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STATIONARY MARKOV SETS

M. I. Taksar*

Department of Statistics
Florida State University
Tallahassee, Florida

United States

1. Introduction

If one looks at the set of times when a strong.Markov process visits a point

in the state space, then this set is a regenerative set. It forms a replica of

itself after each stopping time whose graph lies in this set. Closed regenerative

sets have been studied for a long time (see Hoffman-Jørgensen [4], Maisonneuve

[6], Meyer [10] and others).

Since the studies of regenerative sets were motivated by the theory of Markov

processes, such sets were originally called (strong) Markov. In addition it was

always supposed that any regenerative set M is a subset of the positive half-line

and P{0 E M} = 1.

However, if one considers visiting times of a stationary strong Markov pro-

cess, then the corresponding set M is stationary, that is the probability law of

the set M + t is the same as the one of M. The "natural" state space for station-

ary sets would be the set of closed subsets of a real line and the condition

OE M a.s. should be dropped. The first study of such sets was done in Taksar

[12]. It was shown that all such sets are in one-to-one correspondence with the

weak limits of the ranges (closures of the images) of the processes with

independent increments having finite expectation.

The paper of Maisonneuve [8] gives a simple and comprehensive approach to the

regenerative sets on a real line. It also give an easy proof of the main results of

[12]. Further development of the theory of regenerative sets on a real line is done

in the recent work of Fitzsimmons, Frisdedt and Maisonneuve [3].

*) This research was supported by the AFOSR, Grant No. AFOSR F49620-85-C-0007.
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All regenerative set have a (weak) Markov property. The "future" after time t

of such set and its "past" are conditionally independent given "resent". In this

context "future" after time t means the intersection of the random set with ]t,~[.

The "present" stands for the infimum of the "future". The "past" is the compliment

of the "future". A Markov set is a set for which conditional independence of the

"future" and the "past" holds, but stronger regenerative property might not be true.

Apparently, Markov sets form a larger class than regenerative sets. In a station-

ary case, however, the difference is not as big as one could expect. It was shown

in [12] that staionary Markov sets are "almost" regenerative. There are two types of

regeneration after each point t; one occurs if the point t belongs to the set and

the other type of regeneration takes place if t does not belong to the set. In partic-

ular, every stationary Markov set which almost surely has Lebesgue measure zero, is

regenerative, (see [12] Theorem 2).

In this paper we will describe all closed stationary Markov sets. We will show

that each stationary Markov set which is not regenerative can be constructed from two

special regenerative sets, by either taking a mixture of these regenerative sets or

taking a "superposition" of two regenerative sets. One of the two regenerative sets

is thin (that is having a.s. Lebesgue measure zero) and the other is "rather thick".

In the case of mixture the second set is the entire real line. In the case of the

superposition the "thick" regenerative set consists of a union of closed intervals

with the exponential iid lengths with the spacings between these intervals having any

iid distributions.

Superposition can be described loosely as follows. We take the real line IR1
with a thin set M1 and a real line IR 2 with a thick set M2, which consists of a

countable number of closed intervals ..., I , I I I .... The real line IR1
is cut in a segments of iid lengths, exponentially distributed in the local time of

the set M~. The line IR 2 is cut at the left end of each interval Ik. Then we

combine IR1 and IR2 into one line by alternating pieces from IR1 and IR2 (i.e., in-

serting intervals Ik with their right spacings into the cuts of the set MI). The union

of the cut offs from M1 and M2 will be the superposition of the sets M1 and M2.
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In the case in which M is a discrete set one can describe the resulting Markov
set in operations research/reliability vernacular. Consider a serviceman who is

regulari’ly called on site for inspection of a working device. At each inspection

there is a probability p of discovering a defect. While the defect is not detected,

the intervals between successive calls are iid random variables with distribution F .
If the inspection reveals the defect then the serviceman stay for a repair which has an

exponential distribution. The time of the next inspection after the repair is decided

by the serviceman and it has distribution F 2 which might be different form Fl. The

set of times when the serviceman is on site, that is,the inspection times and the re-

pair time, is a Markov set. However this set is neither regenerative nor is a mixture

of two regenerative sets.

Although the description of the superposition in terms of cutting and recombining

the lines is more intuitively understandable, we would rather use an equivalent defini-

tion in terms of processes with independent increments, which is more useful from the

technical point of view.

The paper is structured as follows. In section 2 we give definitions and formu-

late the main results. In section 3 we establish the main properties of stationary

Markov sets. Section 4 studies the operations which transforms a stationary Markov

set into a stationary regenerative set. Section 5 analyses those stationary Markov

sets which are neither regenerative nor are mixtures of regenerative sets. In section

6 we study the "residual life" process associated with the stationary Markov set,

and find its stationary distribution. The last section is devoted to reversibility

properties. We outline a necessary and sufficient condition for the set -M to have

the same distribution as M.

2. Basic definition. Formulation of the main result.

In our definition and notations we follow Maisonneuve [8] and Fitzimmons,

Fristedt, and Maisonneuve [3] (following slight corrections suggested by Maisonneuve
in [9]). Let nO be the set of all closed sets in R. For each and te IR

put (assuming inf Ø = ~, sup Ø = -~)
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sup{ ut: uEw°},

rt(~°) ~ d t (w°) - t, nt(~’°) ~ t -’~t(w°) ~ >

st where the bar above the set stands for closure.

Let ~° respectively) be the o-field generated by all functions ds, s e ~t

(s s t respectively). Let 1° (l,~ respectively) be the a-field generated by all
functions u, , u ~ R t respectively). It is easy to see that GO is an increasing
and .1t is a decreasing filtration and J° = GO .

A closed random set M on a space (S~, F) is a measurable mapping of (S~, ~) into

(s~°,G°) .

In this paper we will deal only with closed random sets, so in the sequel we

will not write "closed" each time. Put

’ 

M~ 

’ 0 M. °
t t

It is obvious that all the mappings Dt, Rt, Lt and Nt are measurable and so are

Mt Mt . °

Let be a complete probability space and M be a random set on this

space. Let G, Gt and Jt be the preimages in F of the 03C3-fields GO, Ct and Jto
under the mapping M.

