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Path Continuity And Last Exit Distributions

Ming Liao

Seminaire de Probabilites XVIII

It is well known that a Hunt process is determined by its hitting

distributions up to a random time change, see (1, VS ~ . . It was proved

in (4) that the similar conclusion holds for its last exit distributions

provided the process is transient. It is not difficult to show, see (3),
that a Hunt process is continuous if and only if the hitting distributions

are concentrated on the boundaries, i.e.

V relatively compact open set A and x E A, , ,

(1)

Naturally a question arises: Do we have the similar conclusion for the

last exit distributions? To be precise, given a transient Hunt process X,~,
is it true that the path continuity is equivalent to the following condition:

~ relatively compact open set A and x ~ A,

P 4  # J - ~ (2)

where A = sup f t : Xt E Al with sup03C6 = 0 and is the lifetime of Xt . .
It is clear that the continuity implies (2). The purpose of this paper is

to show that in general (2) does not imply continuity: An example is

presented in Sec 1. (If killing is allowed, we can obtain a much simpler

example as is given at the end of Sec 3.) In Sec 2, we show that under

an additional condition, (2) does guarantee continuity and consequently

the process is continuous if and only if the equilibrium measures are

concentrated on the boundaries. In Sec 3, we establish two other results

under the assumption (2).
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Sec 1. Let E = ~ (x,y) E We construct

a process X~ with E as its state space, and, roughly speaking, having the

following properties : If Xt starts from (x,y) with y ~ 0, then it moves

at unit speed along a vertical line down to the x-axis; if Xt starts from

a point on the x-axis, then it moves at unit speed to the right except that

it may have several jumps along its paths and each jump brings Xt to a

point one unit above its current position.

Let us first write down its transition functions.

For 0 ~ t ~ i, .z E E and f ~ 0 measurable on E, define Ptf (z) by

P,~ f {x, 0) - s 0 ’~ e -u duf (x+u,1-t+u) + e f (x+t,0)
Ptf(x,y) = f(x,y-t) if y ? t

= ~~~

Lemma 1 : For t,s ~ 0 and t + s ~ 1, P f(z) .

proof : We only show this for z = (x,0).

dw)PS f(w)

= Sto e-u duPs f ( x+ u , 1- t + u ) + e-t P f {x+t,0) (Since s  1-t)

= Stoe-u duf(x+u, 1-t-s+u) + e-t soe-v dvf(x+t+v, 1-s+v) +

e - (t+ S) f {x+t+s,0) - Pt+s f (x,0) . . QED

For any t "> 0, write t =  tK with 0 ~ tK  1, let Ptf =
K~r

By Lemma 1, Pt f is well defined form a

semi-group of probabilities. By (3), we see easily 
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is a Feller semi-group;hence there is a Hunt process Xt with

( as its transition semi-group.

(x,o) { jF o r h > o , i e t r  h > = P ( Xt hit s  x+h , o > .  4 >

It is easy to see that r(h) is independent of x.

Lemma 2 : For any h > 0 , r(h) = I .

P r o o f : By t h e s t r o n g Markov p r o p e r t y , r(h+k) = r(h)r(k), so

it is enough to show r(t) = I for 0 £ t *l I . By (3) ,

r ( t ) ) e an d r(t) " e-t + / e ( 5 )
o

So r(t) ) e-t + j/ e-u due-(t-u) = (l + t) . Substituting this in

(5) , we obtain

r(t) ) e-t + il e -udue-(t-u) (1 + (t - u)) = e-t + e-t t + ’ e-tt2
o 2j

By induction we can prove

rt> Z i~ i + t + ’ . j t~ + ’j ~ t~ + ... > = i . QED

Lemma 2 shows that Xt is a transient Hunt process. Ve can check that Xt
satisfies the properties prescribed in the first paragraph of this section,

and from this it is easy to see that (2) holds but Xt is not continuous.

Sec 2 . From now on , we assume. Xt is a Hunt process with state space E

and that it is transient in the following sense:

l/x G E and compact K  E, Px ( g K = ~] = 0 (6)

Lemma 3 : Suppose for any compact set K and K, there exists a neighbor-

hood U of Y such that l/ z C K,  I. Then (2) implies the continuity

of Xt .
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Proof : It suffices to prove (1). Let A be a relatively compact open set ,

x6 A. Let T == and suppose

3A, T ~) > 0 .

There exists a compact set KC (A) such that

~ K ] ~> 0 (7)

Let u be the measure on E defined by

u(dz) = ~ dz, X(T) 6 (8)

u is carried by A and is non-trivial. We may assume supp(u)~ A ~ D , other-
wise we can replace A by A with A d A d K .

Let y 6 By the assumption, there exists an open set W with

y ~ W CA and  1 on K. Let U,V be open sets with y 6 VCrVc.UC’B’CW.

Since y ~ supp(u) ,

~ V, X(T)6 K~ > 0. (9)

Let T~ = 0, T~ i = T.. , T, + 
i 

and inductively let

~ = T~ + T~~~ , T~~= T~, + ° Since has

left limits for t M , , P -a . s .
~o

(x(T-) ~ V, X(T) &#x26; K~ C: U ( T~~~ T, T~ = T, X(T) 6 K~ . ° (10)

By (9), for some k,

T, X(T)~: K~ > 0 (11)

Since P~l  1 on K, P~ {~T~== CO~ ~ 0 for z 6 K, hence

K, T~oP~- =00) = K, P~~ ~ >0.

