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Penetration Times and Skorohod Stopping

by

P. J. Fitzsimmons

1. Introduction.

By virtue of a theorem of Kuznetsov [14], given a Borel right semigroup (Ps) on a nice state

space (E, E), and a (a-finite) excessive measure m, one can construct a stationary Markov process

(Y, Qm) = (~Yt: t E R}, Qm) whose transition semi group is (Pg), and whose one-dimensional

distributions are all m. The process Y has random birth and death times, and the measure Qm

is a-finite.

In a recent paper [4], B. Maisonneuve and the author have used (Y, Qm) to investigate

(among other things) certain "balayage" operations on the convex cone of excessive measures.

In particular, a natural extension of Hunt’s balayage LBm was defined in section 5 of [4]. (See

also Getoor and Steffens [8,9] and Kaspi [13] for further work on this topic.)

Recall that if the potential kernel U - Psds is proper then any excessive measure m

can be realized as the increasing limit of a sequence of potentials. Following Hunt (11~,

one defines for B E ~,

LBm = ~ lim nPBU
n

where PB is the hitting operator for B. From [11, Prop. 8.3] we know that if B is finely open

then

(1.1) LBm = ~ {ç excessive: ~’ > m on B},

where A denotes infimum in the lattice of excessive measures. R. K. Getoor has asked 
whether

(1.1) remains valid for the extended balayage of [4]. Proposition (2.7), our affirmative answer

to this question, while hardly surprising, exploits an interesting connection 
with the Lebesgue

penetration time of B. This result was proved in ignorance of the "semiclassical" potential
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theory of Kac [12] which concerns itself with such penetration times. Indeed, in the case of

Brownian motion, (2.7) follows from work of Ciesielski [2] and Stroock [15,16].
In a third section we apply (2.7) to obtain a "Skorohod stopping" theorem. This result

implies that a second excessive measure ~, "weakly dominated" by m, can be represented as a

balayage of m by means of a randomized terminal time.

2. Reduites and Penetration Times.

We recall from [4] the basic facts concerning the stationary process (Y, Qm). Let (E, £) be a
Lusin state space for a Borel right semigroup (Ps). Let 0394 ~ E be the cemetary point; any
function f defined on E is extended to Eo - E U ~0} by setting f(A) = 0. Let W denote

the space of paths w: R -~ EA which are E-valued and right continuous on some open interval

,~(w)~ C R, and which take the value A outside /?(~)[. The case /?(~)[= ~
corresponds to the dead path (~~: t - A for which a((~~) _ +00, ,8([w]) = -oo. Let {Yt: t E R}
denote the coordinate process on W, and set ~° = t E R}, G° = Q{Yg: s  t}. Shift

operators are defined on W by

(TtW)(s) = w(t + s), s > 0, t E R,

= A, s  0, t E R.

Let n = {w E W: a(w) = 0, Ya+(w) exists in E} U {(~~}, and let X~, 89, ,~’°, x$ denote
the restrictions of Ys+, Ts, where s > 0. Since (Ps) is a Borel right semi-
group, there is a Borel measurable family x E Eo} of measures on such that

X = (~~ ~°~ ~+~ Xt, ~t, Px) is a strong Markov realization of (Ps). Note that for t E R and

s > 0, Tt: {c~ «} - Q and

on {c~  t}.

Let Exc denote the class of excessive measures for (P9): m E Exc if and only if m is a
a-finite measure on E with mPs  m, s > 0. Given m E Exc there is a unique measure Qm on

(W, such that Qm({(~~}) = 0 and

(2.1) Qm(f o Yt) = m(f), f E ~+~t E R;

(2.2) Qm(F o Tt ~ = a.e. Qm on {a  t  ~3},
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where t E R and F E (gO)+. Note that (2.1) implies that Qm restricted to ~ + n {a  t  ,~} is

a-finite. (Indeed, (2.1) and (2.2) together imply that Qm is 03C3-finite on The existence of Qm

follows from our hypotheses on (Ps) and a general theorem of Kuznetsov [14]. See also Getoor

and Glover [7] for an excellent account of the construction of such measures. It is evident from

(2.1) and (2.2) that (Y, Qm) is stationary: if we define at, t E R, by

= w(t + s), s, t E R,

then O’t(Qm) = Qm, t E R.

A balayage operation was defined in [4] as follows. Let g; denote the universal completion

of G°. Let T: W - [-00, +oo] be a time such that a  T  ~3 on {T  +oo}

and such that

(2.3) t + = T(w), V t E R, V w E W.

The balayage of m via T is the excessive measure LTm defined for m E Exc by

(2.4) LTm(f ) = Qm(f o Yt; T  t)~ f E £+~

where t E R is arbitrary. Evidently LTm  m, and m ~ LTm is an additive, positive homo-

geneous mapping of Exc into itself. Since Qm(T = t) = 0 for all t E R, the condition T  t in

(2.4) can be replaced by T  t.

A familiar example of a stopping time satisfying (2.3) is the hitting time TB = inf(t >

«: Yt E B), where B is Borel measurable. We write LBm instead of LTH m. It was shown 
in [4]

that if (J1.nU) is a sequence of potentials increasing to m, then nPBU T LBm.

