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Introduction.

To circumvent the abundance of extrema and excursions of the one dimen-

sional Brownian motion, the following definitions will be seen to be natural.

Let Q be the space of continuous functions 2014> !R which vanish

at the origin, equipped with Wiener measure W, the flow (0 ,t e ~) of trans-
lations [8tca = (j(t+’) - ] and the time reversal p [p(j(’) = ~(-’)]. De- .
noting by Bt (t the coordinates of Q, for any real h > 0 we shall

say that a trajectory 03C9 of the Brownian motion B = (Bt,t admits an

h-minimum at the origin if

Bt(W) >- 0 for t e [-T (M)]

where Th(c~) - inf[t : t > 0,B t (()) > h]. Similarly B will be said to admit

an h-mininum (resp. h-maximum) at u (u if B o 8 (resp. -B o e )

admits an h-minimum at 0.

Let Q be the space of excursions, i.e. of real continuous functions

Wo defined on an interval [0, ~(cao) ] (0  ~(c~o)  oo) which are strictly

positive except at the extremities 0, where they vanish ; let n be

the Ito measure of Brownian excursions on Slo. We shall denote by the

height or maximum of an excursion and for any h > 0, those excursions wo
with heights h will be called h-excursions. An excursion or

h-excursion above x (x is simply an excursion or h-excursion transpo-
sed at level x. Similar notions have already been introduced by Th. Brox [B]

and by Tanaka [T] under the name respectively of depressions and valleys.

The two main results of this paper concern the laws of the point process
of h-extrema (paragraph 1) and of the tree of h-excursions (paragraph 2).
It should be noted that markovian methods play a relatively small role in the

presentation of this paper in contrast with the alternative approach offered

in the companion paper [NP ] [the figures of that paper may also be helpful
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to the reader of the present text].

1. The point process of h-extrema.

Let Bt = max(Bs ; 0 ~ s ~ t) (t E ~+) be the maximal function of the

Brownian motion (Bt,t E ~+) and for a presently fixed h > 0, let

Bt=Bt+h) and 

Then

is a.s. the unique time s E [O,i] such that Bs = ~ and the following
results hold.

Lemma : : The two tra jectories ( Bt, 0 - t ~ o~) and ( ~ - B 0 ~ t ~ i-o~) are

independent ; hence (03B2,03C3) and are independent. Furthermore 03B2 is

exponentionally distributed on R+ with mean h, the conditional law of 03C3

with respect to 03B2 is such that

= x] - exp[-(x/h) ~p(~h2)J (a E !R )
whereas

~(~h2) (~ E !R )

provided and 03C8 are defined on IR by

03C6(03BB2/2) = 03BB coth(03BB) - 1 , 03C8(03BB2/2) = 03BB sinh(03BB)
Hence

E ( o~ ) = 2h2/3, = h2/3 and E ( i ) = h2.

Proof : Considering the passage times T (a > 0) of Brownian motion

(Bt;t E !R ), leads as is well known, to the representation of this Brownian

motion in terms of a Poisson point process v on ~+ x ~ with intensity

da dtt( w) , by the formula

Bt = a - j(t-S) for t E [S,S+~(~)]

for each random couple (a,(j) belonging to v, provided

S - 1~a’al 
(moreover T - S + ~(w), T - S).

a a-

Then let 03BD* be the subprocess of 03BD consisting of the (a,(j) of v
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*

for which h. Since h) = 1/h  m, the v process has a. s. a

* * * *

point (a*,w*) ) with lowest a ; this a is exponentially distributed with

mean 1/h and independent of w* which fol lows the law h) on S~.
*

Furthermore v - v (which is a Poisson process with intensity da 1(p(w)~h)
03A0(d03C9) on R+ x 03A9) is independent of v*, hence of (03C3*,03C9).

*

Now, referring to the previous definitions, on the one hand ~ = a ,

o~ = ~(w’ ) 

- ~a) ~ ( w’ ) (v-v -)(da’ a=a*
and by the Poisson representation of B the trajectory t ~ o~)

* * 
t .

depends only on v-N and a . On the other hand the trajectory

(03B2-B03C3+t, 0 ~ t ‘- coincides with the trajectory w killed at the first
*

time it reaches h (remember that h). The independence property of

the lemma is thus proved ; the other statements are standard results. o

Since i is a stopping time for (Bt,t E ~+), the translated motion

((B o 8i)t,t e ~+) ) is a new Brownian motion independent of t ~ i)

on which we still iterate the previous construction after a change of sign.
This will directly lead us to the following result.

Proposition : : The times of h-extrema of a Brownian motion (Bt,t E ~)
build a stationary renewal process ; denote them by S (n E I) so that

n

...S  S ~ 0  S  S ....
- 1 0 1 2

More generally the trajectories between h-extrema

(BS +t - BS , , 0 s t s Sn_i - Sn) )
n n

are independent and for n * 0, equidistributed (up to changes of sign). In

particular the variables

) -h (n e Z)
n+1 n

are independent and exponentially distributed with mean h whereas the va-

riables Sn (n >- 1) are independent, equldlstrlbuted, with Laplace
transform and mean h2.

