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Two Resulta on Jump Processes

1. Introd,uction. Let ( 03A9, F, P ) be a complete probability space, and X = (X t )tZo
a jump process, i.e. all its trajectories are r.c.l.l. (right-continuous and with

left limits) step functions and have only finitely many jumps in every finite in-

terval. Denote by (Tn)n~1 the successive jump times of X, and by the suc-

cessive jump sizes of X. H,y convention we have To = 0 and Do =, . X o . Then X can be

written as

X = Xo + T ~~~ , ’
n

and we have;

1)Tn~’ °° i

2) For all n Z 0, Tn  ~ ~ Tn  Tn+1 ’ ’

3 ) For all n Z 1, D~~ ~ 0 ~ Tn  °~ 
.

Denote by F = (F~)t~ the natural filtration of X:

Ft = a{ Xs, s s t, , N ~ , ,

where N is the family of P-null sets. It is well-known (see [3],[5] and [7]) that

F is right-continuous, so F satisfies the usual conditions, and we have for a~y

stopping time T

F = a{ XT, N { , , Fr- = a{. T, _~ (~1)

in particular, for all n Z 1

FTn = C{0394o,Tl,0394l, ...,Tn,0394n,N} , FTn
- 

= 03C3{0394o,Tl,0394L, ...,Tn,N} (2)

Denote by  the jump measure induced by X:

(dt,dx) = ~(Tn,0394n)(dt,dx) I[Tn ~]
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where. a is the unite measure concentrating at point a, and by v the predictable
dual projection of I~. According to we have~

u(dt,dx) = P(Tn ~ dt, 0394n ~ dx | FTn-1) P(Tn ~ t |FTn-1) ITn-1 , Tn (3)

The law of X is determined uniquely by that of 0394n)n~0 and by w as well. So it
ie natural to characterize the propertiea of X by the behaviour of (T n , ~n)~ or

v. In this note we show two aimple but intereating results of this type.

We introduce another useful notations. Put

s X ~ ) ~ at a ~t s y( {t? X ~ ) .

It is easy to aee that (039Bt) is the predictable dual projection of the simple point
process N s Tn,~’ (at ) is the predictable pro jeotion of ID, where D = [ dX
~0] = Tn  is the set of the jumps of Xt and J = [ a ~ 0 ] is the predictable
support of D. Suppose that oa ( Tn  ~}

P( ~ E ~ F~,n-) = ...,Tn-1,©n-l,Tn) 
Then we have.

w(dt,dz) a 

G( t d~) m ...,T n-1 ,d n-1 ,t )I D T t ) ( 4)

~ur first result is concerned with the predictable repreaentation property. We

recall that X (or F ) has the predictable representation property if there exists

a F-local martmgale M such that every F-local martmgale L, with Lo s 0, Can be

represented as a predictable stochastic integral H.M. In [4], under the assumption

that F is quasi-left-continuous we showed that X has the predictable representa-

tion property if and only if for every n Z 1, ~n is a,s , a measurable function of

(0394o,Tl,0394l, ...,Tn), or equivalently, F is exactly the natural filtration of the
simple point process 0394o + N. But we know (see Chow and that the process

o + N has always the predictable representation property. It is not reasonable
to assume that the natural filtration F’ is quasi-left-continuous. Now we get the

general result as follows.

Theorem 1. The following statements are equivalent :
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1° X has the predictable representation property;

2° For every n Z 1, there exist two Borel functions ,

tn), i = 1,2, such that on the set {Tn  °° ~ we have

1) ~ ~ f(1)(d ,T ,~ , ...,T - ,~ - ,T ) on  l~t ’

2) 0394n ~{f(i)n(0394o,Tl,0394l, ...,T - i = 1,2} a.s. on {aTn = 1}.
In other words, ’ the conditional distribution of n with respect to FTn- on the set

 °°} is a two-valued discrete distribution, furthermore, it reduces to an

unite one on the set  1{; ;

° There exist four predictable processes (C(1)), (~(1)), i = 1,2, with C(1)Z 0,
C(2)Z 0, + C(2) = 1, such that

v. ( dt , dx ) = G ( G(t . dx) = + (5)

Our next result is concerned with the Markov property. Note that if a jump pro-

cess is Markovian, it is strong Markovian automatically because of its sample

function property.

