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On the Barlow-Yor Inequalities for Local Time

Burgess Davis

Summary. An idea of Burkholder is used to give a simple proof of the Barlow-Yor mar-
tingale local time inequalities. Related inequalities are proved for some stable processes.
See note at end.

Let Lt , -oo  a  oo, t > 0, be jointly continuous local time for the standard
brownian motion B = Bt, t > 0, and put L; = supa L~. In [2], (see also [3]), M.T. Barlow
and M. Yor show the existence of absolute constants cp and Cp such that, if T is a stopping
time for B,

cpEp/2  EL*p  CpEp/2, p > o. 1

Brownian motion is the normalized symmetric stable process of index 2, and Trotter
[6] proved it has a jointly continuous local time. The symmetric stable processes of index
a G (1, 2), as well as some other stable processes, also have a jointly continuous local time
(see [1]). We prove the following theorem.

Theorem 1. Let Z = Zt, t > 0, be a stable process of index a with jointly continuous
local time Lt, and put L; = supa L~. . There exist positive constants kp and Kp, depending
only on Z, such that if T is a stopping time for Z,

kpEp/03B1  EL*p  p > o. Z

Our proof of Theorem 1 uses scaling to prove good-bad lambda inequalities and should
be thought of as an adaptation of a similar argument used by D.L. Burkholder ([4]) in the
context of maximal functions for n dimensional Brownian motion. The Barlow-Yor proofs
also involved good-bad lambda inequalities and thus both proofs give a generalization of

(1) (and in our case (2)) to functions other than xp which satisfy a growth condition. See
[5], p. 154, (3). Also, (1) may be rephrased as a result about continuous martingales. See
[2]. Theorem 1 is the first extension we know of (1) to discontinuous processes, a question
mentioned in [3]. .

Now (1) is proved. The proof immediately generalizes to a proof of Theorem 1. It

will be shown that there are functions a(t) and on (0, oo) which approach zero as t
approaches zero and such that for any stopping time T and any b, À both exceeding 0,

> 2~1, LT  ~a)  > a)~ (3)

and
- 

P(LT > 2a, T1~2  ba)  ~i(~)P(L~ > a). (4)

These are the Burkholder-Gundy good-bad lambda inequalities. They quickly, essentially

upon integration, give (1). We have written (3) and (4) in such a form that readers

unfamiliar with this may follow, line for line, the presentation in [5], p.154, with 82 there
replaced by a(~) and (3(~).
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The functions a and /? are defined by = P(Li  ~/B/3) and /?(~) = P(vi  b2), ,
where va = inf {t : L; = a}. To show that both a(~) approach zero as 8 --~ 0 we
must show P(Li = 0) = 0 and P(vi = 0) = 0. The first of these equalities is immediate,
for example, from the facts that L° and P(L° = 0) = 0, or in several other ways.
That P(vi = 0) = 0 follows from the joint continuity of Lt in t and a, and the fact that
Lt = 0 if a ~> ( Bs ~_ ~(t). Since (t) - 0 as t -~ 0, on (vi = 0}, Lt > 1 for
(a, t) arbitrarily close to (o, o) which, since Lg = 0, contradicts joint continuity.

Now if 03B3 > 0, the process > 0, is standard Brownian motion, so if
al, ... , am are any numbers and t 1, ... , tm are nonnegative numbers the distributions of
the two random vectors and (~-1/2L~a’ ) are the same.
Together with the joint continuity of Lat this yields 

’ ’ 

(5)

and

v03B3 = 03B3v1. (6)
Let = supa(Lad - The third of the following inequalities follows from the first
two. 

’

L*[x,y] + L*[y,z] ~ L*[x,z], 0 ~ x ~ y ~ z. (7)

L*[x,y] L*y-x, 0 ~ x ~ y. (8)
P(vb - va ~ 03B8) ~ P(vb-a ~ 03B8) if 0 ~ a ~ b, 03B8 ~ 0. (9)

Next we prove (3). . Assume P (T 1~2 > a) > 0. Then

P(T 1~2 > 2a, LT  ~~1 I T 1~2 > ~l)   ~a > a)
~ I T1~2 > À)
= ~a)
= ~/~), 

using the Strong Markov Property and (5) for the last two inequalities. The proof of (4)
is similar. Assume P(L; > À) > 0. Then
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using (9) and (6) for the last two steps.
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Note: I sent this paper to Marc Yor in the summer of 1986 and he wrote back that

Richard Bass had four or five months earlier written a closely related paper, which

appears in this volume. The basic idea of my proof is also in Bass’ paper, and he
has priority. The sole novelty of this note is the observation that only stability of the

process and joint continuity of local time is needed. This permits the extension to
discontinuous stable processes.


