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HOMOGENEOUS CHAOS REVISITED

Daniel W. Stroock*

Let (S, H, W) be an abstract Wiener space. That is: 8 is a

separable real Banach space with norm H is a separable real

Hilbert space with norm II.IIH; S, CllhllH for some C and

all h E H, and H is dense in S; and W is the probability

measure on (S, with the property that, for each i E 9~, 9 E 6 -~

« , 8> under W is a Gaussian random variable with mean zero and

variance = 
’ h>~ : h E H with 1}. °

Let {ik : k E Z+} C Q be an orthonormal basis in H; set

d = {a E : 
+ a.,  and f or a E d, defineK

~a(e)= IT H ( «k, e>), 0 E e ,
~ 

kEZ ~k
where

H (f) = ( -1 ) m e03BE2/2 dm (e-03BE2/2), m E N and 03BE E 
~’ df"

Then, {(a!) 1/2 ~a . : a E ~} is an orthonormal basis in 

Moreover, if, for m E N,

Z(m) - span(* : . a - m } L~) . ,
then: Z(m) is independent of the particular choice of the

orthonormal basis : k E Z+}; Z (m) 1 Z (n) for m ~ n; and

m

L2(W) = C Z(m). These facts were first proved by N. Wiener [6]
m=0

and constitute the foundations on which his theory of homogeneous

chaos is based.

The purpose of the present article is to explain how, for given
~ ~ L (~). one can compute the orthogonal projection of &#x26;

onto Z (m) ° In order to describe the procedure, it will be necessary
to describe the elementary Sobolev theory associated with (e , H, , Q. ,

*During the period of this research, the author was partiallysupported by NSF DMS-8415211 and ARO DAAG29-84-K-0005. 
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To this end, let Y be a separable real Hilbert space and set °~(Y) -

a and y E Y}. Then (Y) is dense in Y). Next,

for m and 03A6 E (Y), define 03B8 ~ Dm03A6(03B8) E H® m ® Y by

(Dm03A6(03B8), h1 ~ ... 0 y) 
H® m ® YH~m ~ Y

= ~m ~t1 ... ~tm (03A6(03B8 +  tj hj), y)Y|t1=...=tm=0

for hl, ..., hm E Hand y E Y. Then Dm maps ~(Y) into ~(H® 
m 

® Y)

and Dm o Dn-m for O  m  n. Associated with the operator Dm .

(Y) ~ (H~m ~ Y) is its adjoint operator am. Using the

Cameron-Martin formula [1], one can easily prove the following

lemma.

(1) Lemma: The operator 9 does not depend on the choice of

orthonormal basis { k : k E Z+}, (H~m ® and

(H~m ~ Y) ~ (Y). Moreover, if m E Z+, K = (kl, ..., km)

(Z+)m, and 2 = 2 ~ ... ~ lkm, then

(2) = 

where a(K) is the element of ~ defined by

(a(K)}k - m : k. - k}, k E Z+.

m
In particular, Dom(8m).

Since am is densely defined, it has a well-defined adjoint

(~m)*. Set and use 11.11 
. 
(Y) 

to denote the

associated graph norm on The following lemma is an easy

application of inequalities proved by M and P. Kree [3].

(3) Lemma: ® Y) C ~~m03A8~2 
. 

_ ®in ,

’ ’ 2014201420142014 ~ 
~ - ~ ~ "’ 

Wm(h ® Y)

and ~m = ((~m)*)*. Moreover, (Y) is -dense in 
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Final ly, Wm+1 (Y} C *" and  C for all m > 0.
’~ ’~ 

m~~ 
’~ 

2
Warning:: In view of the preceding, the use of Dm to denote its own

closure (9 ) is only a mild abuse of notation. Because it

simplifies the notation, this abuse of notation will be used

throughout what follows.

Now set w2m{Y} _ 2m(Y)*, m > 0, and 2~(Y} = 1f2(Y}. Then,
m=0 m

when is given the Frechet topology determined by : m

Wm(Y)
>_ 0}, {W~(Y}}~ is W2~(Y} - U W~ (Y). Moreover, becomes a

m=0 
-m

subspace of W2~(Y} when 4$ E is identified with the linear

functional ~ E W~(Y) -~ E~[{~,~)Y]; and in this way W~(Y) becomes a

dense subspace of W2~(Y}. Finally, has a unique continuous

extension as a map from W_ 2 (Y) into W2~(H® m 0 Y). In particular,

for T E W2-~(R1), there is a unique E defined by:

(4) (D"’T(1). h) H® m _ 
h E H’ .

Note that when ~ E W~(R1) ,
(5) Dm~{1) _ 

(6) Theorem: be given. Then, for each m > 0:

(7) 
, 

Hence,

CO

(8) ~ _ ~ 
m=0

In particular, when 4$ E W~(R1):
(7’) 1? ~~ = 
and

00

(8’) ~ _ ~ 
m=0
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Proof: Simply observe that, by Lemma (1}:
’ ~K

- (a) .

Z

The classic abstract Wiener space is the Wiener space

associated with a Brownian motion on R1. Namely, define and

8(R1} to be, respectively, the completion of R1} with
o .

respect to

1( R1 - ) 
z ( o dt}1/2

and

~ sup 1+t ( .

