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A Transformation from Prediction to Past

of an L2-Stochastic Process

by

Frank B. Knight(1)
Department of Mathematics

University of Illinois, Urbana, Illinois 61801

1. Introduction

By an L-stochastic process, we understand simply a collection

X , , -co  t  oo, of real valued random variables (i.e. measurable functions)

on a measure space : = 1, with j X dP(= EX25)  ~ for each

t. In the present paper we will not discuss any "sample path properties,"

and it will not matter whether P is complete. In fact, we may and shall

consider random variables which are equal except on P-null sets as identical.

We assume for convenience throughout that j X t dP(= EXt) = 0, that the

covariance r(s,t) = is continuous, and finally that for 03BB > 0,

~0 e  oo. Let H(t) denote the Hilbert space closure of

s  t~. We note that H(t), and that H(t) is, in an obvious

sense, left-continuous in t.

The particular class of processes which IS our concern are those

which are orthogonalizable, in the sense that there exists an L2-integral
representation

1) Xt " ) 
t 

+ Vt

where Y is an L2-valued measure = 0 if 1 =~),

and also V E H(-~°) (=f )H(u)) and = 0 for all finite A . .

Here we choose Y(u) - Y(0) to be L-left-continuous in u, and the

integral 1) does not include any jump in Y at time t. Also, if

dQ2(u) = dEY2(u) (= E(dY(u))2) then t-~ F2(t,u)d03C32(u)  co. If, in

addition, the collection {VS,0394Y;0394,S ~ t} has Hilbert space closure
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H(t) for each t, then we call 1) a Levy canonical representation.

Necessary and sufficient conditions on r for such a representation

were obtained by P. Levy [5] and T. Hida [2], among others (in Hilbert

space language, the requirement is that Xt have multiplicity at most

1). Here it will suffice to observe that, apparently, all L2-processes
of any intrinsic interest do satisfy the conditions. From now on, there-

fore, we assume the existence of a canonical representation 1).(2)
This canonical representation is of course not unique. For any

measurable function 03B2(u) ~ 0, with 03B22 locally d03C32-integrable, we
may replace (F(t,u),dY(u)) by (S On the other

hand, this is the full extent of the nonuniqueness in dY(u). To see this,

let T(Z;H) denote the projection of an L2-random variable Z onto a

closed subspace H. Then, in 1), {X(t) - tl  t  t2}
generates the same Hilbert space as {yet) - Y(tl), tl  t  because

both are orthogonal to H(tl) and, together with H(tl), generate H(t2).
Now if Y1 and Y2 denote Y for two distinct representations 1) of the

same X, with corresponding d03C321 and then Y (B-)(= I B I dY I ) and

are orthogonal whenever Bi and B2 are disjoint bounded Borel

sets. This follows by the above for disjoint finite unions of intervals,

hence for each such Bl it holds for all bounded 30rel sets B~ disjoint

from B. by L2-approximation using E(Y {B ) - Y (B’))2 - 
Hence, finally, by the monotone class theorem, it is true for all bounded

Borel sets B1 and B2 disjoint from B~ , ° Now we can write
n

Y2(-n,n~ _ ,~ - n for an fn unique up to sets. Then for

B C (-n,n) we have : :

+ 
,

where the first term on the right is orthogonal to Y2((-n,n)-B~ . It follows

The results below are extended to the general case in [3], with considerable
loss of explicitness. The present paper was motivated by a remark of J. L. Doob.
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that this term is Y2(B~ . Thus, letting n   we obtain an f, unique up to

dQ~ - null sets, with Y2(B) = j* dY1(u) for all bounded B . This is a

relation of the asserted type (of course, we also have the trivial non-uniqueness

that F(t,u) may be changed on a d03C32-null set of u for each t , without

changing dY) .

We can think of 1) as a linear analysis of X(t) in terms of its

past evolution H(s), s  t. The object here is to relate this to the

futures X(t + s), s > 0. Since these cannot be known at time t, we

must be content with their prediction in terms of H(t). It is well known

from Hilbert space theory that the best prediction of X(t + s), in the

sense of minimizing E(X(t + s) - Y)2 over Y E H(t), is simply

Notation. R(t + + s); H(t)).

2. Statement of the Problem

The problem which we propose to solve here is now to obtain

(F(t,u),dY(u)) from R(t + s,t) when t, u, and s vary appropriately.

Let us note first that the converse problem is very simple. To obtain R

we note that there must exist some representation

2) R(t + s,t) = 
t 

G(t + s,u)dY(u) + V2

because every element of H(t) is so represented. But V = + s) ; H(-x))

implies that and then we need only observe that in the

decomposition

X(t + s) = F(t + + t+s F(t + s,u)dY(u)
the last term is orthogonal to H(t). Hence we have G(t + s,u) = F(t + s,u)

in 2). The problem below is, however, not as simple. Even if Xt is

"wide-sense stationary" (i.e. r(s,t) depends only on s - t) the known

solution (from [1, XII, Theorem 5.3]) depends on the spectral representa-

tion of Xt. Thus it expresses AY in the "frequency domain". This does

not easily give an expression in the "time domain," as required here (for

example, the solution may require derivatives of X, hence it cannot be
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expressed in integral form over Xs, , s ~ t). In any case, the spectral

method does not extend to the general process 1)).