(2.1) A set M is called right Markov (r.M.) if for any two bounded measurable

functions f and g on 

(2.2) A set ~t is called left Markov (1.M.) if for any two bounded measurable functions

f and g on 

For brevity here and in sequel we write equations with conditional expectations
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without adding a.s. after equalities. Given a random set M, we denote by M + s

the set {t+s: tE M}.

(2.3) A set M is called stationary if for any bounded measurable function f on

((20 , GO) and any s E ~t

P{f(M+s)} = P{f (M) }.

Our aim is to describe all stationary r.M. sets. We will need results from

the theory of regenerative sets. The precise notion of regenerative set used in

this paper is due to Maisonneuve [8] (with slight corrections according to [9]).

(2.4) A random set M is right regenerative (r.n) if there exists a measure

P 0 on such that for each f ~ bGo (set of bounded GO-measureable functions)

= on (Dt~}.

Following [8], the measure P~ is called the law of (right) regeneration of M.

(2.5) A set M is left regenerative (l.r.) if there exists a measure pO on 

such that for each fE bG°
’ = on {Lt> 

In the sequel we will sometimes use the term regenerative (r.) and Markov (M.)

instead of right regenerative and right Markov respectively.

Increasing processes with independent increments (subordinators) play an impor-
tant role in the description of regenerative sets and, as we will see in the sequel,

stationary Markov sets as well. Each subordinator z is characterized by a constant

a  0 and a measure n on ] 0, ~ [. We call such a subordinator an (a,~ ) -process.
Let zt (c~) , be a stochastic process on a probabi lity space (St, ~, P) . The

image M of this process is defined as

P1(.~~) _ 
+

If z is a subordinator, then the image of z is a right regenerative set. If z is a

decreasing process with independent increments then the image of z is a left regen-

erative set. 
,

Let us recall the main results of C3] and [12] regarding stationary- regener-
ative sets. There is one-to-one correspondence between all stationary r.r. sets
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M and all pairs (a,ll) defined up to proportionality, where a and n are charac-

teristics of a subordinator subject to
m

0 .

The stationary set M which corresponds to the pair (a, n) is called (a, n)-generated

Any stationary r.r. set M is also l.r. Moreover the set -M has the same distri-

bution in as M.

Since the definition of r.M. set is weaker than that of r.r. set, any r.r.

set is r.M., however the opposite is not true.

An example of a stationary r. M. set which is not r.r. was constructed in

[12]. Any mixture of a (0,n)-generated set and a real line R with "weights"

0  p  1 and q = 1- p is a r. M, set but not a r. r. set.

. DEFINITION. Right Markov sets of the first type are right regenerative sets.

Right Markov sets which can.be represented as a mixture of a (0, II) - generated and

a real line are called r.M. sets of the second type. Right Markov sets which are

neither of the first or the second type are called right Markov sets of the third

type.

Markov processes provide good examples of different types of stationary

Markov sets. If xt is a strong Markov process 
and b is a point in the state space

then the "visiting set"

M = {t: 

is regenerative and if in addition xt is stationary, then M is stationary.

To obtain a Markov set of the second type, consider a strong Markov process xl,

for which pjxl t =b) = 0 for each t, but point b is not a polar set and a

process x; which stays deterministically at the point b. The mixture xt of the

processes x t I and xt will be a Markov (but not a strong Markov) process. The

visiting times of b by xt is a Markov set of the second type, and if x; is sta-
tionary then so is the visiting times set.
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To give an example of a Markov set of the third type, consider a particle

moving on the positive half line according to a diffusion law. An infinitely thin

elastic screen is placed at the origin. The particle is reflected from this screen

until time

T = {inf t: 

where At is the local time at zero of the reflected diffusion and S is a random

variable with exponential distribution independent of the process xt. At the

moment T the particle moves to the other side of the screen where it stays for

time X, where X is another exponential random variable independent of x. and S.

At the time X + T the particle is placed back to a random point’ on the positive

half line and the whole process starts anew. The closure of the set of times when

this particle visits the origin is a Markov set of the third type. If this Markov

process is stationary (which can be easily achieved, provided 
that there exists a

constant downward drift, or there exists a reflecting upper barrier)then 
this

Markov set is stationary.

In the remainder of this section we define rigorously the superposition of

two regenerative sets and formulate the main result. The definition in introduction

might be convinient but we find it more useful to define 
the superposition by means

of the processes with independent increments.

In the sequel we will use and interchangably. If a measure n is defined

on then it is assumed to be extended to IR~ by setting n{0)=0.

Let IT be a measure on J4,°°) and p be a probability measure on [0,~[ and À and

a be two positive constants. Let yt be a (0, II)-process and {Sk ), k= 1, ’ 2, . , , , ’

and {Yk}. k = 0, 1, 2, .., be three sequences of iid random variables, indepen-

dent of yt and independent of each other. The distributions of Si and Xk are

exponential with parameters a and À respectively. The distribution of Y. J is given

by p. Consider a subordinator xt of a pure jumn type constructed in the following

manner (we assume below 03C30 = 0)
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ok = ~ Si, k = 1, 2, ...,

" 

(2.6)

xt =  (Yk+Xk)lok~t,

Put 
Zt = yt + xt, 

(2.7)
L =  {x:Z03C3k-~x~Z03C3k- +Xk},

. (2.8)

The set M defined by (2.8) is called (n ,a,B,p)-set. (Note that there are many

corresponding to different initial distributions of the process yt).