Proof : i Let to 
= 03B2, 03C3o 

= U and define recursively the 

so that (in+1 - , , n+1 tn) ) is the associated to
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the Brownian motion - B ) , T t E ~+). Then for each n ~ 1 ’
n n

r is the time of the first h-extremum, in fact an h-maximum if n is even

and an h- minimum if n is odd, after time o- (notice also that o is

not necessarily the time of an h-maximum since our definitions only imply

that B t  B on [O,o~ o ] ; hence if B  h, the behaviour of the Brownian
o 

~ 0
motion to the left of 0 will determine whether r is or is not the

time of an h-maximum).

The preceding lemma shows that the positive trajectories

( ( -1 ) n 1 (B +t - B03C3) , 0 ~ t ~ 03C3n+1 - r )

for n ~ 1 are independent and equidistributed. (Each of these trajectories
is obtained by gluing together a trajectory of type (S - ~~,+t,0 ~ t ~ 
and a trajectory of type t ~ o~) to its right). To obtain the result

of the proposition is now easy although in general S is not equal to 03C3
n n

(n ~ 1) because of a difference in labelling. Indeed translate the origin to

- s and the r 0) accordingly ; then conditionally on 0}, an event
n n

of limiting probability 1 when s tends to + m, Sn - for all n ~ 1

if v denotes the first n ~ 1 for which r > 0 so that the independence
n

and equidistribution of the trajectories

(-1 ) U+n B~, v+n-1 +t - B  v+n-1 
imply similar properties for the

(Bsn+t - Bsn,0~t~Sn-Sn-1) (n ~ 1). []

It follows from the proposition that a.s. the levels of all h-extrema

are different.

Let us recall that by definition the Palm measure of any stationary point

process on IR defined on e is the unique positive measure W

on Q such that on Q W(dw) 0[W(dj) N(j,dt] for the involu-

tion 0(w,t) = (9tw,-t) [~ : Lebesgue measure on R]. The Palm probability

of the h-extrema process, i.e. "W conditioned by the null

event : 0 is an h-extremum", is immediately deduced from the preceding pro-

position. Let us however first introduce a positive measure on n, to be de-

noted by 03A0 and already considered by B. Maisonneuve [M] : nw is
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the image of II x II x W on i~ x Sl x Q by the mapping (w , w’ , w) --~ w
given by

w (t) if 0 ~ t ~ ~(w ) , )) if ~(w ) s t,
o 000

wet) =
(03C9’o(-t) if -03B6(03C9’o) ~ t ~ 0, 03C9(t+03B6’(03C9o)) if t ~-03B6’(03C9o).

Corollary : i The Palm measure Wh of the h-extrema of Brownian motion

(B t e R+) has total mass and with equal mass (1/2h2) 0 is an

h-minimum or a h-maximum for Wh

1{0 is an h..} . if A = 2 1 1{Th To,Tho03C1}.03A0W.
Proof : The total mass is given by the reciprocal of the mean

distance between the successive h-extrema after 0, as for any renewal pro-

cess ; since minima and maxima alternate, the first statement is then clear.

_ 

By the properties of renewal processes, with respect to the probability

Wh(./0 : h minima), the trajectory w is a bilateral succession of indepen-

dent subtrajectories of the two types described in the first lemma and its

proof. By the way these subtrajectories have been obtained for Brownian

motion, it follows that for Wh(./0 : h min), 0) and (w(-t),t >- 0)

are independent and both build out of an excursion higher than h followed by

a current trajectory of the Brownian motion. o

When 0, the Palm measures h increase to a limit (since the point

processes of h-extrema increase), the Palm measure of all extrema, which is

equal to 1 2 [03A0W + (IIW)’ ] where (IIW)’ is the image of lIW by 03C9(.) ~ -w( . ) .

2. The tree of h-excursions.

Let us call "standard binary tree" the random binary tree whose branches

1°) independently either split into two branches or die, each event with

probability 1/2, 2°) have independent and exponentially distributed lengths of

mean a (a > 0). The numbers N of branches of this tree at the various
x

levels x (x E ~ ) form a critical Galton-Watson process with continuous~ 

N

parameter and the generating functions f x (u) - E(u ") are then explicitly

given by

) 1/[1-fX(u)] - 1/(1-u) + x/2a (x ~ R+ ; 0 ~ u - 1).

Conversely the standard binary tree is the unique random binary tree such that
for each x > 0 : 1°) N x is distributed according to the geometrical law
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with generating function fx given by preceding formula 2°) conditionally on

N - n, the n sub-tree above x of the considered tree are independent and

distributed as the original tree, for every n.

