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MARKOV PROCESSES AND CONVEX MINORANTS

Richard F. Bass

Department of Mathematics
University of Washington
Seattle, WA 98195 USA

1. INTRODUCTION:

Let Wt be Brownian motion and let Ct be the convex minorant of Brownian

motion. That is, for each w , t t2014->- is the function that is the convex .

minorant of the function s 2014~ 0 ~ s  o° . Call T a vertex time for

C if (T, CT) is an extreme point for the graph of C . Recently

Groeneboom [5] studied the properties of the convex minorant (and majorant) of

Brownian motion. He found the distribution of the extreme points of the convex

minorant, showed that there are only finitely many vertex times in any closed

subinterval of (0, oo) , and then proved the following remarkable fact:

Theorem 1. Let S  T be the first two consecutive vertex times after a fixed

time to > 0, c = T-S. Then 0  t -  1 is a scaled

Brownian excursion, scaled to be 0 at t = 0 and t = 1.

For the transition densities of scaled Brownian excursion, see [6, p.76].

Groeneboom’s proof consists of a direct calculation of the joint densities.

Pitman [9] has given a proof of this theorem and has also derived many properties

of Ct itself using arguments that rely on Williams’ path decompositions and on

time inversion. Our aim here is to give a proof of Theorem 1 that uses the

decomposition of general Markov processes at splitting times. The method can be

easily extended to the study of other diffusions, although the calculations

quickly become unmanageable.
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Our method is to define a strong Markov process Xt such that the vertex

times of C turn out to be last exit times from sets for Xt , and the well-

known theory of last exit time decompositions applies. This argument is carried

out in section 2. In section 3 we show how this method can be used to find the

distribution of the slopes and vertex times of C . In section 4 we briefly

discuss generalizations to other diffusions.

I would like to thank R. M. Blumenthal for many very helpful discussions.

2. BROWNIAN EXCURSION:

We first prove that space-time Brownian motion with drift S , conditioned

to be 0 at time 1 and positive up to time 1 , is scaled Brownian excursion,

regardless of the size of $ . Our conditioning is done using h-path transforms.

For the definitions and properties of these, see Doob [2]. Recall that to

condition a Markov process to exit a set A at a given point one h-path

transforms the process by a function h, where h is harmonic (invariant)

on A and has boundary values 0 everywhere except xO. . In the cases of

interest in this paper, such h are unique up to a multiplicative constant.

_ 

Let (Wt, Yt) be space-time Brownian motion with drift 8 , with prob-

ability measures Nx, x E IR X [0, ~) . Let Nt be the transition probabilities,

with densities

(1) (w ~ y )) _ (2~rt) ~ (wl + ~t))2/2t)

if y2 - yl 
= t , 0 otherwise.

Let To 
= inf{t: W t = 0} . It is known that To has a Cl density

under (see, e.g., section 3). Let

H(w, y) _ au u - 
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Let NHt(x, dz) = H(z)N (x, dz)/H(x), x, z ~ TR x [0, m) . H is harmonic since

it is the limit of hitting propabilities, the boundary values of H are 0

on the lines w = 0 and y = 1 , , except at the point w = 0, y = 1, and the

Nt are thus the transition probabilities for (W , , Y) conditioned to hit 0

for the first time at time 1. .

Proposition 2. The N~ are the transition probabilities for scaled Brownian

excursion.

Proof. Let K(w, y) = n1 ((w, y),(0, 1)) for y  1. . Let Nt(x, dz)
= K(z)Nt{x, dz)/K(x), x, z E 1R x [0, ~) . K is harmonic with boundary values

0 on the line y = 1, except at the point w = 0, y = 1. . So the NK t are

the transition probabilities for (Wt, , Yt) conditioned to be 0 at time 1.

A direct calculation shows that

yz)) - _ (203C0t)-½(1 - yx 1 - yz)½ 
exp(-(w z - w )2/2t - w 2I2(1 -Yz) + wx2/.2(1 - yx))dwz

if yz - yx = t, 0 otherwise.

Note that M is independent of d , , and it is therefore no surprise to

recognize that the Nf are the transition probabilities for Brownian bridge.

Let NK be the corresponding probability measures.

Now let dz) = dz)/L(x) for x, z e JR x [0, oo) , , where

L(w, y) = (’~/2)~ lim y ~ 1 - r - y)/r~ . .K 0

We will show in a moment that r~ is the appropriate normalization so that

the limit is finite. Given that, L is a harmonic function for NK since it

is the limit of hitting probabilities. The boundary values of L are 0 on

the lines w = 0 and y = 1 , , except at the point w = 0, y = 1, and so
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Y ) under N~ is Brownian bridge conditioned to hit 0 for the first

time at time 1. Fix (w, y), and let f(s) = -~- N(w’y)(T~ _ u)~u=s ’ Recall

that f is continuous.

