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On the Ray Topology

F. B. Knight

0. Introduction: In a short note [2, (1965)] the author introduced a

method of topologizing a general measurable space (E,E) by using a Markov

resolvent family on the space. This method was specialized by H. Kunita

and T. Watanabe [4, (1967)] who connected it in a certain way with a given

locally compact Hausdorff topology on E. A similar route was followed by

J. B. Walsh and P. A. Meyer [6, (1971)], who applied the method to study

left limits of processes satisfying certain "hypotheses droites". This

work was extended and given a definitive form in the well-known booklet of

R. K. Getoor [1]. Since that time, the same method has been used in several

papers, often in connection with a reversal of time (Walsh, Glover, and

others).

It seems to the present author that, despite its success in achieving

results, this connection of the method of [2] with a given topology on E

has not been very well justified. It often appears to us as an ad hoc device

to obtain a connection between the new Ray topology and the original topology,

in such a way that E will be measurable in its R.-K. compactification E.

The object of the present work is to make a deeper investigation of this

device, in terms of the author’s general construction called the "prediction

process" [3, Essay I], thus obtaining a new characterization of the Ray

topology.

The characterization which we will obtain is not limited to right

processes. In fact, one can show that it applies to the prediction process

itself. Hence it automatically applies to any Markov process which identifies

(up to equivalence)with its own prediction process by the mapping x~ Px.
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However, this is an unfamiliar setting, and would require more abstraction

without, perhaps, adding much to the ideas involved. Since we are concerned

here with basic ideas rather than with new results, for brevity we only

study the case of Borel right processes. It should be stated also that we

do not know whether our characterization applies to non-Borel right processes.

The present work was first developed during the author’s visit

to the University of Strasbourg during October - December, 1982. He is

greatly indebted to Professor P. A. Meyer for that visit.

1. The Prediction Process of a Borel Right Processes. Let (E,~) be a

Lusin space with its Borel a-field (E is homeomorphic to a Borel subset

of a compact metric space E). For our definition of a Borel right process,

we will follow [1, §9].

Definition 1.1. Let P , t > 0, be a Markov semigroup on (E,~), where

P f(x) is E-measurable in x for f E b(S). Let (5~,~) be the space

of all right-continuous paths w(s) : R+ -~ E with the coordinate a-fields

(~ = v ‘~t), and identify X = w(t). Then X is a Borel right process
~ 

with semigroup Pt if

a) For each probability p on (E,~), there is a (unique) P~

on such that Xt is a Markov process with p as initial distribu-

tion (u(A) = A}, A and Pt as transition function, and

b) Whenever f is a-excessive (a > 0) for the resolvent Rx
of Pt, and p is as in a), then f(Xt) is right-continuous in

t > 0.

. From the standpoint of the present paper, hypothesis a) is largely

superfluous. It is needed only to the extent that it guarantees = x} = 1

and provides a sequence gn of bounded, a-excessive functions separating

points of E. Indeed, if fn are uniformly dense in C (E), since

lim = fn and the range of R on b+(~) is free of a, one sees

that for each fixed a, gn 
= Rafn is such a sequence. Once we have such
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gn it is easy to see by Lusin’s Theorem that 8. is also the Borel

a-field of E with respect to the coarsest topology on E 
. 

making all g n

continuous, and E is a Lusin space in this topology. Then b) and

Theorem (9.4), (i), of [1] imply that there is a (unique) Borel right process

with semigroup Pt when (E,~) is considered in the topology generated

by (gn). From that point on, we can discard the original (5~,~°) and

assume that Xt is the latter Borel right process. Here it should be noted

that only a) involves the given topology of E, since the definition of

excessive function is purely measure-theoretic.

This replacement of X has an immediate dividend. Since gn(Xt)
is an a-super-martingale for each P, it follows from right-continuity

that there also exist for all t > 0 the left limits lim g (X ), P~-a.s.

Therefore, Xt has left limits in the topology generated by (gn), P~-a.s.

In defining our Borel right process we can therefore replace {S~,~t) by

the space (5~,~) of all right-continuous with left limits paths w(s):

R+ -~ E, with the new topology of E and the new coordinate a-fields.

This Q is well-known to be itself a Lusin space, with Borel o-field ’~ o
(unlike the original ~, which is only the complement of an analytic set).

Since we are concerned with topologies on E, it will be convenient to assume

this choice for Xt in setting up the prediction process. But it must be

kept in mind that our object is to understand the connection between the

originally given topology of E and a certain other topology which depends

both on the given topology and on Pt (it will be defined immediately below).