Let u’ be the restriction of  on 30,°°C. We say that quadruple (n ,a,a,u) is

equivalent to if there exists a constant c such that

{II ~ a) = (2.9)

’ - ’1 = 
{0} - 1{0} 03C0(R+)

03C0, ( 2. 1 0)

a{1- au{0} /(a + 1I (~.)) = (2.11)

In particular, when n is an infinite measure, equivalency of and

means proportionality of ( TI,a) and and equality of 

and (11,u1).
It is easy to see that if and quadruples (1I ~ a, a, u) and 

are equivalent then every is a as well. In fact,

if we construct processes x, y and Z by (2,6) and (2,7), then processes 

and generate the same set M given by (2.8). However, the Levy’s

measure of the process yot is c1t and the rate of jumps of the process x‘t is c a,

which shows that ( lt,a,a,u)-set is a,a,u)-set as well.
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If n is a finite measure then xt and yt are Poisson processes with jump rates

e and TI(1R+) respectively. In particular

p Q 1 =y~} = a/(a+ 
(see (2.6) for definition of o.). The set M given by (2.7) consists of the inter-

vals of L and discrete points of the image of Z. The length of the first interval

II of L is equal to Xl + X2 + ... + X,, where N has geometric distribution with para-

meter pu{0}. Thus the distribution of the length of I1 is exponential with parameter

a(1-pu{0}). The distribution of the length the interval J~ which is contingent to I1

in M from the right (i.e., inf Jl C sup II) has distribution 

(note that is the distribution of the jumps of the process y). Like-

wtiae for any other interval Ik in L and contingent to Ik interval Jk. The distri-

bution of any interval contingent to M which does not coincide with any of Jk is

equal to the distribution of jumps of y, i.e. to (II (~t+)) 11t . From the above it

is easy to show that if M is a and (n is equivalent to

then there exists a whose distribution is the

same as that of M.

DEFINITION. A random set M is called (H, if -~or each t there

exists a random variable ~t, such that a.s. and has the same

distribution In this case the quadruple is called

the generator of the set M.

The next two theorems give the main result of this paper.

(2.12) THEOREM. Every stationary r.M. set M of the third type is (n 

generated. The generator of M is unique up to equivalency and is subject to

m

~ xII (dx) (2.13)
0

m

(2.14)
0
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Each quadruple subiect to (2.13) and (2.14) is a generator of a unique

stationary right Markov set.

Let 6 denote a unit measure concentrated at point a.

(2.15) THEOREM. A stationary r.M, set M of the third type is left Markov iff

its generator ( n,a,a,u) is equivalent to (IT ,a,a,8~). In this case the set -M

has the same distribution as M.

In the diffusion example presented above the set of visiting times of 0

becomes a left Markov set when the diffusion process is made continuous. That

can be done if at the time T + X the particle is moved on the other side of the

elastic screen and starts again moving according to the original reflected 
diffu-

sion law, In the operations research/reliability example of the 
introduction, the

set of times when the servicemen is on site becomes left Markov if F1= F2, that is

if the distribution of the time of the first after a repair check up is the same as

the distribution of -the time between successive calls.
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3. General properties of stationary Markov sets.

Here and in the sequel we will deal only with those stationary Markov sets

which are a.s. nonempty. This is equivalent to

for all t E R. (3.1)

The following proposition was proved in [12] (see Lemma 7.3).

(3.2) PROPOSITION. If M is stationary Markov set then for each function febG°

there exist two constants a and b such that for each t

For brevity we will denote indicator functions of 

by l~t and l~t respectively.

The following corollary is a simple consequence of Propostion (3.2).

(3.3) COROLLARY. If M is a stationary Markov set then there exist two measures

PG and P1 on (~t°,G°) such that for each febG°

(3.4)

Let M denote the set of all points of M which belong to M with its right

neighborhood.

(3.5) PROPOSITION. For each fe bG° and any stopping time T with respect to the

filtration Gt+

1T(M) P1{f}. (3.6)
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Usual arguments show that Proposition (3.3) remains true if t in

(3.4) is replaced by any stopping time with respect to Gt, taking finite or coun-

table number of values.

It is sufficient to prove (3.6) for f of the form

f = g(rs1 ,rs2 ,...,rsk)

where g is a bounded continuous function of k variables. For such f the function

f o Mt is continuous in t and

P{f  MT|GT+} = lim P{f  MTn|GTn} =

(3.7)
= lim [l>Tn (DTn)P0{f} + lTn (DTn)Pl{f}] ,

where Tn is any sequence of stopping times, taking on finite or countable number

of values and such that T.

Put

aen (x)  k 2 n, if (k-1)2 n s x  k 2 n (3.8)

and let (assuming inf ~ = +co)

Tn 
, = inf{æn (s) : s >- T, , u c M for all .

The random variable T, n is a stopping time (see [2], Ch VI) and so is

Tn = æn(T) + 1T~T’n . (3.9)

Each Tn given by (3.9) takes at most a countable number of values and T. By the

construction D n > T n on the set ~T E M} and = DT } converges to the 
set {T E M}.

Hence we can pass to a limit in (3.7) and obtain (3.6).
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PROPOSITION. For each f ~ bGo and each stopping time T with respect to

Gt+ ,

1T(~°)Pl~f}~ (3.11)

The proof is similar to the proof of previous proposition.

From now on we will consider only stationary sets of the third type, for

which

t} > Q. (3.12)

(Theorem 2 of C12] shows that failure of (3,12) implies that M is regenerative.)

(3.13) PROPOSITION. For each t

P{Dt = t, t ~ } = 0. (3.14)

Ph.oog. Suppose the left hand side of (3.14) is equal to e > 0. By virtue of

Proposition (3.5)

P{f o = P 
0 
{f} on {D 

t = t, ’ t E M}, ’ (3.15)

On the other hand, using sequentially (3.4) and (3.15)

(3.16)

on {Dt = t}.

Equality (3.16), which is true for each f, shows which contradicts the

assumption that M is the set of the third type.

(3.17) COROLLARY, P1{0 E w~} = 1. ° 
.

Proof. By proposition (3.13) the sets {D t = t} and are indistinguish-
able. Using (3.4),

Thus, the statement follows from (3.12).
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(3.18) PROPOSITION. For any functions febG° and gebG° such that g = 0 on

{d - and each i = 0, 1

g}= + (3.19)

~ 
For i = 1. Put T = t + s. By (3.4) and (3.12)

Pl{f  03C4dtg} = P{f  MTg  Ms |Ds = s}/P{Ds = s}.

