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HOMOGENEOUS CHAOS REVISITED
Daniel W. Stroock

Let (6, H, #) be an abstract Wiener space. That is: 0 is a
separable real Banach space with norm H-He; H is a separable real
Hilbert space with norm H'HH; HcCe, lIhIl6 < CIlhIIH for some C < ®» and
all'h € H, and H is Il-lle - dense in 6; and # is the probability
measure on (6, %9) with the property that, for each & € 9*, 6 € 6 >
<&, 6> under # is a Gaussian random variable with mean zero and
variance H8H2 = sup{<¢, h)2 : h € H with IIhIIH = 1}.

H
Kk + %* is i
Let {€" : k € Z' '} C 8 be an orthonormal basis in H; set

+
4 = {a € NZ la] = = + % { @}; and for a € o, define
k€Z
k
* (8)=1 H (<e™, 8>), 6 € 6,
@7 kezt %
where
2 m 2
H (E) = (-1)" o572 é_ﬁ (e-f /2), m€ N and £ € r!
m dE
1/2

Then, {(a!)” ﬁa : @ € 4} is an orthonormal basis in L2(ﬂ).
Moreover, if, for m € A,

2
2™ = SpantE, T Jal =y &),

then: Z(m) is independent of the‘particular choice of the

orthonormal basis {ek t k € Z+}; Z(m) 1 Z(n) for m # n; and

2 0

L(#) = @ Z(m). These facts were first proved by N. Wiener [6]
m=0

and constitute the foundations on which his theory of homogeneous

chaos is based.

The purpose of the present article is to explain how, for given

2
® € L°(#), one can compute the orthogonal pProjection IT ( )¢ of ¢
z(m

(m) ;
onto Z - In order to describe the procedure, it will be necessary

to describe the elementary Sobolev theory associated with (6, H, ¥).
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To this end, let Y be a separable real Hilbert space and set ¥(Y) =

span{ﬂay : a € dand y € Y}. Then #(Y) is dense in Lz(ﬂ; Y). Next,

® ® Y by

for m € ¥ and ¢ € %(Y), define 6 - D"¢(0) € H

(0"e(6). h'® ... e "8 y) _
1 ey
a™ m j
-9 (ee+ 3 t nd),y)
gt ... ot o1 Y €= .=t =0

m

1 m m o™

for h', ..., h € Hand y € Y. Then D maps #(Y) into ¥(H © Y)

m n-m

and D" = D™ o D for O { m { n. Associated with the operator p™
P(Y) > ?}‘(Hem ® Y) is its adjoint operator 8". Using the
Cameron-Martin formula [1], one can easily prove the following
lemma.

(1) Lemma: The operator 3™ does not depend on the choice of

m
orthonormal basis {€X : k € z*}, #(H® @ Y) C Dom(8™). and

m

am : 9(H® ® Y) » #(Y). Moreover, if m € zt, K = (kl' cees k)
k k
(z*)™, and X -2 1@ ... 8 ¢ ™ then
m,K
(2) a"et = 4, k)

where a(K) is the element of o defined by

(a(K))y = card(1 < j <m: ky =k}, k€ z*.

o™ m
In particular, H® C Dom(d7).

Since 3™ is densely defined, it has a well-defined adjoint

(am)*. Set Wi(Y) = Dom((am)*) and use Il > to denote the
Wo(Y)
m

associated graph norm on Wﬁ(Y). The following lemma is an easy

application of inequalities proved by M and P. Kree [3].

(3) Lemma: w2(® 8 Y) C Dom(8™). Na™¥i 0 < C I o gm ,
m - LE(#:Y) ¥o(h© 8 Y)
and 3" = ((Bm)*)*. Moreover, #(Y) is -l 2 -dense in Wi(Y).
Wo(Y)

m



: 2 2
Finally, Wm+1(Y) c Wm(Y) and |l sz(Y) < Cm" me+1(Y) for all m > O.
m 2
Warning: 1In view of the preceding, the use of D™ to denote its own
closure (am)* is only a mild abuse of notation. Because it

simplifies the notation, this abuse of notation will be used

throughout what follows.

]
Now set #2 (Y) = #2(¥)*, m 2 0, and #2(Y) = n #2(Y). Then,
m=0

when Wi(Y) is given the Fréchet topology determined by {ll-ll 2 I m
Wo(Y)
m

2

2 03 (W2(Y))* 1s W2 (Y) = U w2

m=0

subspace of W%m(Y) when ¢ € L2(V;Y) is identified with the linear

(Y). Moreover, Lz(ﬂ;Y) becomes a

functional ¥ € Wi(Y) - E’[(Q,W)Y]; and in this way Wi(Y) becomes a

dense subspace of Wgw(Y). Finally, D™ has a unique continuous

Qm

2 ® Y). In particular,

extension as a map from W%w(Y) into WZ (H

m
for T € W%m(RI). there is a unique DmT(l) € H® defined by:

m
(4) (0"r(1). B) _ = T(3"n). h e K®
H
Note that when ¢ € Wz(RI) .
(5) p"s(1) = EY[D"s].
(6) Theorem: Let & € Lz(ﬁ) be given. Then, for each m 2> O:
1 -m,.m
(7) nz(m)¢ = = 3" (D"e(1)).
Hence,
[
1
(8) ¢ = 2 —+ 8" (0"e(1))
m=0
: 2,514,
In particular, when ¢ € W_(R"):
. _ 1 om#..m
(7") nz(m)¢ = -7 a"E'[D"9]

and

(8") ¢ = ) —+a" E'[p"
m=0



Proof: Simply observe that, by Lemma (1):
) E'[oa™ oKjo™ o
Ke(z*)™

- a™ (" (1))

W
Y (M Erex Jx, - mi T (m?

