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THE BRANCHING PROCESS IN A BROWNIAN EXCURSION

by
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Université Pierre et Marie Curie University of California
4, Place Jussieu - Tour 56 Berkeley, California 94720
75252 Paris Cedex 05, France United States

§1. Introduction.

This paper offers an alternative view of results in the preceding paper [NP] concerning the tree
embedded in a Brownian excursion. Let BM denote Brownian motion on the line, BMx a BM
started at x . Fix h > 0, and let

X = ~)

be governed by Ito’s law for excursions of BM from zero conditioned to hit h . . Here X may be

presented as the portion of the path of a BMo after the last zero before the first hit of h, run till it
returns to zero. See for instance [I], [Rl]. .

Figure 1. Definition of X in terms of a BMo.

For x > 0, let N) be the number of excursions (or upcrossings) of X from x to x + h .
Theorem 1.1 The process (NX,x >_ 0) is a continuous parameter birth and death process, starting
from Na = 1, with stationary transition intensities from n to n ± 1 of n / h .
In more detail, NX is the number of branches at level x in a random tree, as in Figure 2, in which
each branch dies at rate 1//!, and splits at rate llh, as it moves upward. The simple probabilistic
structure of this tree is a key to the Markovian properties of Brownian local time. See [NP] and

[LG] for further discussion, more careful definition of the tree, and references to earlier results in

this vein.
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Figure 2. Tree associated with an excursion. Here the horizontal arms of the tree have no

significance, except to order the vertical branches. Each vertical branch at level x corresponds to

a different excursion from x to x + h .

Section 2 of this paper sketches a proof of Theorem 1.1 and the Markovian property of the tree. 
This is very close to the development of Walsh [W], which provides all details of rigor for this
section, as well as many interesting related results. Section 3 addresses the following question: At
what moments on the original Brownian time scale does branching in the tree occur? This leads

to a splitting of the Brownian excursion in the same vein as the path decompositions of Williams
[WI] and [W2, Section 67, proved in Rl]. See [LG] for a number of interesting variations of this
theme for both random walks and Brownian motion.

§ 2. Sketch Proof of Theorem 1.1.

The number of downcrossings of the excursion X from x + h to x is N;. These downcrossings
are all made after the time Th when X first hits h. . And after time Th, the excursion X moves
like a BMh killed when it hits 0. Thus provided NX is understood as a downcrossing count,
Theorem 1.1 could just as well be formulated for X a BMh with killing at 0 instead of a

Brownian excursion from zero conditioned to reach h . . Expressed this way, Theorem 1.1 is a

corollary of calculations in [W, Sections 1 and 2]. But to understand the structure of the tree, it

seems best to think in terms of complete excursions rather than upcrossings or downcrossings. So
this section sketches the argument in terms of excursions.

Regard an excursion from x to x + h as starting at x at the last hit of x before crossing up to
x +h, and finishing at the first hit of x on the way down, as in Figure 3.
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Figure 3. Here N) = 3, and the 3 excursions from x to x + h are shown in 3 small boxes inside
the big box containing the original excursion X from 0 to h and back.

Notice that (no matter whether x is larger or smaller than h )

P (Nx = 0) = P (X never hits x+ h )
= P(BMk hits 0 before x+h)

= 
x x+h 

= q, say.

And given that the excursion X reaches x+h, the excursion is certain to drop back to x. So given

NX > 0, there are a geometric (p ) number of excursions from x to x +h before hitting 0, where

p = hits 0 bef ore x+h )

- h - 1-q.
Thus

~o with = x _ 
(2.1) n with probability p . qn-1p, n ~ 1.

According to Fetler [F, Problem XVIL 10.11], this is the distribution 
at "time" x of the number of

individuals in a simple birth and death process as in Theorem 1.1. Here "time" means level, and

the individuals are excursions. Given Nx = n there are n excursions from x to x+h . When

these excursions are shifted in space and time to start at (0, 0), they 
are independent with the

same law as the original excursion X (conditioned to reach h ), by straightforward 
calculations.

Now the crucial observation is the following:
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Thus these excursions y - y +h can be found inside the boxes of x -~x+h excursions, and, after

shifting the x  x +h boxes back to zero, using the same recipe as if looking for excursions from

y -x to Y -x +h in the original box. This idea of "excursions within excursions", illustrated in the

next diagram by boxes within boxes, gives the basic homogeneous branching property, that for

x y

(2.2) Nt = sum of N: independent copies of .

Figure 4. Illustration for (2.2). Here N: = 3. These 3 excursions from x to x + h contribute 0,

2, and 1 excursions respectively from y to y + h . .

Formulae (2.1) and (2.2) show that the joint distribution of N; and N; for any x  y is as

asserted by Theorem 1.1. Pushed harder, an argument along these lines gives the homogeneous
branching property of the tree, and implies that > o) is a homogeneous Markov branching
process, as identified in Theorem 1.1. .

Figure 5. Reproductive property of the tree. Each branch of the tree above x, as circled below
is an independent copy of the whole tree. ’
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§ 3. The Path Decomposition at the Lowest Branch.

Here is another way to characterise the law of the Markovian random tree appearing here:

(i) the trunk has height a with exponential (2/h ) distribution.

(ii) the tree either dies at height a, or branches in two at height a, with equal probabilities,
independently of a.

(iii) given that the tree branches at a, the two parts of the tree above a are independent copies
of the original tree.

These statements can be understood directly in terms of the Brownian excursion X. . To do so, it

helps to associate a point on the timescale of X with each "subexcursion" represented in the tree.

Strictly speaking, these timepoints are not part of the structure of the Markovian tree, rather a con-

venient way to arrange its branches. But one fairly natural assignment of times to branches of the

tree is illustrated by Figure 6, then discussed in more detail.