Taking first conditional expectation with respect to GS+t, we get

P1{f  03C4dt g} = P{g  Mslt+s(Dt+s)P0{f} + g  Mslt+s(Dt+s)Pl{f}|Ds=s}/P{Ds=s},

which is equivalent to (3.19).

Let

t  inf{s > t: s ~ 0}, ~t  t  M,
t inf{s > t: s ~ 0}, 03B3t   M,

t  inf{s > t, s ~ 03C90}, 03BDt  t  M, (3.20)

  0,   0,   0, ~  03B3  03B30, 03BD  03BD0.

(3.21) ) PROPOSITION, , For Y and n defined b (3.20)

P1{n = 0} = 1. (3.22)

and there exists a constant 0  ~ such that for each a

P1{Y ~ a} = (3.23)
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Proof. (3.22) follows from (3.17) . Let a, b > 0. Applying Proposition (3.18) ,

+ (3.24)

If Y > a then a E W° and da= a. Thus a, da > a} = 0 and (3.24) equals to

> a} > b} whereas (3.23) follows.

Suppose (3.23) equals 1. Then 1. The latter would imply that

M is a mixture of a real line R and a regenerative set with the law of regenera-

tion P0. This contradicts the assumption that M is a set of the third type. Like-

wise, if (3.23) equals 0, then this would imply that P{da = a} = 0. The latter is

with a contradiction to (3.12). .

Let nt’ Yt, ... etc. be given by (3.20). . Define

n(O,t) ~ v"(O,t) ~ t , (3.25)

n(k,t) ~ ’

Y(k~t) - 

~(k,t) - v~(k-l~t), H k= l, 2, ... ,

n(k~t) ~ n(k,t) 0 M,
Y (k ~ t) ~ Y (k, t) ° M,

v(k,t) ~ oM.

When t is fixed we will write for brevity n(k), ~(k), y(k), etc, instead of

y(k,t), etc.

The points n(k) and y(k) mark the beginnings and the ends of the intervals

which ~9n is composed of.

(3.26) PROPOSITIOM. The sequence { (Y (k) - n(k) , u(k) - Y(k) , ~(k+1) - y (k) ) } is a

sequence of iid three-dimensionals vectors on (5~,~,P), The sequences {Y(k) - O(k)}
and v(k) - y(k)} are independent and for any a > 0
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P{Y (k) - n(k) > a} = e ~a ~ , (3. 27)

where a is the same as in Proposition (3.21).

The sequence {(Y{k) - n{k), v(k) - Y{k), n(k+1) - u(k))} is a sequence of iid

three-dimensional vectors on i = 0, 1. The sequences ~Y{k) - n(k)} and

{v (k) - Y (k) } are independent and for any a > 0 and any i = 0,1

.

It follows from C2] Ch. VI that for each k the random variables

n (k) , y (k) and v (k) are stopping times and if k > j then

Let h be any bounded function of three variables. Since n(k) e fi, using Proposition
(3.5),

Gn{k)+} = P1{h(Y,u-Y~n{2~~)-v)}.

The above shows independence of (y(k) - n(k), v(k) - y(k), n(k+1) - v(k)) from the

sequence {Y(j) - rt{J) ~v{j) - Y{j) ~ n{J+1) - v(J)) }~ j = 1, 2~ ..., k - l.

Let g be a bounded function of one variable. Put = g ("v - ~) . Then using

Proposition (3.5)

P{g(v(k) - y(k)) l~b (Y(k) - n(k))} (3.28)

- 

= 

The last equality in (3.28) is due to (3.4) and

Likewise, setting h (~ ) = l~b (Y)

n(k)’ b} = = = > b}

and (3.27) follows from (3.23).
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The proof of the secon d part of the proposition is done in a similar manner.

4. Deletion Operation and its Properties.

In this section we define an operator which removes parts of the set M in

such a way that M becomes a regenerative set. Define as

(4.1)
where

K(c~°) d [n(k,t), y(k,t)J.
t-+-oo k=1

The operator K removes closure of the interior of w°, and the remaining

set has no interior. Thus

K(o) = Ø .

(4.2) PROPOSITION. For any 03C9o and any t

(4.3)

Proof. Suppose (4.3) is wrong,then for some k ? 1

E 
, . (4.4)

Since K(u)O) E the only way that (4.4) can be true is

= n(k,t) . ° (4.5)

If n(k,t) = t then (4.5) fails because in this case

t  n(k,t) then (4.5) implies ]t,n(k,t)CE K(w°). 

Thus E which contradicts (4.5).

(4.6) THEOREM. The set K 0 M is a stationary regenerative set.

Proof. From a trivial relation

(A)0+S = wO+s
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it follows that

K o M + s = K(M+s). ~ (4. 7)

Likewise

= 
. (4.8)

Relation (4.7) shows that stationarity of M implies stationarity of K ° M.

Put Dt = dt ° K ° M. Then Dt is a stopping time. By virtue of Proposition

(3.5), , Proposition (4.2) and (4.8), , for any function f E bG°

P{f  03C4D’t K  M|GD’t+} = P0{f K  03C4D’t  M|GD’t+} = P0{f K}. (4.9)

This proves that K ° M is regenerative with the law of regeneration

P = PO ° K 
1 

. (4.10)

(4.11) REMARK. The proof of Theorem (4.6) shows that K ° M is regenerative

with respect to the filtration G ,+ which is larger than the naturalt t
filtration generated by K° M. It can be also shown that

= ° = p{f} . (4.12)

We will call K ° M the regenerative part of the set M. By C6] the set

K° M is either perfect or discrete.

