg | = S 11 )X )00s X+ F(L(t,a)+L(t,b))

where c(t) 1is the numbers of crossings of (a,b) in time t,
©(s,w) is 1 during an upcrossing and -1 during a downcrossing

and L(t,.) is the local time of X .

In the case of a continuous semi-martingale (Xt,fat),
where ‘3t is the underlying filtration and o, as above,
it is an immediate consequence of Tanaka's formula that
(Xo ,cat), (xt-x , ?k) are semi-martingales (Theorem 2.1).

t %t
In this case, time changing by oy does not change the under-
lying filtration. In this paper, as our main result we
determine the martingale and bounded variation parts of IXt-—Xo |
t

(Theorem 4,1). In sec. 5, we state a few applications of this

result., These include Levy's crossing theorem, an asymptotic

relationship between local times and crossings of Brownian
motion and a probabilistic approximation of the remainder

term in the 2nd order Taylor expansion of a function.
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1. Preliminaries

Let (2,3, P) be a probability space and ('3t)t>0

a filtration on it satisfying usual conditions. For a conti-

nuous adopted process (Xt)t>0 and a < b, the upcrossing inter-

vals (ozk’o2k+l], k = 0,1,2,..., are defined by g, = inf {520, X ia},
O, = inf §s > oy 1 » Xg L@} and oy, = inf {s > o, I X 2 b} .
As usual the infimum over the empty set is infinity. The down-

crossing intervals (t2k"t2k+l]' k =0,1,... are similarly
©co

d - -]
1 (s);y ®(s) = 1 (s)
k=0 (O2k290k411 "’ k=0 (Fok?Tok1]

and ©(s) = etem egm. The number of upcrossings in time ¢t ,

defined., Let e“(s) =

denoted by U(t) is defined as U(t) = max{k { oy ., <t} .

The number of downcrossings is similarly defined. C(t) = U(t)+D(t)

is the total number of crossings. Let t= inf {s>0 ! X ¢ (a,b)} .

t t<x
Let oy =
max Cs <t X t(a,b)® , t>T

o4 is in general not a stop time, but is however qk measurable.

Consequently Xc is '3t measurable.

t

2. The Semi-Martingale Xt - X
%t

From now on we fix a continuous - semi-martingale
t g

Xt = Xo + Mt + Vt and a <b . Let L(t,x,w) be a jointly
(t,x,w) measurable version of the local time of X which

is continuous in t and right continuous in x . For the

: - - X
existence of such versions see [10]. Let Yt Xt oy

and Z, = X .
t O

. . s le
Theorem 2.1. The process Yt is an fit semi-martinga

and we have

Y, = ft I(a,0](Xs)d%s * + (L(t,a) - L(t,p)) - (b-a)(U(t)-D(t)) (1)
a,

t
Tt
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Proof. The proof is immediate from Tanaka's formula and the

following pathwise identity 3

(X T - XO) + (b-a)[U(t)-D(t)] + (Xt-xct)

= (Xg=a)t - (Xgma)t = (X-b)* + (x b))t (2)
Remarks.
2.2 It is immediate from Theorem 2.1 that Xo is also
t

a semi-martingale whose components can be got by subtracting

(Xt) from both sides of eqn. (1).

2.3 The sum of the jumps of Y in time t — I AYS —_—
st

is precisely (b-a)[D(t)-U(t)] . Since [U(t) - D(t)| <1

this implies that Y (and hence Z) is a special semimartingale.

Further the representation (1) of Y. 1is unique (see [9]). The

Jump times of these processes are precisely the times of crossings

of (a,b) by X and |AY,/| = b-a or O.

2.4 Equation (2) and hence Theorem 2.1 are still valid for

a semi-martingale (X,) with I |AX | < = ¥ t, almost surely.
s<t ,

Now (b-a)[U(t)-D(t)] is replaced by - 3 AY. and

s¢t S
+ + -
(xt—a) ’ (Xt—b) are replaced by (xt'a)+ - E ZS(XS-a)+ ,
s

+
(Xy=b)* - Et A(X,-b)¥ respectively.
S

3. Local times of X, -X
t o4

We now determine the local times of Y in terms
of that of X. We note that the process lives in [0,b-a)
during an upcrossing of (a,b) and in (-=(b-a),0] during a
downcrossing. Also Yt = O whenever X, = a or b « Let

t
I(t,x) denote the local time of the Y process.,
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Lemma 3,1

(i) For x ¢ [O,b-a),

t
(Yt—x)+ =/ 1 (x )1

Y_ )dX_ -(b-a- L
1y (ayb (x.«»)( s-19%g = (b=a=x)U(t)+ 31(t,x)  (3)

(ii) For x ¢ (~(b-a),0]

t
- 1
(Ygx)™ = _{ft I(a.b](xs)I(_m,x](YS-)dXs‘(b"a"x)D(t)+ 51(t,x)

t
(Ys_)L(dS,b)—é‘ I (Ys_)L(dS,a)) (4)

-0, X

L
+ 5 I
2

(=e0y x

Remark 3.2 Observe that in case x < O, the 2nd term on the

RHS of (4) is zero whereas when x = O it is % (L(t,b)-L(t,a)).