As a second example consider the Lebesgue penetration time of a set B E £:

IIB - inf {t > a: > 0}.
Jx

Clearly TB, and TIB is a time satisfying (2.3). Both TB and IIB satisfy

the "terminal time" property

(2.5) T=t+ToTt on {atT}.
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Let B* = {x E = 0) =1}. Then B* E ~ and from Walsh [17] we know that B~B*
has zero potential, and that IIB = TIB. = TB* a.s. P  for all finite measures  on E. It follows

that for any m E Exc, m(B1B*) = 0 and IIB = 03A0B* = TB. a.s. Qm.

Finally, consider the reduite of m E Exc on B E £:

(2.6) on B}.

Here and elsewhere "~ > m on B" means ~(A) > m(A) for all Borel sets A C B. Note the

following facts: RBm E Exc, RBm  m with equality on B ; if ~ > m on B then R Bg > RBm;
if = 0 then RAm = RBm.

Here is our answer to Getoor’s question, posed in section 1.

(2.7) Proposition. For each m E Exc and B E £, LBm > LB=m = RBm. If Qm(TB ~ 03A0B) =

0, then LBm = RBm. This is the case, for example, if B is finely open.

Proof. Since TB  IIB = TB* a.s. Qm, we have LBm > L03A0B = L B* m. It follows easily from

m(B1 B*) = 0 that L B* m = m on B; consequently LB. m > RBm. It remains to show that

LB* rn  RBm; for this we use an old trick, due to Hunt [11]. Given h E b~+ note that on

{~  ~  /?}

t t t

(2.8) 1- exp - h(Y8)ds = exp - h(Yu)du h(Y8)ds.

Fix 03BE E Exc with 03BE ~ m on B, and choose h E b~+ with {h > 0} = B By (2.8), (2.1), and
(2.2),

t

~(f ) ~ Q~ f (Yt) 1- exp - h(Ye)ds ) )
t t-8

= 0 Tø)
(2.9) = ) )

~ ds Qm. 
= Qm f (Yt ) 1- .

Let (hn ) C bE+ be an increasing sequence with {hn > 0} = B and hn i +00 on B. Then
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t

1- exp - hn(Ys)ds T 
as n I oo. Taking h = hn in (2.9) and letting n ~ oo we obtain

~(f ) ~ ns  t) = Ln m(f) = 

Thus RBm > and the proof of (2.7) is complete.

(2.10) Remark. A simple but important consequence of the identification RBm = LB* m is

the observation that m H RBm is additive on Exc.

3. An Integral Representation Theorem.

The main result of this section is the integral representation theorem (3.1), a sort of Lebesgue

, decomposition for excessive measures. See (3.21) for an interpretation of (3.1) as a Skorohod

stopping theorem.

(3.1) Theorem. Let 03BE and m be excessive measures. There is an increasing .family {T(u): u >

0} of (*t+)-stopping times, each one satisfying (2.3) and (2.5), such that

(3.2) 03BE = ~0 LT(u)m du + LT03BE,
where T ‘ T limu~~ T(u) . for some r > 0, then

(3.3) 03BE = / 
To prove (3.1) we adapt an argument that Heath [10] ascribes to Mokobodzki. We first

recall some potential theory; [1] and [3] are good sources for this material. If  is a measure on

(E, E) dominated by some element of Exc, then the réduite R  e Exc is defined by

(3.4) 

Evidently  ~ R  is increasing, positive homogeneous, subadditive, and additive on Exc. If

m 6 Exc, then m = Rm, and RA m = ?7~), A 6 E.

In the sequel, if 03B3 and r are a-finite measures, then an inclusion {~03B3 ~ I‘} C A (0  e 

1, A E E) should be interpreted as  = 0, where A is a ~-finite measure dominating

both ~ and I‘, and where g = G = We refer the reader to ~1~ or [3] for proofs of

the following two lemmas, due to Mokobodzki.
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(3.5) Lemma. Let r be a measure on E such that RF exists. Write I = RF and suppose that

Then RA03B3 = q.

For the next lemma let ~ and m be excessive measures, and let u be the smallest a-finite

measure dominating both ç and m. Since p > m there is a unique a-finite measure v such that

~c = m + v. We write (~ - m)+ for v, and note that R(ç - m)+ exists since (ç - m)+  ~. In

fact, R(ç - m)+ = ~{y E Exc: y + m > ~}.

(3.6) Lemma. Let I = R(~ - m)+ where ~ and m are excessive measures. Then there is a

unique p E Exc such that 1+ p = ~. Moreover, p  m.

We now proceed with the proof of (3.1). Fix $ and m in Exc, and for u > 0 define

(3.7) Tu = ~ rn)+

Clearly yu is decreasing and the limit

(3.8) lim yu
ujoo 

"

is an excessive measure. Set 0393u = (03BE - u m)+ and note that if f E e+ with 03BE(f)  ~, then

u - is decreasing and convex. Since R is lu(f) is likewise convex. These
facts in hand, it is not hard to produce e-measurable, finite-valued densities gu = + m),
Gu = + m), such that u H gu(x) and u ~ are decreasing and convex in u > 0,
for each x E E. Set b = + m) aand for u > 0, E > 0 define

= ~(1 + > u ’ b + ~90 > u - b + (1- 

Because of (3.5) we have 

( 3.9 ) ’Yv = = 
, ~ - u - v.