According to C7~ and C12~ their exists a process zt with independent incre-

ments such that = z~ for PO a.a. ~° and such that the local time
+

03B8 s = (z-1)s  inf{t: zt ~ s} (4.13)

is a continuous process adapted to the a-field Got+ and for any u ~ zR
+

03B8u+s = 03B8u + 03B8s 03C4u . (4.14)

(4.15) PROPOSITION. If M is a stationary Markov set with a perfect regenera-

tive part then

.
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Put

= inf{ae n (s): for all 

where aen (s) is given by (3.8). Let

Tn(03C9o) = {
0 if 0 ~ o,

n 
otherwise.

Then Tn is a sequence of stopping times such that

n = DT - 0 on {0 E c~°} . (4.16)
n

From [6] and [8] it follows that for any perfect regenerative set with the

law of regeneration P

p{0 is an isolated point in = 0 . (4.17)

On the other hand and c~° coincide in a neighborhood of 0 on {0 E w°},

From (4.10) and (4.17) follows

0 is an isolated point (4.18)

Combining (4.18) with (4.16) we get

d~, ~ 0 a.s. PO. (4.19)
n

Take rs , . , . , rs ) , where g is a positive bounded continuous

function of k variables. By virtue of (4.19)

P0{f} = lim P0{f  03C4dTn } = lim{lTn (o) Pl{f} + lTn ~o P0{f}}. (4.20)

Suppose = E > 0, Then the right hand side of (4.20) converges to

+ 



322

which implies Po = Pl. . The latter implies M is a regenerative set, and this

is in contradiction with our assumption that M is the set of the third type.

Let be the set of accumulation from the left points of w°, , i.e.

x E iff there exists a sequence { n} such that n  x, n E ,~° and x.

(4.21) PROPOSITION. If M has a perfect regenerativE part then for each k

an d t

P{n(k,t) E b(M)} = 1. . (4.22)

Suppose (4.22) fails. Then with a positive probability there exists

an interval contiguous to M whose right end coincide with n(k,t). . Fubini’s

theorem implies an existance of u for which

P{Du = n(k,t), , Du>u} > 0 . . (4.23)

Applying (3.4) to and using (4.23), , we get

which is in contradiction with proposition (4.15) . .

Put

03B60  0,

03B6k  03B8(k) ~ 03B8(k) ~ 03B8(k) ,

where 8 s is given by (4.13) and n(k), , (k) and v(k) stand for n(k,0), ?(k,0), ,

and , given by (3. 25) .

(4.24) PROPOSITION. If M has a perfect regenerative part then 03B6k - 03B6k-1 ,

k = 1, , 2, , ... are exponential iid on loi C;O, .

Proof. Let  = nO = m(1,0) . . Consider

= = > a, a’ b} . °
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Let

Q = 8s ~ a}. (4.26)

Then 6 is a stopping time with respect to Gt+ and 90 = a. Thus the right-hand

side of (4.25) can be written as

P0~8n > a, 8n - 90 > b} = PO{6n > a, 8n’c ° Ta > b} (4.27)

= P0{03B8 > a, 03B803C403C3 03C403C3 > b}

= P0{P0{03B803C403C3 o 03C403C3 > b|Go03C3+ 03B8 > a}

- PO{6n > a} PO{6n > b} .

The first equality in (4.27) is due to (4.14). The second equality holds because

Q > n and for any s Dots = n - s on the set {s  n} . The last equality in

(4.27) is a consequence of Proposition (3.10) and the equality

d -Q
Q

which is true for any perfect regenerative set and any o given by (4.26).

Equally (4.27) shows that ~1 has exponential distribution.

Since for any k

Jn(k), v(k)C E 

the quantities 8~(k) and 9v(k) coincide. Thus, in a way similar to the one

in which (4.27) was obtained,

PO{en(k+1) - en(k) > a ~ I ~~(k)+}
- > a ~ I 

- ° > a ~ I ~(k)+}
- 

(k ) 
° 

T~(k) > a ~ I 

- PO{en > a} . ,
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The above equality shows tk is independent of ~n - ~n-1, n = l, 2, . , , , k
and have the same distribution as ~1.

(4.28) REMARK. The proof of Proposition (4.24) also shows that is indepen-

dent of the sequence of random vectors (v (n) - Y (n) , Y (n) - n(n) ) , J n =1, 2, ....

5. Structure of Stationary Markov Set.

In this section we will show that each stationary set M is 

generated. This will be done separately for the case in which M has a perfect

regenerative part and in the case in which M has a discrete regenerative part.

Suppose M is a set with a perfect regenerative part and PO. K-1 is its

law of regeneration. Consider the process Vt on 

("v (k) _ ntk) ) ,

where ~k = en(k) with 9 given by (4.13). The process Vt is of a pure jump type.

In view of Proposition (4.24) are exponential iid. By virtue of the

proposition (3.26) and Remark (4.28) the random variables (v(k) - n(k)) are iid

independent of the point process 1;k8 Therefore, the process Vt is a process

with independent increments.

Proposition (4.21) and Proposition (3.10) together with (4.18) show that

n(k) and v(k) are points of accumulation of a.s. P0. This implies

v (k) , z~ - - n(k), 
(5.1)

where zt is the process whose image is equal to K((D ) n From (5.1)

and the definition of Vt follows

V03B6k - V03B6k- = z03B6k - z03B6k- . (5.2)



325

Put

B~t-~- °
Since both z and V are processes with independent increments, so is W .
The set K((u ) has Lebesgue measure zero, therefore the process z has trans-

lation constant equal to zero and is of a pure jump type. In view of (5.2),

Wt is an increasing process of a pure jump type such that

W03B6k- 
= 

W03B6k . (5.3)

Relation (5.3) implies that V. and W. have no common points of discon-

tinuity. Accordingly V~ and W~ are independent (see Cll]).

(5.4) THEOREM. A stationary Markov set M with a perfect regenerative part is

For each t we need to find t) such that is a

In view of stationarity it is sufficient to consider only t=0.

Put ~=~, where ~ is given by (3.20). Let

X~ ~ ?(k) = y(k+l,0) -n(k+l,0),

Y~ = ~(k) o 

~ oM--~(k) o v(k+l,0) -y(k+l,0) ,
(5.5)

~t = 

Yt ~B~.
Then for Z~ given by (2.7) we have

Z~ = z~ . 

o~ = ~ . 