loc|=m

The classic abstract Wiener space is the Wiener space
associated with a Brownian motion on Rl. Namely, define Hl(Rl) and
G(Rl) to be, respectively, the completion of C:((O,m); Rl) with

respect to
il gly = (f lv' () |2 ar)l/?
1 o

and

1
(] = sup — |6(t)] .
B(Rl) >0 1+t

Then Wiener’'s famous existence theorem shows that there is a
probability measure on B(Rl) such that (B(Rl). Hl(Rl), #) is an
abstract Wiener space. For (G(Rl), HI(RI). ¥)., K. It; [2] showed
how to cast Wiener’s theory of homogeneous chaos in a particularly
appealing form. To be precise, set Dm = [O,W)m; and, for f €

L2(Dm). define

JD £a = ) J: ae(t,) J:m'lde(tm_2)

m

o€l
m
o
Jo FCto (1), ..., ta(my)d8(ty)
where Hm denotes the permutation group on {1,...,m} and the

dé(t)-integrals are taken in the sense of Ito. What Ito discovered
is that, for given ¢ € Lz(ﬂ). there exists a unique symmetric fém) €

L2(Dm) such that

1
(9) T (m)® = at j”m £{™ ae

In order to interpret Ito’s result in terms of Theorem (5), let

k

v k € Z+ (o Coo 0,o); R1 be an orthonormal basis in L2 o and
= %o 1



t
define ¢¥ € o (RY)™ by e¥(dt) = (f vK(s)ds)dt. Then <2, 8> = JD
o 1

wkdle. Moreover, by using, on the one hand, the generating function
for the Hermite polynomials and, on the other hand, the uniqueness

of solutions to linear stochastic integral equations (cf. H. P.

McKean [5])., one finds that for K = (kl,....km) € (Z+)m:
k .m
Jo, ¥ a0 = 3,
m
K k1 km
where ¢y = ¢ ® ... ® vy and a(K) € 4 is defined as in Lemma (1).

Hence, by Lemma (1):

(10) a™ X - JD K am ., ke (zH™ .
m
Finally, for (tl,...,tn) € o, define h(tl.....tm)(sl""sm) =
1,8" . .

(slAtl) R (smAtm). Then, for each h € HI(R ) . there is a unique

. 2 m
h' € L (Dm) such that (h, h(tl.....t ))H (R1)®

m 1

“m tr

J c. J h'(sl.....sm)dsl,....dsm for all (tl....,tm) € O

o
(11) Theorem: Given ¢ € Lz(ﬂ) and m 2 1, the fém) in (9) is

o

(D"p(1))".

Proof: By (9):

a"(p™e(1)) = am[ 2 (@"s(1). 25 m eK]
Ke(z*)™ H, (R1)®
- ((0"e(1))". v V& ™
Ke%Z+)m L%(o_) j“m

J; (D" (1)) da™e
m
Thus, by (7):

1

nz(m) =& Jo_ ("s(1))* d™e

(12) Remark: It is intuitively clear that the fém) in (9) must be

given by £{™ (t .. ...t ) = E'[#0(t,)...6(t )]. where 0(t) is white
[ 1 m 1 m
noise. What Theorem (11) does is provide a rigorous meaning for

this equation.



(13) Remark: Given d 2 2, define Hl(Rd) and O(Rd) by analogy with
Hl(Rl) and B(Rl). Then (B(Rd). Hl(Rd), #) becomes an abstract
Wiener space when # is the Wiener measure associated with the
Brownian motion in Rd. To provide an It; interpretation in this

case, let {Wk : k € Z+) Cc C:((O.w); Rl) be chosen as before and set

e(k'i) = Wkei. kez and i € 9 = {1,...,d}, where {el,...,ed} is a
m
standard basis for Rd. Next, for f = 3 f.e. € L2(D H (Rd)@ ).
m I°I 1
1€9
define
m m
Iﬂm £d" = ) ) J”m £ra"0;
1€9

where

m
J; fpa76p =

m

00 tm ty
E J a8, (t.) J de, (tm_l)...I F1Cto(1y - to(m))88s (81)

o m o m-1 o 1
o€l

m
for I = (il....,im) € 3™. One can then check that
m,(K,I) _ K. m
ae = Ium vd BI.

m
Finally, after associating with each h € Hl(Rd)0 the unique h' €

m
L2(D?;(Rd)® ) satisfying

t t
m 1
h(tl....,tm) = I I h (sl,...,sm)dsl...dsm,
o o
we again arrive at the equation
iy ¢ = I (D"#(1))'a"e
2(m) O

(14) Remark: Theorem (11) is little more than an exercise in

formalism unless ¢ € Wi(Rl). Fortunately, many interesting

1 1
functions are in WE(RI). For example, let o : R* - R" and

b : R1 - R1 be smooth functions having bounded first derivatives and

1
slowly increasing derivatives of all orders. Define X(*,x), x € R",

to be the solution to



T T
X(T,x) = x + I o(X(t,x))de(t) + I b(X(t.x))dt, T > O.
o o

1
Then, for each (I,x) € (0,®) x Rl, X(T.x) € Wi(R ). In fact,

DX(-.x) satisfies:

T T
DX(T.x) = I o' (X(t,x)) DX(t.x) do(t) + Io b’ (X(t,x))DX(t,x)dt
[
<AT

+ J o(X(t,x)) dt;

o

an equation which can be easily solved by the method of variation of
parameters. Moreover, DmX(T,x), m 2> 2, can be found by iteration of

the preceding.

(15) Remark: In many ways, the present paper should be viewed as

an outgrowth of P. Malliavin’'s note [4]. Indeed, it was only after
reading Malliavin’s note that the ideas developed here occurred to

the present author.
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