Clearly E) is increasing in E and decreasing in u (the latter since u H is convex).
Thus we may define

(3.10) 
6u R )m,

T(u) = T 
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where IIA(u,E) is the Lebesgue penetration time of A(u, e) as in section 2. The family {T(u): u >

0} has the properties listed in Theorem (3.1). Also, by (2.7) and (3.10),

(3.11) su = u >- 0.

Now if 0  u  v then r v  ru + (v - u)m; hence 03B303C5, ~ 03B3u + (v - u)m upon applying R.

Applying and using (3.9) we obtain + (v - Letting E j, 0, it follows

that ~v  ~yu + (v - u)6v. On the other hand, on A(u, E) we have yv + (v - u)m + 

(1 + ~t)~ - um > ~u; applying we find that ~yv + (v - u)RA(u,E)m + . Letting

0 we obtain + (v - > . Thus

(3.12) 0  M  ~.

Letting v j u in (3.12) we see that with (03BE+m)(f)  ~, then bu+( f )  

with equality except possibly for u in some countable set, since bu is decreasing in u. Since 
,

u ~ 03B3u(f) is convex, it follows that

(3.13) 03BE(f) =’Yv(f ) + du, v > 0,

first if (03BE + m)( f )  oo, and then for all f E £+ by monotone convergence. Now (3.2) will

obtain upon letting v T oo in (3.13), once we identify the limit y~ with For this, note that

LTm =~ limu~~ LT(u)m = 0 since the integral in (3.2) is dominated by 03BE. Let E J. 0 
in (3.9) to

obtain = if 0  u  v; now let v i oo to see that 03B3~ = LT03B3u. Finally, apply LT to

both sides of (3.13) (noting that  LTm = 0) to obtain LT~ _ To as required. If

03BE  r . m then 03B303C5 = 0 for v > r and (3.3) follows from (3.2) since LT03BE = 
= 0. The proof of

(3.1) is complete.

(3.14) Remark. The family ~T(u) : u > 0} is not unique but 
the particular family produced

in the proof of (3.1) enjoys a certain extremal property. Indeed, if ~ 
= is a second

decomposition of £ (where b8 - m, and b" ~y~ are excessive) then

(3.15) - and 03C50 LT(u)m du > 03C50 03B4*udu, all v > 0.

Using (3.15) one can check that u ~ m)+ for all u > 0.

An important case of (3.1) occurs when ~y~ = LT~ = 0. Following 
section 6 of [6] we write

E-- m in this case, and say that ç is weakly dominated by 
m. When ~ - m, (3.2) exhibits $
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as a "randomized balayage" of m. The relation - is transitive but it is only a preorder since

m ~-- 2m E-- m. We offer two characterizations of f--. The first of these is from [6]; its proof is

left to the reader as an exercise.

(3.16) Proposition. Fix ~ and m in Exc. Then ç E- m if and only if ç = ~~ 1 ~’n where

03BEn E Exc and 03BEn ~ m for all n.

The second characterization of E- is a variant of a result found in [6].

(3.17) Proposition. Let ~ and m be excessive measures. Then ç ~-- m if and only if ~ « m

and 0 as u i oo, where ~ E E+ is any version of 

Proof. It is clear from (3.1) that ç ~- m if and only if R(~ - u . m)+ ,~ 0 as u i oo. Also,

if ~ f- m then certainly ~ « m. In view of these remarks the proposition follows from

(3.18) (u/u + _ iv C y v > 0, ’t~ = 

For the left hand inequality in (3.18) use (3.6) to produce pv E Exc with 03BE = pv + 03C1v  v m.

Then, using the fact that (u + v)m  ~ on {~ > u + v} for the second equality below

R{,y>u+v}~  

(3.19)  (v/u + + 7v~ .

We obtain the first inequality in (3.18) by rearranging (3.19). For the second inequality in (3.18)
note that

~  v +  v ~ m + ’

so that ~v = R(~ - v . m)+  as desired..

(3.20) Remark. Letting u i oo, then v I oo in (3.18) we see that if ~ « m, then ~y~ = LT~ =

limvfoo 

Finally, let us interpret (3.1) as a Skorohod stopping theorem. Let ~’ E Exc and let m = 

be a potential with ~ E- m. Let {T(u): u > 0~ be the family of stopping times provided by

(3.1). denotes the universal completion of ~, then the restrictions S(u) - T(u) In form
an increasing family of times. Moreover, each S(u) is a terminal time since the

T(u) satisfy (2.5). Arguing as in [4] one shows that = where is the

hitting operator for S(u).
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(3.21) Proposition. Let 03BE E Exc, E Exc with 03BE E- Then 03BE = vU where v =

Jooo du, and where {S(u): u > 0} is as described above.
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