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AN EQUATION INVOLVING LOCAL TIME

by

Philip PROTTER1 and Alain-Sol SZNITMAN2

1. . Introduction. .

We show there is only one solution X, the obvious one, to the

equation

Xt + aL(X)t = Bt + Ct > 1)

where L(X) is the symmetrized local time at 0 of the semimartingale

X; B is a given Wiener process; and C is any continuous finite

variation process, adapted, whose support is contained in the zero

set of B. More precisely: X must be B, and C must be aL(B).

HARRISON and SHEPP [3] have considered the equation Xt + SL(X)t = Bt’
and they showed that a unique solution X exists if 1 and that

no solution exists if ~~~ > 1. In addition, the problem of solving an

equation where the solution involves finding a semimartingale together

with its local time has recently been receiving attention.

Problems of this type seem to be related to questions of fil-

tering with singular cumulative signals (cf [1]), as well as to

questions concerning the equality of filtrations. In particular, 
’

it would be interesting to learn what happens when 1, which

seems to us to be tied to problems such as the equality of the filtra-

tions of B+cL and B (cf EMERY-PERKINS [2], and [1]).
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2. Results.

For all unexplained terminology and notations we refer the reader

to JACOD [4]. In particular, we are using the symmetrized local

time of [4, p.184], which is also the one HARRISON-SHEPP used. For

a semimartingale X, we let L(X) denote its local time, which is

known to exist always. We assume we are given a filtered probability

space supporting a standard Brownian motion B and verifying

the usual conditions: ~0 is P-complete and 3.= fl 
" ~ s>t

THEOREM. Let C be an adapted process with continuous paths of

finite variation on compacts, and CO = 0. Su_.p~pose

t

(1) l 
Let X be a continuous semimartingale, XO = 0, verif in

(2) Xt + aL(X)t = Bt + Ct

where ~a~ [ >1. Then (X.) = (B.).

COMMENT. An immediate consequence of the theorem is that equation

(2) has a solution (X,L(X)) only if Ct = aL(B)t.

PROOF. Fix s > 0. We define:

S = inf{t > s: Xt = 0}~
T = inf{t ~ s: Bt = 0}.

Step 1: We show P{S ~ T} = 1. Let A = {S  T} and suppose P(A) > 0.

Since Xs = 0 on A, we have for all l h > 0 on A:
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(3) 

" B(S + h)AT ~(S + hjAT ’ ~S
= B(S + BS (from (1)).

Define s~’ I = 3. = ~ ~ S + h and P’ I by P’ (A) = P(An A)/P(A) .

On we have T’ = T-S is -stopping time. Letting

BS one easily checks is an ~. motion;

moreover Xh = XS+h is ° Thus

equation (3) yields:

(4) I °

Using a technique due to HARRISON-SHEPP, we will l show (4) is impos-

sible. By Tanaka’s formulas [4, p.184] and (4) we have:

(5) 
I 

1(X’U  0) + 2 1 1(X’u = 0)dB’u + (1+03B1 2)L(X’)h039BT’

and

(6) (X , )hn + T’ 1 (Xu ’ > 0) + 2 1 , = (1 2 a)L(X~ ) hn T .

Both (X’)+ and (XI)- are nonnegative processes, zero at zero. More-

over since ~a~ > 1, equations (5) and (6) imply that always one of

(X-) and (X+) is a nonnegative supermartingale, and hence identically

zero, since X~ = X~ = 0. This implies (again from (5) and (6))

that is identically zero, and hence = from

(5); thus never changes sign. Since B6 = 0 and T’ > 0 a.s.,

we have a contradiction. We conclude that P(A) = 0; that is,

P(S > T) = 1.

Step 2: Recall s > 0 is fixed. We will show that > o}) = 1.

Define:
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ol = {0  Xs  Bs}
, 02=~4>Xs>Bs}

We first show P(oi) = 0, 1i4. Note that on [s,T(r~)[, we have

Xu - Xs, so on ol and o2 we have S  T; thus step 1

gives us > = = 0. If P(o3) > 0, we have P{~ u E ]s, T(.):

B - > 0, which contradicts the definition of T

(since then X - 0). Analogously, P(o4) = 0. Therefore  ~Xs~} = 1.

Define :

Then Bs = -B~ before Bu - Bs = > 0,

since Bu - Bs = Xu - Xs on as,T(.)[. This would contradict that

P(S = 1, which we showed in step 1. Thus = 0. Analogously

= 0, hence > 0} = 1. Thus step 2 is complete.

Step 3: By using step 2 for all l s rational and then using the

continuity of the paths of B and X we have that a.s., for all s > 0,

!BJ ~ ~Xs~, , and > 0.

Step 4: Xs = BS, all s > 0. Define

{ Xs > 0 }

r2 = {Xs  0}.

Given step (3), it suffices to show = P(r2) = 0. For fixed s,



66

we have r.. ~ fT  S}, since for any u E ]s, T( . )[ we have 
,

X -B Thus by continuity we have > 0.

Since Bh = BT+h - BT = BT+h is a new Brownian motion, we have

 = 1 ,

which contradicts that BuXu > 0, since Xu > 0 in Thus

P(rl) = 0. Analogously, P(r2) = 0. This completes step 4 and the

proof of the theorem.
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Ed PERKINS has written us that he and Martin BARLOW have established
the non-uniqueness of solutions of Xt + aL(X)t = Bt + aL(B)t for
0 ~a~ l.

Note de la redaction : Voir l’article precedent dans ce volume.