Theorem 4. The following statements are equivalent.:

1° X is. Markovian;

2° (Tn,XTn)n~o is a homogeneous Markovian chain. with state space 1R, and its

transition probability Q(s,x;dt , dy) satisfies the. following conditions:

1) = x ° S S s u s t (

2) x 1R) = Q(s,x; ~ x{x~) a ° t 
s  ~ (~)

= x ~) 

3) = ~ ~ (:dt) ~ g (~) (~ )

3° v(dt,dx) = Q(t, X - + Xt-,dt) (9)

where: 1) Q(t,x ;dy) is a transition probability from R x ’~ to ’~ and Q(t,x;{z} ) _

0; 2) (i) A(x,dt ) is a a-finite transition measure from 1R to IR+ and Ii(x, {t}) ~ 1,

(ii) There exist two sequences of Borel functions and gn(x) such that for

evew x IR+ is the union of disjoint 
and for t ~

h(xt Jf n (x),t[)  °~ . 
(1°)
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This problem was firstly discussed by Jacobsen[6] in a slightly different form

and under the hypothesis that the state space is denumerable. Gihman and Skorohod

[2] essentially showed that the statements 1° and 2° are equivalent, though their

proof utilized rather complicated calculation. In fact, one can use the following

formulas of jump processes to simplify the calculation. If is an intgra-

ble process, then its optional and predictable pro jections respectly are:

ow 
. 

) 
I

and 

oWt = n-1 E(I[Tn>t] | FTn-l) I[Tn-l ~ t  Tn]

and

pWt = E(WtI[Tn~t] | FTn-l) E(I[Tn~t] | Tn-l) I[Tn-lt~Tn] , t > 0,

Wo 
n-1 

, 

We observe some particular cases. 1) In order that X is homogeneous Markovian

it is necessary and sufficient that Q(t,x;dy) are independent of t, and 

q(x)dt, , with q(z) 2 0. Hence we have

= Q( Xt- + 
This is well-known for the homogeneous Markovian processes with discrete state

space (see Jacod[8]). 2) In order that X is a process with independent increments

it is necessary and sufficient that Q(t,x;dy) and A(,x~dt.) are independent of x,

Hence we have

v(dt ,dx) = Q(t dz ) dA.t
In addition, if X is stationary, then

> 0 .

These are the results of [9].

2. Predictable representation property. Note that in our case all local martingales

are purely discontinuous, and we can deduce the following lemma from the relevant

results in Jacod[8].

Lemma 1. . Let M be a local martingale. Then every local martingale L, ’ with 0, ’

can be represented as a predictable stochastic integral H.M if and only if the
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following conditions are satisfied:

1) For every totally inaccessible stopping time T, c: [ 0394M ~ o];

2) For every stopping time T, ;

3) There exist two predictable processes i ’=’ 1,2, such that AM equals to

~).r~).
Lemma the largest predictable set contained in D = [AX 4 0].

Proof. Let B be a predictable set contained in D, and S a predictable stopping

time, , with B. Then

~[S-] = ~~S)I[s~J ’ ~ ~ 
Hence t[ S J] c: K, and B ~ K. K ~ D is evident.

Proof of theorem 1. No loss generality we can suppose that X is locally integra-

bla, i.e. its predictable dual projection Xp exists. Otherwise, we can replace X

by another jump process X without change of its jump times and natural filtration

as follows.
 = X0 + nITn+~, n = arctg 0394n.

is locally since is bounded.

ie =~ 2". Suppose that every local martingale can be represented as a predictable

stochastic integral with respect to a local martingale M. Then X - H.M, where

H is a predictable process. By lemma 1 there exist two predictable processes (03B1(i)t),
i = 1,2, such that AM equals to 03B1(1) or 

~)=AX~H~, , i.1,2,
and 

.~i~(i)j ~ i~)i~~"i[~~t l  t~n ’ ’
~) .~Bj,(i),. ~)t]~~B~i)t l  t~t] ’

Then Ax equals to or a~B and j~t ~ t~~~t. Hence we obtain
[ t~~~t ’ > 0 0 J.

Since [ t~~~ j ) > 0 ] is predictable, by lemma 2 we have

[ l >0]c:t:a-n .