Proof. Tanaka's formula (see [4]) applied to Y at the

point x e [O,b-a) gives

(Y,=x)* = (Y,-x)* + ft I (Y. )dY
t (0) 0 X,%) S— s
1 Y Y. - x)
+ ot (x’m)( )Yy = x)
+ I 1 (Y ) (Yg=x)" + % I(t,x)

0<s<t (=, x]

1
Ip+I) + I, +I3+35 I(t,x) .

Since Y5 =0, Ig= 0. Using eqn. (2) for Yt and noting
that the measures L(ds,a), L(ds,b), D(ds) have no support

on the set s ° Ys_ > x we get

t
I,(t) = 1 X )1 Y_ )dX_-(b-a)U(t) .
l( ) {t (a’b]( S) (X,°°)( S—) s ( 22008

Since the jumps of Y occur at the crossing times g5, 4 »

Tok+l it is easy to see that almost surely for x € [0,b=-a),

Iz(t) = x U(t), 13(t) = 0 . This proves the first part of the lemma.

The proof of (4) is similar using the Tanaka formula for (Yt-x)-.



The following theorem gives 1 in terms of L.
Theorem 3.3

(1) For x ¢ (O,b-a), almost surely,

m

t
I(t,x) =/ ©Y(s)L(ds,a+x) (5)
0
(ii) For x & (-(b-a),0), almost surely,
t 4
I(t,x) = [ © (s)L(ds,b+x) (6)
0
(iii) For x = 0, almost surely,
I1(t,0) = L(t,a) (7)
Proof.
(1) Let x e (O,b-a). Fix k > 0. Let Y;(t) =(Y,~x)*
Y2(t) = (Xt - (a+x))+. We note that, ¥ te (°2k’°2k+l)
t t
JI (s)ay (s) = [ 1 (5)aY,(s) (8)
O (09292141 O (opy20x41
By Tanaka's formula,
i ) ft (s)1 (X1 (Y. _)dX
I dY,(s) = I S _
.g (o o ] 2 0 (0,0 ] (a,b] s (xyo s S
2k?%2k+1 2k’ " 2k+1
+ % (L(taA 02k+l,a+x)—L(t4A02k,a+x)) .
By eqn. (3), ¥ t e (°2k’°2k+l)
s ()= J" O x0T ()
I dY, (s) = I s)I X_)I Y dX
1 s S—
0 (010941 ] O (ogs0k41] a,b] (x,) °

1
+ D) (I (tl\ 62k+l;x)_1(t/\ °2k’x))
eqn. (8) now implies that ¥ t >0,
I(ta °2k+l’x) - I(tA °2k’x) = L(tA 02k+l,a+x) - L(tAoQk,a+x)
since I(ds,x) 1is supported on the upcrossing intervals,
the proof of (i) is complete.

(ii) Let x ¢ (-(b-a),0). Then Yl(t) = (Yt-x)- and
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Y2(t) = (Xt-(b+x))' agree on the downcrossing intervals.
Applying Tanaka's formula for Y, and eqn. (4) to Y, the

proof is completed as in (i) abové,
(iii) Let x = O. Proceeding as in case (i) we show that
t u t u
[ & (s)I(ds,0) = [ & (s)L(ds,a) = L(t,a)e
e} ‘0 ¢
To complete the proof we show that [ 69(s)I(ds,0) = O .
0

To see this we fix k and as in case (ii), compare the

expressions for (Xt-b)_ and (Yt)_ for te (Tzk’12k+l)

given by Tanaka's formula and eqn. (4) respectively. Using

Remark 3.2 we see that

L(t A T2k+l,b)—L(t A 1ék,b) + (I(t A T2k+1'°) - I(t A'T2k,0))

= L(t A 12k+l'b) - L(tA 12klb)

whence I(tA 12k+1,o) - I(t A‘tQk,O) =0 .

Remarks.
3.4 We recall from [lO] that for the semi-martingale
(Xt) with - £ AX 6 + Xy = X5 + M, +V,, where M and

s<t
V are the continuous martingale and bounded variation

parts respectively, the jumps of the local time L(t,x) is
given by the formula :{ almost surely,

t
L(t,x) = L(t,x=) = é I av

{xg =x¥ °
Using (9) it is easy to see that for x € (O,b-a), I(t,x)
is continuous at x if L(t,.) is continuous at a+x .
The case x ¢ (~(b-a),0) 1is similar, When x = O, it is

easy to see that I(t,0-) = L(t,b=) # L(t,a).