By properties of h-path transforms,

y) = lim (03C0/2)½  a (03C40 ~ u - y)|u=s ds/r½

= lim (03C0/2)½ 1 K(0,s) f(s-y) K(w,y)
r~O 1-r

= lim jl (1-s) ~ exp(- ~2(1-s)/2) f(s-y) ds/2r~ K(w,y)
r+0 1-r

- 

~ 

So then L(z) K(z) N (x,dz)/K(x) L(x)
- H(z) 

= Nt(x,dz) . °
To complete the proof, it suffices to show that the N are transition

probabilities for scaled Brownian excursion, i.e., that Brownian bridge

conditioned to be positive on (0,1) is Brownian excursion. This has been

shown by Durrett, Iglehart, and Miller [4] and by Blumenthal [1]. The idea of

Blumenthal’s proof is to perform a one-to-one mapping of the state space so

that the assertion is equivalent to showing that Brownian motion h-path trans-

formed to be positive is the three-dimensional Bessel process. This last is

well-known and is easily verified by a simple calculation with infinitesimal

generators. D

The proof of the following lemma is immediate from the definitions.

Lemma 3. Suppose Yt) is a strong Markov process with state space Y,

where Y is measurable with respect to the right continuous completion of

U(Xs, s _ t) . Suppose the transition probabilities Nt satisfy:
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Nt((x,y), A x Y) is independent of y.

Then Xt is strong Markov with transition possibilities

= A x p . .

Lemma 4. Suppose Nt is the transition probability for a strong Markov process.

Suppose is a~ measure, h(n,x) is a~ jointly measurable nonnegative

function and ! = 1 for all x. Suppose

Nt(x,dz) = h(n,z) N (x,dz)/h(n,x) does not depend on n . . Then Nt(x,dz) = N (x,dz).
Proof. h(n,x) N~ (x,A) = ~A h(n,z) Nt (x,dz) .

Integrate with respect to use Fubini, and use the fact that Nn does

not depend on t~ to get

Nt(x,A) _ ~ = j!A = Nt(x,A). D

Proof of Theorem 1. We begin by first defining a state space and then defining

the process Xt. Let S~ be the set of nonincreasing, continuous, convex,

bounded functions g on [0, oo] with

lim sup -g oo and lim sup 
S~0 t~oo

furnish S with the sup norm. ~ is a-compact since S = Ak , where

(2) 
Ak = {g: sup I _ k, 

0 I 
sup Ig(t) -g (S)|/|t-s|¼ ~ k- ,

(2)

sup -g(t) |t¼ _ k}
t>_k

is compact by Ascoli-Arzela. Since S is a metric space with the relative

topology inherited from C[0, S has a countable basis.
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Let E = {(w,y,g) e ~t x x S: g(y)} . . Clearly E is also

a-compact with a countable basis when given the product topology.

Let V be the functional defined on real-valued bounded Borel measurable

functions on [0, °~] that maps V to V(g) , , the convex minorant of g. .

Two obvious properties of V are: 

~ 

’

(3) (i) V(gl A g2) = V(V(gl) A g2) = V(gl A 

(ii) If gl and g2 are two functions that agree up to some time

that are each constant from to on, and 

inf{gi(r): r  i = 1,2, then V(gl) = V(g2) .

Let (W , , Y ) be space-time Brownian motion with probabilities P(w’y) . .

The transition probabilities Pt are given by (1) with d = 0 . Fix t . .

Let s r--y be the function on [0, ~] given by = W if s s t , ,

= W0 if t  s _ . Let V - and let X - (W , , Yt’ , V ) . .

Vt may be thought of as the best guess for the convex minorant of Brownian

motion based on the path up to time t. .

For all t and w , , the function Vt is constant from some point on,

and so it is not hard to see that Xt E E for all t, w. . Xt is a process

with continuous paths. As usual, let A be a "cemetery" and set X° _ ~ . .

Before proceeding further, we must verify that Xt is strong Markov.