Now it is easy to see that for n ~ 3i on the set  ~ }

AY E { a(2) } .
n B ~’ ’ T~
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But on ( &#x26;-  1 }, aT(2) - 0, it must be 0394m= 03B1(1)Tn. On the other hand, since 03B1(i), i=

1,2, are predictable, we have Ep _* So by (2) can b&#x26; represented as

03B1(i)Tn = f(i)n(0394o,Tl,0394l, ...,Tn-l,Tn) a.s. i = 1,2,
where f(i)n, i = 1,2, are Borel measurable.

2* ~ 1~. It suffices to verify that the local martingale M . X - X~ satisfies

the conditions in lemma 1.

L) For every totally inaccessible stopping timeT, we have. {[T J) c: D. Therefore,
on the set ( T  ~ ), 0394XT ~ 0, 0394XpT = 0, because Xp is predictable. This yields;
A~4o, i.e. !]:T])~[AM4o ].

2) For every stopping timeT, we have. ~Ij-q.~-] ~ So by (l)

~Tl[T~]~~~%I[T~]~
~I[T~] ~B~~ 

3) Put

03B1(1) = f (1)n(0394o,Tl,0394l, ...,Tn-l,0394n-l, t)ITn-l,Tn

(11 )~0~ 00 ~0~ (,11)
03B1(2) = I[a=1]f(2 )n(0394o,Tl,0394l, ...,Tn-l,0394n-l,t)ITn-l,Tn

Then 03B1(i), i = 1,2, are predictable and AX equals to 03B1(1) or 03B1(2). In reality, if

0, it must, be 1, and 03B1(2)t = 0; if 0, there exists an n ~ 1 such

that t - T,, then Ax, - 0394n ~ { f(i)n(0394o,Ti,0394I, ...,Tn-l,0394n-l, Tn), i - 1,2 } -

t 03B1(i)Tn, i - 1,2 } - ( 03B1(i)t, i - 1,2 }. New set

~..-~~, i-1,2,
i - 1,2, are predictable, and ~M equals to o~ or o~~.

2* ~ 3". For n ~ 1, put

~- ~~~..~~"".~-1.~-1.~’ I ~ - ~~~.’~.~"".~-~n-r~~
c(i) = c(i)n(0394o,Tl,0394l,...,Tn-l,0394n-l,t)ITn-l,Tn , i = 1,2.

Then C(i), i = 1,2, are predictable, and 0, C(2) ~ 0, + C(2) = 1. On
the set { T  ~ } we 

n

P(0394n~dx|FTn-) = o(1)n(0394o,T1,03941,...,Tn-1,0394n-1,Tn)~(f(1)n(039403B1,T1,03941, ...,Tn-1,0394n-1,Tn))(dx)
+c(2)n(0394o,Tl,0394l,...,Tn-l,0394n-l,Tn)~(f(2)n(039403B1,Tl,0394l,...,Tn-l,0394n-l;Tn))(dx)I[03B1T = 1].

n
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By ( 4 ) we obtain

G(t da) ~~ + ,

where predict able. processes i = 1, 2, are def ined as above.

3° ~ 2°. It suffices to see that. for every n Z 1 on the set { Tn  ~ }

P(0394n~dx|FTn-) = G(Tn,dx) = C(1)Tn~(03B1(1)Tn(dx) + C(2)Tn~(03B1(2)Tn)(dx)I[aTn 
= 1]

and to represent ~(1) as f(1)(a ,T ~a , ...~T - ,t~ - tT ), = 1,2.

Corollauy 1 ([1]). If for all n Z 1, 0394n ~ 0 ~ 4 n i.e. X is a simple point

process, then X has the predictable representation property.

Corollary 2 (~4~). If F is quasi-left-continuous, then X has the predictable re-

presentation property if and only if for every n 2 1, an = 

a.s.~ where fn is Borel measurable.

Proof. Because of the quasi-left-continuity of F~ for every n Z 1, on the set

> 0, Tn  °° ~ we have ~n = a.s., where hn is

Borel measurable (see (3~ or ~5~). Now the corollary can be deduced directly from

the statement 2° in theorem 1.