~~X(T~,) ~(~~ ~ ~ =~~ ~0 (12)

Since X(T . ) ~ V on fT_. ,  ~] , for some z 6 V,
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PZ [X(T~c) ~ K, TW.03B8T~c - o0 7 0 (13)

z, E K, TW.03B8T~c = ~] ’

TUc = Twc= ~w  44 and x( Y~ ) - 6: U, therefore

P" [X( ~ w -) E UJ > 0 (14)

This contradicts (2) hence (1) is proved. QED

Corollary : Suppose for any compact F, is continuous on F~ and V x E E,

P~.X~ 1(y) ~ 1 for y # x. Then (2) implies continuity.

Proof : Let K be compact and x ~ K. Choose D~ relatively compact open,
x and D~ ~ ~ x ~ . We may assume K = (~ . ~ P-- 1 ~ is a sequence of

continuous functions on K and it decreases to the continuous function 1

pointwise on K. By Dini’s Theorem, PDn 1 -a P.. x{ 1 uniformly on K. Since

1  1 on K, for s.ome n, Pp 1  1 on K. Hence the condition of Lemma 3

is satisfied. QED

Remark : By going through the proof of Lemma 3, we see that this Lemma and

its corollary still hold with (2) replaced by

V relatively compact open A and x E A,

P~X(~) ~ aA~ ~ ~ ~ - 0 (2’)

Now we suppose our process Xt has a potential density u(x,y) with respect

to an excessive Radon measure m on E, i.e.

00

~f  0 measurable, Su(x,y)f(y)m(dy) (15)

E E, u(x,*) and u(*,x) are strictly positive and extended

continuous, and u(x,y) _ ~ if and only if x = y.

Our hypothesis is slightly stronger than that in r 2 ~ and to which we

refer the readers for a complete account of the related theory. We know
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that any compact set K has an equilibrium measure hLK Which is the . unique

measure characterized by

# X e E, P~ i(X) " § U(X,y) (16)

Furthermore satisfies: ~’ X £ E and f ~ 0 measurable,

~~ ~~~~~~K ~~ ~ ’k ~ ~~ = ~~~~

It is easy to check the condition of the above corollary in the present

situation hence by (17) we have

Proposition I : Under the above hypothesis, Xt is continuous if and only

if for any compact K, is concentrated on gK.

Sec 3 . Ve say X has no killing inside E if X(£-) fi# Ea. s. on ( $  °° ] . II

Under the assumption of transience, this is equivalent to the following:

fif relatively compact open A and x e A, Px (T Ac  ~] = 1 (18)

Proposition 2 : Assume (2) and Xt has no killing inside E. Then

~ relatively compact open A and x E A, Px (T " 1. (19)

Proof: Let To = 0, T1 = T2 = T1 + 
, 

and inductively let

~i k + j I 
= ~l K ~ Tj K ’ ’ 

= ~x K -j 
~ 

-j 
° Then ° ~~ have

three possible cases:

case 1 : 3 fi, T~ = T~+, I  °° .

Case 2: ’~i ~ ’~5 ~ ’ ’ ’ ~ ’~k ~ ’~K%1 ~ ’ II 
.

Case 3: " 3 ~ such that "i ~ "i ~ ° ° °  "iK+i " " °

observe that it is not possible to have T2k  T zKtj 
= OO because of

(18) .

_ 
-

In case i , = X(TK+1) e A n A> = aA .

’ 

In Case 2 , let T = lim TK, then T A £ fK> , by the quasi-left conti-

n ui t y , X ( T) E 8A .
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In Case 3 , T~, = ~ , T~~ T~~ and by (2),

-) = X(A -) E ~A . (20)

Let B~ be open sets with B~ C A and A, S = T,.. + ~6-.- , then
"~ 

o~ in

By ~0)’ A - B . By the quasi-left continuity,

= e aA . QED

Proposition 3 : Assume (2) and X~ has no killing inside E. Then X~ has no

holding points.

Proof : Fix x ~ E, let D~ be a sequence of relatively compact open sets

such that C D~ D~ 3 x and D~ ~ . For each 1, define

~ = ~ ’ = ~+ ~~~ ’’"’ ~ i = ~+ and let

T(n)K = s for k = 1,2, " ,n.

For each k, is defined for n  k and as . By (19),

TB  ~ a.s. M a.s. then a.s.

TK  M .We see easily that as k 1 . Let

T = lim TK.(21)

We have T  TK and TK = T + (22)

By (21) and (22), lim = 0 so

Since 6 X(T) = x by the right continuity, hence

Px [lim TK = 0 ] = 1 . This implies x is not a holding point. QED

Remark : The assumption that no killing occurs inside E cannot be dropped.
To see this, construct a transient Hunt process according to the following
description : t Let (0, ij be the state space. If the process starts
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from x 1, it moves to the right with unit speed until it reaches 1. 1 is

a holding point with the exponentially distributed holding time and when it

leaves I, it jumps to 0 or kills itself with the equal probability % .

Acknowledgement : The author wishes to express his gratitude to Professor

K.L. Chung who suggested this subject.

References :

1. R.M. Blumenthal and R.K. Getoor, "Markov Processes and Potential Theory",

Academic Press, New York (1968).

2. K.L. Chung and M. Rao, "A New Setting for Potential Theory", Ann. Inst.

Fourier 30 (1980), pp. 167-198.

3. Courrège et Priouret, "Axiomatique du Problème de Dirichlet et Processus

de Markov", Seminaire de Theorie du Potentiel (Brelot-Choquet-Deny) V.8,

1963/64.

4. Joseph Glover, "Markov Processes with Identical Last Exit Distributions",

Z. Wahrscheinlichkeitstheorie Verw. Geb. 59 (1982), pp. 67-75.

Ming Liao

Department of Mathematics

Stanford University

Stanford, California 94305.

U. S. A.