Fix h > 0. Consider a Brownian excursion higher than h, i.e. an excur-

sion M distributed according to the probability n = lI(~/p >- h) which is

obtained by conditioning the It8 measure n by the event h) of finite

n measure 1/h. For every x > 0, consider also the h-excursions above level

x which are contained in ; let Nx be their number which is necessarily

finite (N - 0 if and only if x > p-h). Since every h-excursion above

level x is part of exactly one h-excursion above any lower level, all these

h-excursions above the various levels x can be represented by the points (at

the corresponding levels x) of a tree, in such a way that an h-excursion

above level x and an h-excursion above level y which contains it (y  x)

are represented by two points on an ascending line of the tree.

Proposition : : The tree of the h-excursions above the various levels x of a

Brownian excursion higher than h (i.e. following the probability is a

standard binary tree. Hence the numbers N of h-excursions above level x
x

of this Brownian excursion form a Galton-Watson process with generating func-

tions given by (~). Here a = h/2.

Proof : : Fix an x > 0. Let To be the first passage time of wo through x ; ;

define recursively T n (n ~ 1) to be the first return time to x of c~o
after having raised to x + h after T . . Then each piece

(w (t),T ~ t ~ T ) ) (n > 1) of w contains exactly one h-excursion
o n-l n 0

above level x provided T is well defined and conversely, so that the

number N of these excursions is also the index n of the last T which
x n

i s well defined.

When Nx = n (n ~ 1), ’ the preceding pieces of wo are independent and

equidistributed (by the stopping time property of the T ) ; I so are the n

h-excursions they contain and so are also the n random binary trees associa-

ted to these h-excursions, i.e. the n subtrees above level x of the tree

associated to ca .
0

Also

n 1) = h) = h/(x+h)

whereas for each n ~ 1

03A0h(Nx ~ n+1/Nx ~ n) = x/(x+h)
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since the first member reduces to the probability that a Brownian motion

started at x reaches x+h before 0. An easy computation then shows that

N

f (u) - E(u ") is indeed given by (*) with a = h/2.
x

We have thus proved that under 03A0h the tree of h-excursions of (j has

the characteristic property of the standard binary tree of parameter h/2. a

The relations between h-excursions and h-extrema are easily described.

If T is the time of an h-maximum for a Brownian excursion higher that

h, this excursion performs around T an h-excursion above level of

height exactly equal to h which thus corresponds to a tip of the tree of

h-excursions of Conversely to any such tip corresponds an h-excursion

of height exactly equal to h whose maximum is an h-maximum of (J . . Thus

h-maxima of the Brownian excursion wo correspond to the tips of the tree of

h-subexcursions of 03C9o, moreover 03C9o(T) = x+h if 03C9o(T) is the value of

Wo at such a maximum and x is the level of the corresponding tip.

Consider next a branching point of this tree and let x be its level in

the tree. It corresponds to h-excursions above level x-e (e > 0 sufficien-

tly small) which split into two h-excursions above level x due to the pre-

sence of an h-minimum of wo at level x which separates these two

h-excursions (hence such branching point should be regarded as two points, the

two roots of two subtrees above x). Notice here that two h-minima cannot

have the same level, so that branching points are indeed binary branching

points. Conversely any h-minimum of (if any) generates a branching point
of the tree. Hence the h-minima of the Brownian excursion wo correspond to

the branching points, if any, of the tree of the h-subexcursions of wo, , the

values of the h-minima being equal to the levels in the tree of the corres-

ponding branching points.

Some simple results follow from these identifications :

a) The probabilities p n (n ~ 1) that the standard binary tree has n tips
(or 2n-l branches, or n-1 branching points) have the familiar generating

m

function p(z) _ ~ 1 p n zn given by p(z) - 1 - ~ since by the branching

mechanism p(z) - [z + p(z)Z]/2. Hence

p = (2n) / (2n-1)22n 1)
n n

and this is also the probability that a Brownian excursion higher than h

(i.e. of law has n h-maxima and n-1 interlaced h-minima.
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Similarly it is easily proved that for 0  h, the number of

h’-maxima of a Brownian excursion higher than h is distributed as the number

of tips of a standard binary tree with a = h’/2 conditioned to be higher
than (h-h’).

b) Let

X1+h, X1 - Yl , X1 - Yl + XZ + h, ... ( Xi - Yi ) + Xn + h

be the value of the 2n-1 successive h-extrema of a Brownian excursion 03C9
o

higher than h. Proposition 1 then implies that the random variables

X,Y,X,... are independent and exponentially distributed h with mean h, the

random integer n being also the first integer for which ~ 1 0. but

n-1

Xl, , , Xl-Y2+X2,... ~ 1 
are also the levels of the successive tips and intercalated branching points

of the tree of the h-subexcursions of ; hence the properties of X1’Y1’...
and n are also familiar properties of the standard binary tree.
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