Let II be the Levi’s measure of the subordinator W. Let a be the parameter
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of the exponential distribution ~k-1’ À be the parameter of the exponen-

tial distribution of y(k) - n(k) (see (3.27)) and

u(r) 6 P{v(k) - y(k) E r} = PO{v(k) - (k) E r}.

We would like to show that the set M n C~,~C is a (ll,a,a,u)-set as defined by

(2.6) - (2.8). Since .v = D and Y E M, we can apply Proposition (3.5) . and get

P{f  M03B3|G03B3+} = P{f  03C403BD  M|G03B3+} = P0{f} . (5.6)

In particular, (5.6) shows that the law of (V o Tv 
o M, W. ° Tv 

o M) on (5~,~’,P)

is the same as the law of (V., > W.) on It also shows independence of

v and (V. o Tv 0 M IV. o 

T v o M). 
’

For T 0 M and for Zt = Vt + Wt’ one has

°

+

Thus

zR+  M1 + 03C6 = K  M ~ [03C6,~[ .

The construction of the process Vt (and xt by (5.5)) shows that L given by

(2.7) coincides with the closure Since we got the

representation (2.8) with x, and y~ given by (5.5). Proposition (4.24) shows that

03C3k = 03B6k  03C403BD oM forms a Poisson point process. Proposition (3.26) and Remark (4.28)

show the required independence of ~~}, {Yk} and y, as well as independence of

x. and Yo given by (5.5). This concludes the proof that M n C~,~C is a

A stationary Markov set with a discrete regenerative part cannot be treated

in the same manner because Propositions (4.15) and (4.21) are no longer true in

this case. As a result (5.1) and (5.2) as well as (5.3) might fail. The failure

of (5.1) - (5.3) might result in dependence of the processes V, and W.. .
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However, the case of a set with a discrete regenerative part can be treated

"from scratch". The analysis of this case is rather simple, so we will only out-

line the main points without going into details.

Put

p = (5. 7)

It ijs easy to snow that if M has a discrete regenerative part then 0  p  1.

Let X be given by (3.23) and

u(r) = r} (5.8)

n(r) = (5.9)

Proposition (3.5) shows that the right endpoint of each interval contiguous

to M belongs to M with probability p independently of the length of this

interval. Thus can be described by means of a Markov renewal process

U(t) (see [1] Chapter 10) with three states. The holding time in the first state

is exponential with parameter ~, the holding time in the second and third states

have distribution p and lt respectively. The transition matrix of the imbedded

discrete Markov chain is

0 1 0

p 0 1-p

p 0 1-p

The set of times when U(t) undergoes transitions from one state to another or

U(t) is in the first state corresponds to T o M.

It is easy to verify that the set = is a 

where a is such that
a

(Note that if yt is a (0,II)-process and xt is the process defined by (2.6),

then a/(a+1) - P{Q1  inf{t: .
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(5.9) PROPOSITION. If M is a stationary (Tt,a,a,u)-generated set then Jt and

1J satisfy (2.13), (2.14).

(For M with a perfect regenerative part, for M with a discrete

regenerative part the proof is similar). Let xt and yt be the subordinators

which generate (see (2 .6) - (2. 8) ) . Then

K o (Z~ uL) = Z1R .
+ +

The latter shows that the process Z = x + y generates stationary regenerative set

KoM. If IT’ is the Levi’s measure of Z then from [8] and [12]

m

f xn’ ( dx )  ~ . . (5.10)
0

On the other hand it is known (see [11]) that

P{Zt - Z0} = t x II’(dx) (5.11)

The left hand side of (5.11) can be rewritten as

P{yt - y0} + P{xt - x0} = t x 03C0(dx) + t03B1-1[03BB-1 + x (dx)] (5.12)

Relations (5.10), (5.11) (5.12) imply (2.13) and (2.14).

(5.13) PROPOSITION. . I f M is a set, , then the quadruple

is determined by M uniquely up to equivalency. ,

Proof. The compliment of M consists of a union of open intervals .

Since M n C~O,~ C is a (TI,a a, u) -set we can write (recalling representation (2.6)

- (2.8)) .

P{ I f(b-a)}
v (1) ~a,b~n {2) 

(5.14)

= lim P{ I f(b-a)}
k-~ 
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= Q{  f(Zt - Zt-)1Zt~Zt- (5.14)

= Q{  f(yt - yt-)lyt~yt-}

- = 

Here Q is the probability measure associated with the process x, y and Z in

(2.6) - (2.8). Formula (5.14) shows that (Tt, a) is determined by M uniquely up

to proportionality.

On the other hand, direct computations show that for any 

P{Y-n} = (5.15)

and for r c ]0,~[
{0393} if 03C0(IR+) = ~ ,

P{03BD-03B3 ~ 0393} =  (5.16)u’ {r~ + u{0} It (R+) 1I (r) , °

(Here p’ is the restriction of p on ]0,~[)

Equalities (5.15) and (5.16) complete the proof of the proposition.

6. Markov Properties of the Residual Life Process

Consider the "residual life" process

Rt = infis - t: S > t> s ~ M} (6.1)

associated with the stationary Markov set M. Markov property of M implies that

Rt is a Markov (but not necessarily a strong Markov) process.