Thus the original E-topology cannot be dispensed with entirely.

We now review briefly how the Ray topology and the R.-K. compacti-

fication are defined, following [1, §10]. One first constructs

Definition 1.2. (a). The least convex cone, denoted by C~, containing

À > 0, f E C+{E)}, and closed under the two operations

i) application of R~, any X > 0, and

ii) formation of minima f1 A f2.
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This is done inductively, starting with

C1 = {R03BB1f1 +...+ R03BBn fn;  n, 03BBk > 0,

C2 = /i .../1 fk E C1},

C2n+l = C2n + -""-’ J~ k > 0, f k E 

C2 ( n+1 - ) 
= {fl ~1 f2/1... ~fn~ ~~ fk E C 2 n+ 1 }.

Then we have C~ =  C . Next,

Definition 1.2. (b). The Ray topology of E is the coarsest topology making

all elements of C continuous.

It should be emphasized that the given topology of E is used only

in defining C1, in the sense that R03BBf must be Ray-continuous on E for

f E C (E). Obviously, the topology on E induced by C1 is at least as

fine as the topology used in the above construction of Q.

A basic lemma [2] now asserts that there is a countable dense

subset of C~ in the uniform norm on E. It follows that the topology of

E induced by C~ is metrizable by a bounded metric d(x,y) = L c Id (x) - 
n

where {d (x)} is such a countable dense set and Y c max ~d ~ t  ~, c > 0.
n ’ n n n

n

Definition 1.3. The compactification E of E for this metric does not

depend on choice of the c or dn. It is called the R.-K. compactifica-

tion of E, relative to E.

Let us recall the reason for introducing this construction. We

can define a new family R. on C(E), using the facts that if f E C(E),

and if f denotes (fiE), then f is in the uniform closure of C - C~,

and moreover clearly C C~ - Thus we can define R~f = R,f,
f E C(E), and clearly R~ maps C(E) -~ C(E). Now it is shown that R, is a

Ray resolvent on (E,~ ), so by a theorem of Ray [5] there is a unique right-

continuous Markov semigroup Pt on C(E) having R. as its resolvent. More-

over, it is shown that for x e E we have Pf(x) = P f(x), ’ f E C(E), ° It
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follows that E ~ ~ and that, for initial distribution p concentrated on

E, the Ray process with semigroup P is indistinguishable from X restricted

to the subset of  of paths which are r.c.1.1. ("right-continuous, with left

limits for t > O") in the Ray topology, with the trace of P on this subset.

Indeed, since C contains only ~-excessive functions, X is already r.c.1.1.

in the Ray topology except on a P~-null set for each p. Hence one can con-

sider X t as a Ray process in the Ray topology. We shall not attempt to

analyze the advantages of a Ray process over a right process, 
but merely

remark again that experience has shown the above construction 
to be quite

powerful.

The emphasis here is on the role of the given topology of E,

and the above description unfortunately does little to make this clear.

Indeed, in so far as the above conclusions are concerned,in defining C~

one might just as well use any other convex cone 
+-"+ with

f e b+(8) which separates points and has a countable uniformly dense

subset. In particular, any other Lusin topology of (E.6-) would provide

such a cone. To elucidate the role of the topology of E, it is useful to

take a more general point of view based on the prediction process 
of

(~,~). At least initially, this is a purely measure-theoretic 

tion. We begin with Q probability P on (~~). Letting (M%f) denote

the Lusin space of all such P generated by ~}), we

can construct two processes Z~=Z~(S,w), unique up to a

P-null set, such that 
’

a) Z~ (resp. is an ~-optional 
process, and

b) for each t, P(03B8-1ts|ot+) = ZPt(S), S ~ Zo,

(resp. = ZPt-(S), S e Zo, t > 0) in the usual sense of conditional

probability. It is shown [3, Essay 1] that all the processes Zpt+, P = M,

are homogeneous strong Markov processes relative 
to Zot+, all the Zpt- are

homogeneous moderately Markov processes relative 
to ~_, and all the Z~
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have a single Borel transition function q(t,z,A) on (M,~). Further,

for £/ t+ -optional T one has = ZT+(S), S E df, and

for ZPt+-previsible 0  T one has P(8T S|ZPT-) = (S), S E Zo.