Let w be fixed. If 0 is the shift operator for (Wt, Yt) , Vs ° at will

be the image under V of the function f where f(r) = Wr+t if r 5 s , ,

f(r) = Wt if r > s. . Let g be the function defined by g(r) = Vt(r) if

r ~ t , g(r) = VS o if r > t . Then by (3), one sees that V(g) = Vs+t ’

and thus is a measurable function of Vt and Vs ° at .
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By the proof of Theorem (6) of Millar [8] (see also the remarks immediately

following that proof), Xt is strong Markov. Let Qt(x,dz) be the transition

probabilities for X , Qx the associated probability measures.

Although E is not locally compact, the state space for XtATk is,

where Tk = inf {t: and A,k is given by (2). By properties of Brownian

motion paths, Tk fi oo, a.s., and from this one can conclude that results like

the measurability of hitting times to Borel sets hold for Xt.
We now show how the vertex times for Ct can be constructed as last exit

times for Xt. For any g in , let Qg 
= inf{t: g(t) = g(oo)}. Let t

be fixed, and let

A = {(w,y,g) : w = D g(Q ) = D+g(s) for some s  

where D, D denote left and right hand derivative, respectively.

Let L = sup{t > tC : Xt E A}. L is a last exit time, and by Meyer, Smythe,

and Walsh [7], Xt+L’ t > 0 is a strong Markov process with transition

probabilities

Rt(x,dz) = H(z)Qt(x,dz)/H(x) ,

where H(x) = A for all t  co) . Let Rx denote the corresponding

probabilities. Note that L is the first vertex time of Ct after time t
Now let pg 

= sup{t >_ t0 : D g(t) = D+g(s) for some s ~ to}’ let

B = {(w,y,g) : Qg > 03C1g, w 
= and = D g(Q )} ,

and let M = sup{t > L : Xt E B}. Again by Meyer, Smythe, and Walsh,

C  t  M - L is a strong Markov process with transition probabilities

St(x,dz) = 
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where K(x) = R x (Xt E B for some t  ~) . Let the associated probabilities

be denoted Sx . M will be the next vertex time of Ct after L. (The

distribution of M - L will be computed in section 3.)

Since the law of potentially depends on L, CL, and D CL, we

decompose the range of Let

E - -a~ Ag~ Ag 
= 

y~~ = w~}~ a > 0.

Suppose we start the process Xt at a point x in With Q x

probability 1, Xt will remain in up until the time X again hits

A. And Xt started at x in will again hit A when and only

when Wt hits the line through of slope -a. There is a positive

probability of this never happening, and so H(x) > 0 if x E 

But there is also positive probability of Wt hitting this line; since Xt
started in cannot again hit A without hitting B, K(x) is also

> 0 . Finally, note that if t > L, Xt will be in F(a,y0,wa) with

a = y~ 
= YL, and w~ 

= 
.

We would now like to condition {X , Sx} so that D+VL = -b, M - L = c . .
To do the conditioning, we use h-path transforms. Let

Bru = Wt) hits the line segment connecting and (y~ + ru)).

It is known that is a CZ function of rand u (see, e.g.
. ru

section 3). So which does not depend on g, will also be a

C2 function of r,u. Since is the probability that Yt)

hits a set, this function is harmonic in (w,y) for P and hence for Q.

Now, for x,z E let

Jbc(x) = ~2 ~r~u Qx(Bru)|r=b,u=c,

and °
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Jbc(x) , being the uniform limit on compacts of harmonic functions, is also

harmonic for P and Q . We then have

(4) Nt(x,dz) = Gbc(z) K(z) Rt(x,dz)/Gbc(x) K(x)

= Gbc(z) K(z) H(z) Qt(x,dz)/Gbc(x) H(x) K(x)

= Jbc(z) 

Therefore the Nt are the transition probabilities for Qx}
conditioned so that Wt) stays above the line segment from (y~,w~) to

(Yo + c, wo - bc) but hits the point (y~ + c, w - bc), i.e., Wt conditioned

to stay above the line through wO) of slope -b until time c + L .

Starting at x E if L  t  c + L , Wt will also be strictly

above the line through (yo’wO) of slope -a ;.hence Xt will not hit A before

time c + L , and Xt will still be in 

Let Nx be the probability measures associated with N . Let

x = (w,y,g) E We have already mentioned that Jbc(x) does not

depend on g . And the law under Qx of Yt) does not depend on g .