3.5 Let I(t,x) denote the local time process of

Z, = X_ . The martingale, bounded variation part and the

t (¢}
t
jumps of Zt are easily calculated from eqn. (1). By using

Tanaka's formula it is easily verified that I(t,x) = L(t,x),

(9)



¥ x € (-»,a) U [b,»), I(t,a) =0 and I(t,a) = L(TAt,x),
¥ x e (a,b) .

4. The Semi-Martingale ]xt-xotl

We now determine the continuous martingale and the
continuous bounded variation parts of [X,~X_ |. We note

that the sum of the jumps upto time t is —(b-a)c(t),

Theorem 4,1 For a < b, we have almost surely,

113

t
(b-a)c(t) + |xt-xot| =df e(s,w)I (X )X+ S(L(t,a)+L(t,b-)) (10)

a,b

Proof. Lemma 3.1 and Theorem 3.3 together give

|xt-xot| = (xt-xat)+ + (xt-xot)‘
ft( (Yg_) (Ys_)) (Xg)
=/ Y ) -1 I X )dx
Tt (0,*) s= (=,0] s (a,b] S S

- (b-a)e(t) + 5 (L(t,a) + L(t,b))

t
.—.Of 9(5).I(a b)(XS)dXs - (b-a)c(t)

14
1
+ 5 (L(t,a) + L(t,b-))
where in the last equality we have used eqn. (9).

Remark 4.2 We refer to [6] for an analogous result on

crossings of closed intervals by a continuous martingale,

5. Applications
We now give some applications of the previous results.,
WNe mention only the results and refer the proofs to [5], [6]
and [7].
Firstly we note that letting a T b in Theorem 4.1
eqn. (l0) yields Levy's crossing theorem. We note that if
then

e) Le e € Ce2(t) <e Ce(t) Le, Cel(t) where

2
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Ce(t) = number of crossings of (b-€,b) in time t = C((b-e,b),t).
Hence sufficient to let a 1t b along a sequence., This is done
via the Borel-Cantelli lemma and an estimate due to Yor |
(Theorem 1, [10]). The following theorem (Levy's (down)
crossing theorem) was first proved in the case of a continuous
semi-martingale in El Karoui [3] where the discontinuous case

is also discussed.,

-~

Theorem 5.1 Let (Xt) be a continuous semi-martingale. Then

(a) almost surely, Lt (b-a)c((a,b),t) = L(t,b=)
aThb

Lt (b—a)C((a,b),t) = L(t’a)
. by a

(b) If further (X,) e H° , p 21 then the above limits hold
in HP .

Next let (Xt) be a Brownian motion. We now state
a result somewhat related to Theorem 5,1 above and whose
proof can be found in [6], [7]. The crossing theorem say,
that (b-a)C(t) ~ L(t,a) as b N a, the parameter t being
fixed, It is an interesting fact that the same is true when
we let t — e , We have the following theorem.
Theorem 5.2 Let (Xt) be a Brownian motion and a < b.

Then almost surely,

L(t,a _ E L(t C hl
= Lt s = (b-a)

a
t -5 @ C((ayb),t ¢ -5 o EC((a,b),

t

Remark 5.3 The proof of the 2nd equality is immediate from

Theorem 4.1 and Theorem 2.1
Corollary 5.4 Let a < b, d < e. Then almost surely,
C((a,b),t) _ Lt E C((a,b),t - b=a
S S s, L EOt@eny T o
We continue with a Brownian motion (Xt). The following

result gives the average so journ time in (a,b) per crossing.
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Theorem 5,3 If (Xt) is a Brownian motion and a < b, then

almost surely,

t t
Of I(a'b)(xs)ds Eof I(a’b)(xs)ds

= Lt

t Egm C((a,b),t) t -5 o E c((a,5), %) = (b-a)*

We refer to [8] for a proof of this result. The 2nd
equality is an immediate consequence of Theorem 1, [5] which
is also proved in [11], We refer to [1] for a more general
result in the context of Hunt processes and to [2] for related
results involving recurrent diffusions. The following is a
different generalization of Theorem 5.3 and can be thought off
as a random approximation to the remainder term in a 2nd order
Taylor expansibn for a C2;function. For the proof of this

result see [6], [7].

Theorem 5.4 Let (Xt) be a Brownian motion, a ¢ b, and f
a Cz—function. Then almost surely,

t
SO (lxs-xosl_)l(a’b)(xs)ds

t E‘-t')co C((a,b),t)

t
E‘é' £u( IXS—XOS |_)I(a,b)(Xs)ds
E C((a,b),t)

Lt
t —>w

f(b-a)-f(0)=-f'(0)(b-a).
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