Consider a given by (2.7), (2.8) and the processes y., x, and

Z, which generate it. (For definiteness we always choose a quadruple (ll,a,a,u)

such that u{0}=0 if Let

(6.2)
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Fa = Zca ,
(6.3)

Ha = .

a

Let N be the union of ok given by (2.6). Then Rt given by (6.1) can be

represented as

Rt = 
0 if and 

(6.4)~ t otherwise . ° 
~~~~

Let Q be the law of the subordinators x, and y, of (2.6) - (2.8). The

transition function of Rt associated with a stationary set

is the same as transition function of Rt associated with any (II,a,a,u)-set.

Hence we can assume in (2.6) - (2.8). Then the transition function of the

process Rt given by (6.4) is

p(t,x;r) = lr(x) if xt,

p(t,x;0393) = Q{Ft-t~0393,ct~N} + Q{Ft-t~0393,ct=03C3k,Z03C3 k-+Xt~t}, x > 0, 0 ~ 0393,

~ (6.5)
= G x > 0 ,

k=1 
t k 

Uk

n(t,o;r) _ + + t - y )dy + J t s

Q 0

where ul is a distribution of the jumps of the process x. (i.e., > ul is a con-

volution of  and an exponential distribution with parameter a).

A set is stationary iff

mt(0393)  P{Rt ~ 0393}

does not depend on t
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Inversely, if we are able to construct a probability measure m which is

invariant with respect to p(t,x;r) then the stationary Markov process Rt with

the one dimensional distribution m and the transition function p will yield a

stationary ( Tf , -generated set by the formula

M = D~ , ,

where Dt = t + Rt . °

(6.6) THEOREM. If IT and 03BB are subject to (2.13), (2.14) then there exists a

unique stationary probability measure m for the Markov process Rt associated

with a The measure m is given by

m(f) = + + 

0 0

where C is a normalizing constant.

For the proof of this theorem we need the following propostion.

(6.7) PROPOSITION. Let (ys,Q) be a (0,11)-process and let

ca = a}.

Let S be an exponential random variable with parameter a independent of the

process Yt. Then

YS m

f(y -u)du} = a 1 ~ f(t) lT (6. 8)
0 ~u 0

The right-hand side of (6.8) can be rewritten as

Ys
Q{ f(ys-u)du}

= Q{ f(u)du} (6.9)

= Q{ 1s~S g(ys-ys-)},
where g(t) = j f(u)du. The right hand side of (6.9) is equal to

0
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Q{1I(g)S } = n(g) Q{S} = 

(see [11] Section 3). By Fibini’s theorem

m ~x x m m m

g(x) JI(dx) - j{J f(t)dt} 1I(dx) = j f(t) JTI(dx) = j f(t) 
0 0o a t o

whereas (6.8) follows.

Proof of the Theorem (b.6). Let x, and y, be the processes (with Q{yo=0}=1)
which generate a (1t, a,a,u)-set by formulae (2.6) - (2.8). Then the process Rt
associated with this set by formula (6.4) is a regenerative process (see ClJ Ch. 9)

with the moments of regeneration p2’ " ’’ " ’

pk 
= 

.

Really, by virtue of the strong Markov property

k9
x - x -x
s 6k

and

= 

YQk

have the same distribution as the processes xs and ys respectively and are

independent ys; s - ° Since

R03C1k+t = Rt  (xk,yk)
the process is independent of {Rs, s - pk} and has the same distribution

as Rt. The same argument shows that the sequence renewal process.

Since

pk+1 - pk = Z6 + - Zok 
= yk

and since Xk c;ontinuous (exponential) distribution, pk+1- pk 

continuous distribution as well. Thus the renewal process is aperiodic and
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E{03C3k+1 - 03C1k} = E{Xk} + E{Yk} + E{y03C3

k+1 

- y03C3k } (6.10)

= 03BB-1 + t (dt) + 03B1-1 t 03C0(dt) .
0 0

The right-hand side of (6.10) is finite by virtue of (2.13) and (2.14).

According to Theorem (2.25) of Chapter 9 of E 1 ] there exists a unique sta-

tionary measure m for the regenerative process R., given by

pl
m(r) - C Q{ 0 f ir(Rt)dt}, (6.11)

where C 1 is equal to (6.10) (The expression in (6.11) is equivalent to the one

given in Ch. 9, Theorem (2.25) of C1]). Since the process xt is equal to 0 on

the interval ]O,olC the process Zs coincides with ys on and

R = Y - t for t ~ y~ ~t 1

0 for yQ 1  t  ye 1 + Xl

(see (2.6), (2.8) and (6.4)). Thus

03C11 y03C31 X1 y1
Q{ = Q{ J 0 -t)dt} + Q{ l 0 ir(0)dt} + Q{ ! 0 (6.12)

The first term in the right-hand side of (6.12) equals to

a 1 j 0 lr (t) (6.13)

by virtue of Proposition (6.7). The second term in (6.12) equals

E = (6.14)
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The last term in (6.12) equals

(6.15)

Q{10393(Y1-t)dt} = Q{10393(t)dt} = Q{ 10393(t)1tY1 dt} =  10393(t) (]t,~[)dt.
From (6.11)-(6.15) follows Theorem (6.6).

From existence of a stationary measure for the process Rt follows .

(6.16) COROLLARY. For each (JI, a, subject to (2.13), (2.14) there exists a

stationary (IT, set.

This completes the proof of the Theorem (2.12).

(6.17) REMARK. The proof of Theorem (6.6) shows that any 

set M with

P{inf M = = 1

is stationary.

7. Reversability Properties of Stationary Markov Sets.

In this section we will prove Theorem (2.15). We consider a stationary

(IT, a, 03BB,03B40)-generated set with a perfect regenerative part. The proof of Theorem

(2.15) for M with a discrete regenerative part is similar. The closure of M

consists of a union of closed intervals of iid exponential length and by virtue of

Proposition (4.15) and (4.21) the endpoints of these intervals are points of accumu-

lation of M - M. Therefore the endpoints of these intervals belong to K 0 M.

According to Theorem (4.6) the set K 0 M is a stationary regenerative set with

Lebesgue measure zero. By Theorem 1 of [12J there exists a (0,n’)-subordinator

whose range coincides with Ko M n [0 ,00[. If u = 80 , then (2.6) - (2.8) show that

03C0’ is the Levi’s measure of the process Z and

~ ~ = n + aG , (7.1)