Theorem 2. Let be a sequence of predictable stopping times. such that

D c Sn  and the graphs (Q Sn )n~l are disjoint, i.e. X is accessible. 
Then

X has the predictable representation property if and only if for every n Z 1 there

exist two FSn--measurable variables 03BE(i)n, i = 1,2, such that on the set  ~ }

DX equals to 03BE(1) or 03BE(2). In other words, on the set { Sn  the conditional
Sn n n n

distribution of with respect to FSn- is a two-valued discrete distribution.

The proof of theorem 2 is completely similar to that of theorem 1. 
It suffices

to construct two predictable processes a(1), i = 1,2, as follows.

03B1(1) = 03BE(1)ISn , 
03B1(2) = 03BE(2)nIsn

instead of (11). ° In reality, for each t and 03C9, either t = Sn for some n 2 1,

0394Xt=0394XSn ~ { 03BE(1)n, 03BE(2)n } = {03B1(1)Sn, 03B1(2)Sn } = {03B1(1)t, a(2)t},
or t ~ Sn , 0394Xt = 0 = 03B1(2)t. Hence, we still have

0394Xt 
~ { 03B1(1)t, 03B1(2)t}.
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Corollary. Let X . be an arbitrary sequence of random variables. Then X

has the predictable representation property if and only if for every n ~ 1, there

exist two (X , ...,X )-measurable variables 03BE(i)n, i =- 1,2, such that X m 03BE(1)n
or 03BE(2)n. In other words, the conditional distribution of X with respect to (X , ,

...,X n20141 -) is a two-valued discrete distribution.
In addition, if (Xn)~ is an independent sequence, then X has the predictable

representation property if and only if each of has a two-valued discrete

distribution.

Proof. Define a jump process

Xt = Xo + n s t ]
and take Sn = n. The conclusions follow immediately from theorem 2. .
Though the corollary of theorem 2 is rather banal, it motivated the following

general result on the processes with independent increments ( not necessarily sto-

chastically continuous ) (see [4]).

Theorem 3. Suppose that X = (Xt )t is a process with independent increments,
and with r.c.l.l. , trajectories. Let ( be the local characterics of X. Then

X has the predictable representation property if and only if

1) {C(l)t~(f(1)t)(dx) + C(2)t03BE(f(2)t(dx)I[03BD( {t} IR)>0]d039Bt,
where f(i), i a 1,2, are Borel measurable functions, with 0, C(2)Z 0,
C(1) + C(2) a 1, and dA. is a 03C3-finite measure on .

2) and are mutually singular.

Note that [ > 0 ] is the set of the fixed discontinuous points of X,

only on this set the jumps of X can take two possible values.

3. Markov property. We turn to Markov property of jump processes and complete the

demonstration of theorem 4 by proving that the statements 2° and 3° are equivalent.

2e ~ 30. For s S t, , put

Q~~,~,~) ~ x ~) .

q(s,x,.) is right-continuous and monotonely decreasing, and by (6) it satisfies
the following functional equation:
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q(s,x,t) = q(s,x,u)q(u,x,t) s u s t

L (12)

Denote ~’s(z) = inf {. s: q(s,x,t ) = 0 ) . From (12) it is facile to get

1) T s (x) > s i ’

2) > 0, u E ~s, (.Z3~

3) = of u E C’~$t=)t eo[.
We can decompose IR+ into a series of disjoint intervals: R - nUl [f (x) ,g (x)[
such that f or arbit rary two points s and t ( s  t), q(s,x,t ) > 0 if s and t be long

to the same interval, and q(s,z,t) = 0 if a and t belong to different intervals.

In fact, f or x fixed we may classify the point s of R + as follows. For s  t ~ we

stipulate that s and t belong to the same class if and only if q(s,x,t) > 0.

Because of (12) there is no ambiguity. It suffices to prove that each class 

is an interval ~f~,(a)~g~(z)(, since the number of disjoint intervals on ~ is at

most denumerable. From (13) the proof is straightforward. We observe that if s and

t belong to and s  t, then (s,t~ ~ Set inf ~(z) _
sup we get

It remains to show E and ~(z) E if  ~°. Take u E 

g~(z)~ such that > 0. Then by (12) for every t E Ccr()’ 
> 0~ and this yields fa(x) E Ca(x). Now suppose g~.(=)  °°. there exists u > 

such that > 0. If E Ca(z), then u E Ca(z). This contradicts to

the fact that is the supremum of 

Furthermore, ’ we can consider fn(z) and gn(z) to be measurable. In fact , we need

only to arrange those intervals, whose leuths are more than n 1 and not more than
, and the number of such intervala in every finite time interval is finite,. Setnl .