We emphasize again that this involves neither any topology on E,

nor any Markov property of P. We can define a single pair Z of coordinate

processes, on two copies of the canonical space -measurable paths,

in such a way that Z t+ is a strong Markov process with state space (M,~)
and transition function q relative to the coordinate a-fields ~t+, , whi.le

Zt- is a moderately Markov process with state space (M,5fl) and transition

function q, relative to the coordinate 03C3-fields ZZt (since the coordi-

nate Zt- is not Zzt--measurable, we cannot use here; nevertheless,

for each initial value P, Zt- is in the P-completion of ’~t-). However,

this separation of Zt+ and Zt- appears unnatural from the standpoint of

Markov processes. It is natural to demand that be topologized in

such a way that Zt+ is r.c.l.l. for each P (where r.c.l.l. now denotes

right-continuous with left limits, P-a.s.) and that the left limit process

then have (for each initial value P) the same probability law as the corre-

sponding ZP .

There are, of course, many different Lusin topologies on (M;m)

which satisfy the above requirement. The object here is to introduce one

which corresponds to the given topology of E, in such a way that we can

understand the Ray topology of E as a consequence of a topology on (M;m).
The connection of E and M is to be given by the natural mapping of

Definition 1.4. For a given Borel right process X , let ~p(x) : E + M,

denote the mapping = Px, when we define Q as above.

Remark. We use a fixed choice of E D E, a fixed a > 0, and a

fixed sequence g 
= R~f~, dense in C+(E). Obviously this does not

depend on the particular selection of f, but it may depend on a as

well as E. This dependence is of no real importance below, and will be

suppressed.
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We observe next that, for any topology on M which renders Zt+
right-continuous with left limits P-a.s. for P E M, it will follow

that Xt is also right-continuous in the topology of E induced by 03C6 from

this topology of M. Indeed, we have easily

Theorem 1.5. For any initial distribution p on (E,~ ), one has

P"(w(X ) = Z for all t > 0} = 1.

Proof. It will suffice to indicate the proof . Both sides

of = Z are Zot+-optional, hence by the optional section theorem 
.

it suffices to show that, for Zot+ -optional T  oo, = = 1.

But for each S the strong Markov property of Xt gives

P~(S)==P~(e~S~~)=Z~(S), P~-a.s., and since.%° iscountably

generated this completes the proof.

2. Characterization of the Ray topology. Simple as it is, Theorem 1.5

contains the key idea behind our approach to the Ray topology. Namely, we
X

will regard Xt as synonymous with P t, in such a way that any topology

on (M,~) induces a corresponding topology for Xt on (E,6’). The Ray

topology tends, in some sense, to make points x and y near when the

measures Px and Py are near, so to make this precise we have to obtain

the appropriate topology of measures. A topology of measures on (5~,~°),

however, generally presupposes some topology on (5~,~°). Consequently,

we must attend to this first.

Definition 2.1. The prediction topology on (S~,’~°), relative to the given

topology of E, is the topology generated by the functions

0 f(X )ds, f E C(E), 0  t.

Remark. Although this depends formally on choice of E, this

dependence is really nil. To see this, set ~(t,B) = 0 IB(Xs)ds, B E ~, ,

t > 0, as function of w E S~. Thus, u(t,B) is the sojourn kernel of w.
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Now 0 f(Xs)ds = f f(b)p(t,db), from which we see that the prediction

topology of  is simply the topology of weak convergence of sojourn

measures on (E,~) for each rational r (and hence, by uniform continuity,

for each t). It is well-known (see [1, Proposition (14.7)]) that this is

defined independently of E, and indeed implies convergence of ff(b)p(r,db)

for all bounded continuous functions f on E. This is, in our approach,

the reason that the Ray topology does not depend on E. On the other hand,

since C(E) is separable, it is easy to see from Lusin’s Theorem that Q

is a Lusin space in the prediction topology, with Borel field 7°.

Definition 2.2. The prediction topology of (M,~) is the topology of

vague (weak-*) convergence of measures with respect to the prediciton

topology of (~ , ~°) . .
As noted above, this is well-defined independently of any compacti-

z 
_

fication of M. It suffices for z E M that E Ezf for f E 

for any metric compactification S~ ~ Q. It is also clear that the Borel

field of M in this (Lusin) topology is again. Indeed, for any

f E b(‘~.°), E~f is Borel measurable. Then it is also clear that the

topology induced on E by 03C6 from the prediction topology of (M,m) has

Borel field e .
This brings us to an identification of the above induced topology.