Using (4) and applying lemma 3, we see that for L  t s L + c , (W , Y )

under Nx is a strong Markov process; and we have already observed that this

process is space-time Brownian motion conditioned to stay above the line through

of slope -b until time c + L . Using the translation invariance of

Brownian motion, under (Wt - Wo + bt, Yt - y~) , 0  t  c , is space-

time Brownian motion with drift b conditioned to be above the line w = 0

and to hit it for the first time at time c , and by scaling,

(Yet - y 0 )/c) , 0  t _ 1 , is space-time Brownian

motion with drift 6 = bc~ conditioned to be positive and to hit the line

w = 0 for the first time at time 1. By proposition 2, c-½(Wct - w + bct), and so
Cct+L) , 0  t _ 1 as well, is scaled Brownian excursion regardless

of b , and c .
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Now for x = (wty,g) E t

Jbc(x) dc db = (W hits some line through 

with slope between 0 and -a) = 1 ,

and so by lemma 4, c -  (Wct+L - C ct + ) , L , 0  t _ 1 , is scaled Brownian excursion

under Sx, x E Since the law of this process under S is scaled

Brownian excursion for x in any the proof is complete. 0

3. SLOPES AND VERTEX TIMES OF Ct .

We would like to calculate the distributions of M - Land D+CL =
- (WM - WL)/(M - L) . First we find that of the latter. If x = .(Wty,g) E 

we know the law of Xt+L is given by where R is Q h-path transformed

by the function

H(w,y,g) = (Wt never again hits the line through with

slope -a) .

Using translation invariance, we may as well assume (0,0) , and then [3]

= = 1 - .

Still for x E F(a,0,0) , t let

Rx - ~ ~u Rx(Wt hits the line -bt before time 

and define Qxc analogously. Properties of h-path transforms, the continuity

of h near the point w = -be, y = c, and an easy limit argument show that

R~ = h(-bc, Then

!0 r °° e ac Rx c dc = (1 - e-2a(a-b)c) Qc dc/h(w,y) .
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Q~ dc is the Laplace transform for the distribution of
0 

~

the time when Wt first hits the line -bt , which is the same as the time when

Wt + bt first hits 0 . Wt + bt has infinitesimal generator 2 f" + bf’ ,

and so [6] f(x) is the solution to the differential equation with constant

coefficients:

2 f" + bf’ - af = 0 ; = 0 , f (0) = 1 ; ;

therefore f(x) = exp{(-b - (b2 + . Applying this with a = 7~ and

then a = a + 2a(a - b) , , we get, letting y = 0 ,

0 e ~‘c R{w’0) c dc = ex {{-b - (b2 + - - + 2(~ + .
~ 

1 - exp(-2aw)

Taking the limit as w -~ 0 , and then setting a = 0 , we get

ever hits the line -bt) = 1 - (b/a) . .

Thus, the most negative value 03B2 for which Wt , under R{0’0) , hits

the line at, , has a uniform distribution on (-a,0) , or given that D CL = -a, D+CL
is uniform on (-a,0) .

Now let us find the distribution of M - L , , given that D-CL = -a and

= -b . . We thus need to consider Brownian motion conditioned to hit -bt

but to stay above -(b + E)t for every E > 0 and to find the distribution of

the time when this process hits the line -bt . .

Again, ever. hits -rt) = . Taking the derivative

with respect to r at r = b , , let

k(w,y) = (2w + .
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k is the value of the density of the random variable 03C8 = sup{r: Wt ever hits -rt}

at b , and Pkt would be Pt conditioned so that 03C8 = b . Letting Ut = Pf ,
= 3u hits -bt before 

and similarly for P(w’y) , we get as above = k(-bc, 

Then

- _2b a a~ o c

= -2b a (exp((-b - (b + 
= 2b exp((-b - (b2 + + .

2w exp(-2bw)

Letting w -~ 0 ,

j b2/2 2 / ’ ,0 
~ Bb~/2 + X/

and therefore U(0,0) is a gamma density with parameters ½, b2/2 .

4. GENERALIZATIONS.

Although properties of Brownian Motion were used throughout, the only

places these properties were essential were in determining the explicit form

of the distributions of Wt - C , of the slopes of Ct , and of the vertex

times of C . The rest of the argument could be easily modified to be

applicable to a large class of recurrent diffusions on the real line. In

general, the distribution of Wt+L ’ t  M - L , given WL = w, 
= -b ,

and M - L = c will be that of the diffusion started at w and conditioned

to stay above the line through (0,w) of slope -b before time c and to hit
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this line at time c ; unfortunately, one would not expect to be able to arrive

at any simpler description in most cases.

In section 2 we used the fact that P’"(B ) is a C function of

r and u ; with a bit more work, the requirement could be weakened considerably.

What is needed is the existence of a harmonic function Jbc(x) such that Qt
is the diffusion conditioned to stay above the appropriate line of slope -b

until time c . Similar comments apply to the other places where we used Cl

or C2 smoothness.
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