= = 0,
o 0

a(n)(z) = inf { t > b(n)(z): q(t,x,t + 1 n) > 0, q(t,x,t + nll) ’ C }t (14)

b(n)(x) = inf { t > a(n)(z): q(a(n)m(x),x,t) = 0 } .
m 

( ) m m

Then R+ = [a(n)m(x),b(n)m(x)[. Becuse q(t,x,t + 8) ($ > 0) and 

x,t) are right-continuous in t, , the infremums in (14) can 
be taken over the
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rational numbers. Hence, a(n)m(x) and are meaaurable. Taking away empty

intervals and rearrange properly, we obtain the decomposition R+ = (x),+ ~1 n

with meaeurable end point functions.

Pnt

~ (z~dt ) _ ~ q(s,=idt ) = ~)

" n~l 
Note that the support of ie and An(x,{t}) ~ 1,

~n(Z)~u~)  °°, u E ~ .

So is well defined and satiefies the conditions demanded, in the statement 2.

Take 
4( f n 

a(tlzl‘’v ) a~ 

as the Radon-Nikodym derivative of with respect to 

such that it is a transition probability and vanishes for t E Simi-

larly we define

a(t~~;~) _ ~1 ~(t.~~~) ~ ,
which is a transition probability from ~ x ~ to ~,

NoW we verify the formula (7). n Z 1. 4n the set ( E 

we have 
n-1 

, ]gk(XT n-l),~]) = 0, so Tn S gk(XTn-l), i.e.

 ]fk(XTn-l), gk(XTn-l )] .

On the other hand, by (14) for any u E (fn(z)tgn(x)( we have
. K (x,dt ) , t > u ,

Ct~°°~) 
= t Z u ~

particularly,

q(Tn-1,~, n 1 ;dt) 
~~ (~ ~ dt )

n-l q(Tn-l,XTn- l; [t,~]) 
= Ak(XTn-l,dt).

Hence,

Q(Tn-l,XTn-l
;dt,XT

n-l
+ dx) q(Tn-l,XTn-l;[t,~])I[Tn-l  t ~ Tn]

= Qk(t , XT
n-1 

;XT
n-1 

+ 

n-1 
, dt )I[Tn_1  t S T n]



266

. 

= 

 T-~ .
According to (3) and utilizing the Markov property of )n~ We get

n

v(dt ,dx) = Q(Tn-l,XT n-l;dt,XTn-l+dx) q(Tn-l,XTn-l;[t,~])I[Tn-l 
t ~ Tn]

- Q( ,dt).

Remark. If is a homogeneoua Markovian process, the functions q(s,x,t ) are

only dependent of t - ~: q(s,x,t) = q(t - s,x), and equation (12) becomes

q(s + t,x) = q(s,x)q(t,x) , , 0 .

Immediately, we have. q(t ,x) = , hence = q(x)dt, , and is

independent of t. At the same time, since is continuous in t, X is quasi-

left-continuous, i.e. all are totally inaccessible.

3° ~ 2°, According to Doleans-Dade’s exponential formula, we define

q(s, x,t) . e-039Bc( x, ]s ,t039Bgn(x) >  i - L x, Ui > > , 
s s t ’ , ( 15)

= (g)J(u)’ 
where A~(x,dt ) is the continuous part of A(x, dt ) . It is facile to verify that

defined in (15) together with (7)~ (8) constitutes a transition proba-

bility and satisfies: the condition (6).

’ Now we can jump such that the corresponding chain )~Q
n

is homogeneous Markovian with as its transition probability, and Xo

has the same law as Xo. Then from the proof 2° ~ 3°, the corresponding predictable

dual projection w has the same form as u

Therefore, X has the same law as X. This implies that )n~ has the same law
n

as 

n 
)~ . Hencz, 

n 
)n~ is a homogeneous Markovian chain.
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