Theorem 2.3. The topology induced from the prediction topology of M

is the topology generated by the cone Cl of Definition 1.2, or again, by

~R~f, ~ > 0, f bounded and continuous on E}. Thus, it is coarser than

the Ray topology, but finer than the topology used in defining S~. In

particular, since Xt is Xt is a Borel right process in the

topology induced by ~p, and Z~(x) is r.c.l.l. ° for x e E. .

Note. It can be shown that Zt is r.c.l.l. (in the prediction

topology) for any P E M, but we omit the argument.
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Proof. The equivalence of the two topologies in the first sentence

follows immediately from the topological fact already cited [l, (14.7)],

so we need only prove the first assertion. Let f E C+(E). Then for 1 > 0

we have, uniformly on ,

~0 e-03BBsf(Xs)ds _ lim a 
N 

f(X s)ds}dt
= lim 03BB/N  e ( f(Xs)ds .

. k=1 0 
S

Thus the left side is a bounded continuous function on Q, and hence

EZ e is bounded and continuous on M. Consequently, in the

topology generated by ~p, R~f(x) is continuous, and hence so are all the

functions in Cl.
Conversely, suppose that a topology on E makes these functions

continuous, and let us show it must be finer than 
the topology generated

by 03C6. Let f , 1 _  n, be uniformly dense in C (E), and let  be

the compactification of I with respect to the family r0 fn(Xs)ds,
o  r rational, 1  n. Thus S~ is a compact metric space with S2 as

Borel subset ° From the previous analysis, each term extends

continuous function on , for which we retain the same notation.

It is clear that = 03BB~0e-03BBtt0 f(Xs)ds dt remains valid

’ in terms of the extension of t0 f(X s )ds to S2 (which remains

uniformly continuous in t, uniformly on ). Consequently, by the inver-

sion theorem for Laplace transforms, we see that the terms 

separate points of  along with {r0 fn(Xs)ds}, and it follows by the

Stone-Weierstrass Theorem that finite linear combinations 
of terms of the

form 
0 

e nk (X s)ds} are uniformly dense on . Hence it

suffices to show that its expetations is continuous 
in E. We proceed by introduction

on m, the case m = 1 being true by hypothesis. Writing fk for fn , ,

we can write it as a sum of m! similar terms obtained by permuting the func-

tions and integrating over {sl ~ 
" ’ ~ Denoting the first

term by T , we have
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EXT = e ~s1 e-03BB2s2m 

... )dsm ...dsj 
s 
2

m m m 1 

= 

°° s2 
2 

3 ( s 1+s 3 ) f3(Xs ) 3 ... °° sm-1 m 
)dsm ... dsz dsl~s2 2 - 

)... 
J 

e 

s )ds m 
... ds2}ds1]

= mE e-(03BB1+...+03BBm)s1 dsl

The last expectation has the form so by induction it is bounded and

continuous on E, along with fl(x). Hence by the original hypothesis

(since it implies continuity of R~f for all bounded, continuous f on E),

EXTm is also bounded and continuous. This completes the induction step.

The remaining assertions of Theorem 2.3 follow directly (but we must except

a negligible set in asserting that Xt is a right process in the new topo-

logy ; this can be discarded from Q if desired).

Now we are ready to turn to the Ray topology. We first observe

that, by Theorems 1.5 a) and 2.3, there is a Borel right process with transi-

tion function q(t,z,A) on ~0(E), namely the image of Xt under ~p, which

has the same law as ZP t for each initial distribution 03C6( ). Consequently,

we can apply Theorem 2.3 to this new right process. In fact, since Z pP is

already r.c.l.l., we can take the new S~(= S?,M) to consist of the r.c.l.l.

paths with values in M (for the prediction topology of M, relative to

the given topology of E). We will label the new mapping cp as w 2 and

the previous 03C6 as 03C61 for the sake of clarity. We next show

Lemma 2.4. The topology on E generated by is finer than that

generated by but coarser than the Ray topology.
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Proof. We prove the second assertion first because 
it is easier.

Indeed, we know from Theorem 2.3 that the topology generated 
on

E is coarser than the Ray topology relative to the topology on E generated

by But since the topology generated by ~P1 is coarser than the Ray

topology of E relative to its original topology, it is clear that the Ray

topology relative to the topology generated by ~Pl is coarser than the

Ray topology reiative to the Ray topology itself. 
Since the resolvent R~

already maps C(E) ~ C(E) for the Ray topology, however, it is clear that

the second Ray topology (relative to the Ray topology itself) 
is coarser

than the first Ray topology. Combining these three (not necessarily strict)

inequalities yields the second assertion.