where Gx is an exponential distribution with parameter x. In particular, M has
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a perfect regenerative part iff

, 

To show that -M has the same distribution as M we have to consider the

two dimensional process 
’

M . °

It follows from the Markov property of M that the process is a

stationary Markov process. If M is a set then the transi-

tion function of is

p(t, (u,v);r) = 
, if V  t, r ~ ]-~,0] x CO,~ C ~ ,

   ’ 

(7.2)
~ (0~0) ) - ~ v  t , ’

p(t, (0,0);r) = / ds, r ~ ]-°°~0]xCO~°°C . ,
0

Here Q is the law of the processes x , , ys and Z , , of (2.6) - (2.8), , ct is

given by (6.2) and are given by (6.3). .

Note that when p= d0, the length of each jump of the process Z, caused by

a discontinuity of x, is exponentially distributed and the range of each jump ,

belongs to the set. This results in simplifications in

(7.2) as compared to (6.5) .

Let 1I(x;r) - 1I(r-x). The process (L ,R ) is stationary due to stationarity

of M. Repeating the proof of Theorem (6.6) for (L t ,R t ) ’ we can get that the one-

dimensional distribution n of this process is given by

_1 _1 
0 (7.3)

n(rxA) = cCJ~ 1(0~0) « ~ ’ r c IR. , A = 1R+ . °
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Let (u,v) T = (v,u) and if x IR then should be understood similarly.

Let 
~

Yt = -Yt’ ~t 
= 

Z*t  -Zt ,

(7.4)

lt*(r) ° n(-r) ~ ,

r) ~ rt*(r- x) = 1i{-x;-r) ,

Consider the set -M. The process

(It,rt) 0 (-M) = 

is a Markov process with the one-dimensional distribution (obtained by change

of variables in (7.3)). , 

7,5)(7.5)

CC~ 11 0 0 ( (-°) x (-r)) + ls(°) r~ ~_, > 

and the backward transition function

= u_ 0 s v . (7.6)

Let

(0393)  Q{ 10393(Zs)ds},

*(0393)  Q{ 10393(Z*s)ds} = (-0393),

(7.7)

b(0393) = (0393 - b),

-*b(0393) = *(0393 - b),

(7.8) PROPOSITION. For any function f of two variables

Q{ ~Z f(Zt-,Zt)1t~N} 
= (dx)f(x,y)03C0(x;dy)
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0 0
Q{Z*t-~Z*tf(Zt-,Zt)1t~N} = *(dx)f(x,y)03C0*(x;dy)

The proof of this proposition is well known.

(7.9) PROPOSITION. For any two functions g and h on 1R

m m

g(x) 03C0(x,f)dx = f(x) 03C0*(x;g)dx (7.10)

x(f)g(x)dx =  f(x)*x(g)dx (7.11)

For the proof of this proposition see [12] Lemma 6.4.

(7.11) PROPOSITION. Measures n and n* given by (7.3) and (7.5) respectively,

coincide.

The first term in brackets in the right-hand side of (7.3) is equal to

the first term in the right-hand side of (7.5). The integral term in the right-

hand side of (7.3) equals to the corresponding term in (7.5) by virtue of (7.10).

(7.12) PROPOSITION. For any two sets r, 1R +

(7.13)
r o

Proof. Consider A and r of the form

y 0~ ~n>0

(7.14)

r = rlxr2 r-,o, r2>0

Put 6’ + s and d2 = d" + s and assume

(7.15)

(The inequality between two subsets of the real line means the corresponding

inequality between any two points from the first and the second set respectively.)
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For v  ~l we can write

F s-v E "+s-v, cs-v E N}

= Q{ 103941-v(Zt-)103942-v(Zt) 1t~N}

~ 
(7.16)

- j 0 1 A - (y) ~ 
m

- j A v (dy) (y) .

We used Proposition (7.8) in the third equality in (7.16) and the identity

= in the fourth equality in (7.16). Thus the left hand

side of (7.13) can be written as

0 ~ ~

- oo ; lr 1 (s)ds jII s (s; dv) l~ 
1 
(y) (7.17)

Applying successively (7.10) then (7.11) and then again (7.10) and (7.17) we get

the following sequence of equalities: :

CO 00

2 . (v)dv j v 1 
(Y) 

= y (dv)1 r (v) TI*(v;r ) 1 (7.18)= 

1 -00 

v> fl*v;ri> ~.~~>

= 103942(x)03C0*(x;dy) 103941(y) *y(dv)103932 (v) 03C0*(v;03931) .
From (7.5) and the analog of (7.16) for p*(.(.,.),-) we get that (7.18)

equals to the right-hand side of (7.13).

The proof of (7.13) for arbitrary .r and A is done in a similar way.

f7.19~ COROLLARY. The probability law of the set -M is the same as that of M.

In particular M is left Markov. 0
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Proof. From proposition (7.11) we see that the processes

and (-M) have the same one dimensional distribuitons.

Proposition (7.12) shows that these two processes have the same backward transi-

tion function. Therefore, these two processes have the same law. The rest follows

from representation

M = ( r ~ M) ~ . °

In the remainder of this section we show why (II, a,x,p)-generated set is not

left Markov if is not equivalent to 

If M has a perfect regenerative part (i.e., =00) then from (2.6) -

(2.8) we see that the distribution of v(k) -y(k) is equal to p . If 

then with positive probability v(k) - y(k) > 0. By Fubini’s theorem there exists

t such that

P~Lt  t, Lt = Y(k) } > 0 . .

However, the latter contradicts to Proposition (4.21) (or, to be precise, to the

analog of the Proposition (4.21) for left Markov sets.)

If M has a discreet regenerative part (i.e.  ~) and is

not equivalent to then

u ~ c2 n . ° (7.20)

From (2.6) - (2.8) we see that the distribution of the length of the jumps of the

process y is The distribution of v(k) -y(k) is

ll’ + (1- u~0}) (7.21)

where p’ is a restriction of p on If (7.20) is true then (7.21) is

not equal to II (]R~)’ n. Elementary calculations show that in this case the

conditional distribution of Rt - L given the event
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closure M, L t > t}
is different from the conditional distribution of Rt - Lt given the compliment

of A. The latter contradicts to the "left Markov" analog of Corollary (3.3).

This completes the proof of Theorem (2.15).
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