Figure 6. Growing the tree beneath an excursion. Points marked o are h-minima, points
marked 1 are A-maxima, as defined below, following [NP]. Beneath these points along the path
are vertical intervals representing branches of the tree. The number of these intervals passing

through level x is N;. Horizontal dotted lines indicate geneology of the excursions. Each split
occurs at a point on the path that is an h -minimum. Each death of a branch occurs at the time of

an h -maximum, at level h below the path. 
’
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Let hmax denote the set of times of h ma,xima, meaning local maxima in the path of X that are
higher than h , hmin the set of times of h minima, local minima that are deeper than h : :

hmax = { t : there exist s  t and u > t with XS = Xu = Xi - h and X v s:Xt for v E [s ,u ] }
= {hmax1,hmax2,...,hmaxK} say;

hmin = {t : there exist s  t and u > t with XS = Xu = Xr + h and Xv for v E [s,u ]}
= say,

where K = # {hmax } >_ 1. . If K =1 the set hmin is empty, and say X is h-sterile. If K > l, say
X is h-fertile. The times in hmax and hmin are assumed to be in increasing order, and they
must alternate:

hmax1hmin1hmax2...hminK-1  hmaxK .

Consider now for x > 0 an excursion from x to x + h and back. Associate with this excursion a

single time t during the excursion, as follows:

(i) If the excursion contains one or more points in hmin let t be the time at which the tra-
jectory is lowest over all these times in hmin : :

Figure 7. Illustration of Case (i).

(ii) If the excursion contains no points in hmin , let t be the time of its maximum, which is
the unique point in hmax: :

Figure 8. Illustration of Case (ii).

For each fixed h, the set of all points (t, x) in the plane associated in this way with some excur-
sion from x to x + h is then a finite union of vertical intervals, one interval of levels x above each
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In particular, the height a of the trunk of the tree is identified as

03B1 = 
X (hmax 1)2014 h if excursion X is h 2014sterile,

03B1 = X (hmin* ) if excursion X is h 2014fertile ,

where hmin* attains the minimum of X over hmin . The basic properties (i), (ii), (iii) of the tree

now follow from the following:

Theorem 3.1. (Decomposition of Brownian excursion at its deepest h-minimum). Let X be a

Brownian excursion conditioned to reach h > 0, let 03B10 = X (hmax l) - h , a as above. Then

(i) ao has exponential distribution with rate 11 h , and (ao, a) _ (ao, ao where a2 is

independent of aa with the same exponential distribution.

(ii) The event (oco > a), which is the event that X has a minimum deeper than h , is independent of

a, with probability

P (ocfl > a) = P(ao>ao = = i,

(iii)Conditional on this event, let pa = hmin* denote the time at which the deepest minimum is

attained, so X = a. Let

6a = sup{t  Xt = 03B1}; ’La = inf{t > Xt = 03B1}.

Then (X 0 _ s _ and (X 0 _ u s 

are two independent copies of X , independent also of a.

Figure 9. Illustration for Theorem 3.1 in case X has an h-minimum.
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Figure 10. Illustration of definitions for the proof.

Proof. Let T~ = inf {t : Xt = h }; Dh = inf{t: X, -X~ 
= h ~ where Xt = sup, 

For a random time T _ ~, let be the process X~T1(s ) = X (T +s ) 0 _ s _ ~-T . Because

is a BMh run till it hits 0, and is the first time this process drops h below its

previous maximum, it is easy to see that

has exponential ( 11 h ), distribution. Now is a BM starting with this distribution and run

till it hits 0. Look at excursions of this process above its previous minimum. The original

excursion X has no h minimum if none of these excursions above 
the minimum process after

time D h rises more than h above its starting point. 
Then a = a~ by definition. Otherwise, the

deepest min of X is deeper than h, at some level a  Then the last excursion to rise by at

least h from its starting point on the minimum process starts at level a at 
time pa, and ends at

time as shown in Figure 10. When indexed by their starting level 0 
 x  ao, these excur-

sions rising by at least h appear as a Poisson point process governed by 
the Brownian excur-

sion law for positive excursions, stopped at an independent level ao. 
The rate of excursions

which rise by h is so

a =  ao and N* (x ) =1, }

where (N*(x ), 0 _ x s ao) is a Poisson process with rate 1/h killed at an independent exponen-

tial (1lh ) random time oco. That is to say

(ao, a) d. 
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This proves (i), and (ii) follows. Given that a  ao, the excursion from pa to ia is distributed

as the first excursion reaching h in an Ito point process of Brownian excursions, that is accord-

ing to the original law of X, independently of a and of all other points in the process of excur-
sions above the post-Dh minimum, and independently of the pre-Dh process. Since the whole

pre-pa process can be recovered from these objects independent of the excursion from pa to
this excursion is independent in particular of the excursion of X above level a between 6a

and pa. Time reversal shows that this excursion must have the same law as the excursion for

Pa to This gives (iii). D

Remarks.

(i) Details of the above argument can be filled in by consulting Greenwood and Pitman [GP]
or Rogers [R2], where the same technique is used to derive path decompositions from excur-
sion theory.

(ii) The argument shows also that the two copies of X are independent also of the pre-pa and

post-ta parts of X. . By the time reversal of Williams [W1], (X (t), 0 _ t s is a BESo(3) run
till it last hits a, conditioned never to drop more than h below its past maximum. This is the

reverse in law of X + t ), O S t S ~ - which is a BM started at a, run till it hits 0, condi-

tioned never to rise more than h above its minimum.

(iii) The decomposition at the deepest h -minimum described above is different from the one
which is obtained by considering the minimum between the first hitting and the last exit time

of h . Indeed, the latter leads to a different branching tree in the Brownian excursion. (This
remark is due to J.-F. Le Gall).
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