As to the first, by Theorem 2.3 the topology induced by ~p2 on

w E is generated by the functions RZg for g bounded and continuous
~Pl ( ) g a

in the prediction topology of ~P 1 (E), where R~ denotes the resolvent of

q(t,z,A). Suppose, in particular, that g(z) = Ezh where h is bounded

and continuous on St (as in the proof of Theorem 2.3). Then we have

RZg(Z) - e ds0
- Ez 11 
= e-03BBsEz (ho0 ) ds.

. = 
r

We observe now that the generators of the topology of , 
viz, fn{Xs)ds ,

are all uniformly continuous under translation by 8t, uniformly on S~,

~ r r+t

since 6t ( fn(Xs)ds - 
t 

fn(Xs)ds and fn is bounded. By the Stone-t 0 S . f X ds ... , 

m 
f (X ) 

Weierstrass Thecrem, functions of the form gm J 0 n 1 { s)ds,..., O nm s )ds ,

g (x , " ,,xm) continuous, 1  m, are uniformly dense in , and obviously

they have the same continuity under transiation {gm being uniformly con-

tinuous on compact sets). Hence all continuous h on S~ share this property,
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so that E h°6 is uniformly continuous in s. Then it is easy to see from

the continuity theorem for Laplace Transforms that, since is con-

tinuous in z for each A., must be continuous for each s. In

particular, Eh is continuous. Since these generate the prediction topo-

logy, the proof of Lemma 2.4 is complete.

We can view this Lemma in a slightly different way as follows.

If we give E the topology induced by ~P1, then ~P1 is a homeomorphism

of E ~ For each x E E, Zt ~P1 (x) (_ for all t, 

is the image of Xt under this homeomorphism by Theorem 1.5 a). Thus Zt
on is just the homeomorphic image of Xt on E with the 03C61-induced
topology. It follows that in defining ~p2 we can just as well begin with

Xt in the 03C61-induced topology. The topology generated by on E

is thus the same as the topology generated on E by 03C6 alone when it is

considered as a map into M with the prediction topology relative to the

03C61-induced topology of E.

In the above form, it is clear that Lemma 2.4 applies inductively

(with the Lemma as case n = 2) to yield for all n > 1 a Lusin topology

on E generated by ~ from the prediction topology of for the

(n - 1) -topology of E, in such a way that

a) the nth topology is finer than the (n - , and

b) the nth topology is coarser than the Ray topology, and

c) Xt is a right process in the n topology.

(It should be remarked, however, that this does not apply for n = 1: the

topology generated by need not be comparable to the original topo-

logy of E.)

Denoting the nth topology in this sequence we have

at last

Theorem 2.5. The Ray topology is given by lim. In other words, it is

~~ n 
’

the coarsest topology finer than each ~. .
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Proof. If dn(x,y) for each n is a metric bounded by 1 on

E and generating J , , then lim ~ is generated by the metric

d(x,y) = 03A3 2 Of course, the Borel field with respect to this

metric is again ~ since each dn(x,y) is continuous (hence measurable),

and (E,~) is a Lusin space in the limit topology. Since the Ray topo-

logy is finer than each ~ , it is finer than the limit. Conversely, by

Theorem 2.3 the limit topology is finer than the topology generated by the

cone and this is obviously the same as generated by C2 (Definition 1.2

a)). Assuming for induction that it is finer than that generated by 

it follows by Theorem 2.3 that it is finer than that generated by C2n+2
together with which is the topology generated by C2n+3’ Hence

by induction it is finer than that generated by C~, which is the Ray topo-

logy. This completes the proof.

Final Remarks. This characterization of the topology does not

suffice to characterize the R.-K. compactification, for which we need the

particular cone C~. Nevertheless, it seems to suggest that the compacti-

fication procedure is a device to obtain topological identification of

X
Xt with its prediction process P t on a compact state space. For example,

if E is already compact and we start with a Ray process whose resolvent

separates points, instead of a right process, then the same operations are

meaningful but yield simply the given topology of E. Indeed, we have .

C- C C(E) in that case, whence easily E C(E). Conversely, since Cl

separates points, it is easy to see by the Stone-Weierstrass Theorem that it

generates a topology as fine as the given one. Moreover, by [7, Theorem 2]

one can achieve separation of points by a preliminary identification of

equivalence classes, hence this does not seem to be a serious restriction.

Finally, another characterization of the Ray topology, in purely analytical

terms, is given in [1, (15.3)] together with a comparison of different

compactif ications.
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