Then Wiener’s famous existence theorem shows that there is a

probability measure on 8(R1} such that (8(R1), 1Y) is an

abstract Wiener space. For (6(R1), H1{R1}, ~’}, K. Ito A [2] showed

how to cast Wiener’s theory of homogeneous chaos in a particularly

appealing form. To be precise, set ~m - and, for f E

L2(om), define .

m
f I ...

m 
03C3~03A0 

o 0

m

t20
f(ta(l),..., ta(m»d9(tl)

where ITm denotes the permutation group on {1,...,m} and the

d03B8(t)-integrals are taken in the sense of Ito. What Ito discovered

is that, for given ~ E L2{1f), there exists a unique symmetric E

L2(Om) such that

(9) 03A0Z(m)03A6 = m! .o dm8

In order to interpret Ito’s result in terms of Theorem (5), let

{~k . k E Z+} C C~ ((0,~); R1) be an orthonormal basis in and
- 0 1
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define Qk E o (R1)~ by Qk(dt) - ( It Then «k, 8> - o
0 1

Moreover, by using, on the one hand, the generating function

for the Hermite polynomials and, on the other hand, the uniqueness

of solutions to linear stochastic integral equations (cf. H. P.

McKean [5]), one finds that for K - (kl,...,km) E (Z+)m:

a(K)
k k

where ~K - ~ 1 ® ..’ ® ~ 
m 

and a(K) is defined as in Lemma (1).

Hence, by Lemma (1):

{10) 8m lK = o 03C8K dm03B8 , K E (Z+)m .
m

Finally, for (tl,...,tn) define h ( t 1’’ , ’’ t m) (sl,. " sm) -
m

(s111t1) ... (sm/ltm). Then, for each h E H1(R1)~ , there is a unique

h’ E L2([]m) such that (h, h t 1 ’ , tm ) 1 1 ®m

tm ... r h’{sl,...,sm)dsl,...,dsm for all {tl,...,tm) E om
0 0

(11) Theorem : Given 03A6 E L2(1Y) and m >_ 1, the in {9) is

(Dm~(1))’.
Proof : By (9): 

’

~m(Dm03A6(1)) = ~m(03A3 (Dm03A6(1), lK) 
m QK

= l ((Dm03A6(1))’, ",K) 2 Io ",K dme

. 

- 0 (Dm03A6(1))’ dm03B8 .
m

Thus, by (7):

m - 1 m! 0 (Dm03A6(1))’ dm03B8 .

(12) Remark : It is intuitively clear that the in (9) must be

given by f03A6(m)(t1,...,tm) = E[03A603B8(t1)...03B8(tm)], where 9(t) is white

noise. What Theorem (11) does is provide a rigorous meaning for

this equation.
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(13) Remark: Given d >_ 2, define H1(Rd) and 8(Rd) by analogy with
H 1 (R1) and 9(R1). Then (6(Rd), ~’) becomes an abstract 

’

Wiener space when ~’ is the Wiener measure associated with the

Brownian motion in Rd. . To provide an Ito interpretation in this

. case, let {03A8k : k E Z+} c R1) be chosen as before and set
l(k,i) = 03A8kei, k E Z+ and i ~  ~ {1,...,d}, , where {el,...,ed} is a

standard basis for Rd. Next, for f = 03A3 f e E L2([]1 ; (Rd)® m ),

define

[] f dm8 = 03A3 p fIdm03B8I~m m

where

[]m fIdm03B8I = 
,

03A3 ~0 d03B8im(tm) tm0 d03B8im-1(tm-1)...t20 fI(t03C3(1),...,t03C3(m)d03B8i1(t1)

for I = (il,...,im) E ~m. One can then check that

= So m 
Finally, after associating with each h E the unique h’ E

L2([]m;(Rd)~m) satisfying
i

tm tl
h(tl,...,tm) - j j ’

0 0

we again arrive at the equation

= o 
(14) Remark_: . Theorem (11) is little more than an exercise in

formalism unless ~ E W~(R1). Fortunately, many interesting

functions are in W2(R1). For example, let U ’ R1 -~ R1 and

b : R1 -~ R1 be smooth functions having bounded first derivatives and

slowly incr easin g derivatives of all orders. Define X(o,x), x E R1,

to be the solution to
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X(T,x) = x + a(X(t,x»d9(t) + b(X(t,x))dt, T > 0.

Then, for each (F,x) E x R, X(T,x) E Woo(R). In fact,

DX(.,x) satisfies:

DX(T,x) = a’(X(t,x» DX(t,x) d0(t) + .T b’(X(t,x))DX(t,x)dt
+ [ o(X(t,x)) dt;

an equation which can be easily solved by the method of variation of

parameters. Moreover, DmX(T,x), m ~ 2, can be found by iteration of

the preceding.

(15) Remark: In many ways, the present paper should be viewed as

an outgrowth of P. Malliavin’s note [4]. Indeed, it was only after

reading Malliavin’s note that the ideas developed here occurred to

the present author.
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