Stated more precisely, our problem is this: given R(t’ + s,t’)

for s ~ 0 and t’  t, in terms of X , u ~ t’, to construct F(t’,u)

and dY(u), u  t, t’  t, for a canonical representation 1). We observe

why t’ must be introduced -- if Xt+s = Xt for all. s, then R(t + s,t) = Xt
for all s and there is no hope of obtaining either F or dY from this.

Actually, our problem has two distinct parts. Since F(t’,u) is nonrandom,

we seek to determine it, not from observation of R(*,’), but from the

covariance of R(.,.). We are assuming that an expression for R in terms

of X(.) is known, and we may assume without loss of generality that it

is linear in X(-). Therefore, the covariance of R may be calculated

from r, and our hypothesis justifies its use. On the other hand, Y is

"random", and to calculate it in an interval we must use the "observed

values" of R, rather than only its covariance.
’ 

The same determination problem has been studied by P. Levy in

several papers, but without using R. It is of course possible in theory

to determine F and dY directly from F and t’  t. The direct

attempt leads, however, to a singular Fredholm equation for F, which has

no unique solution [Levy, 4]. On the other hand, the corresponding problem

with t replaced by a discrete parameter n is not difficult, and is

solved in [4, Section 4.1]. It thus appears that with a discrete parameter

the canonical representation naturally precedes solution of the prediction

problem, while with a continuous parameter it is the other way around.

3. A Class of Wide-sense Martingales

The solution to be given here hinges on the following quantities,

which may appear a little complicated at first sight, but which are probably

as simple as the problem admits.
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Definition 1.(3) For A > 0 and t > 0, let

t

3) PA(t) - P~(0) + X 0 (X(u) - P~(u))du,
where P A (t) e As R(t + s,t)ds, and the integrals are in the L2-sense
on 

The existence of these integrals follows from our hypotheses

on r. Indeed, since Xt is L2-continuous, R(t + s,t) is L2-continuous
in s, and + s,t) ~ r(t + s, t + s). Then

Jo e + s)ds; H{t)), where the integral on the right

exists because

E½(~oe-03BBsX(t + 

+ s)ds)2 ~ ~0e-03BBs0393½(t + s)ds,

which is finite by another application of Schwartz’ inequality. It follows

readily that and also M (t), ’ are L2-left-continuous in t, ’

and L2-continuous in ~. It will be shown that, for suitable À, M A (t)
can serve as Y(t) - Y(0) in 1) for t ~ 0. It is clear that H(t),

and we next show that it has orthogonal increments. This follows immediately

from

Theorem 2. For each À > 0, is a wide-sense martingale with respect

to H(t) ; i.e. + s); H(t)) = 0  t,s.

Proof. we use the fact that L 2 -integration commutes with
projection to write

~ {_ ~ (t2) _ -~ (tl) ~ 

~ f t 2 ((e -X(v-t~) - e (X(v); ; 

- ~ (e H(tl))du
tl

This notation differs slightly from that of [3], where X was Gaussian and

PÀ(t) was, right-continuous. Here we use PÀ (t-) instead. 
t
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- X~f ~2 f ~2 - À 
2 

U 

e 
-À(v-u) P (X (v) j H(t1) )dvdu

-03BB2 t2t1 ~t2 e-03BB(v-u)p (X(v); H(t1 ))dvdu.

Combining the first and last terms of this expression, and interchanging

order of integration, it becomes simply

03BB ~t2 (e-03BB(v-t
2) 

e-03BB(v-t
1) 

- 03BB t2t1 e 
-03BB(v-u) du)IP (X(v) j H(t1))dv

f~2 -~(v-t) rv ..

+03BB 2t1 (1-e-03BB(v-t1) -03BB v
t1e-03BB(v-u)du)IP

(X(v); H(t1))dv.

Here both integrands are 0, completing the proof.

Returning to 1), it will be convenient to choose F(t,u), for

given dY(u), to be continuous in t ~ u for each u. To see that this

is always possible, we observe that we have

X(,). f + V

~ J "

for any Radon-Nikodym derivative of dE(X(t)Y(u)) with respect to do (u)
on (-~,t), where the absolute continuity follows by Schwartz’ inequality.

Here it is not difficult to choose

dE(X(t1)Y(u)) d03C32(u)| ~ E½(X(t2) - X(t1 ))2

for all u ~ t  t~. Thus, in fact, we obtain continuity in t,

uniformly in u for bounded t.

From now on, we assume that F(t,u) is continuous in t as

above. The connection of M.(t) with the canonical representation 1)

is as follows.

Theorem 3. For X > 0 and t ~ 0 we have

M(t:).f ~ ~0 ~ fB j ’’0 + s.u)ds)dY(u), J
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where the inner integral exists for u, and is in 

Proof. Substitution of 2) with G - F into Definition 1 of P
2014201420142014 A

gives

P03BB(t) = 03BB ~0e-03BBs t-~ F(t + s,u)dY(u)]ds +03BB~oe-03BBsVt+sds.
We need to interchange order of integration on the right. To justify

this, note first that

t-~(~0 e-03BBsF2(t + s,u)ds)d03C32(u)

= ~0e-03BBsEt-~F(t + s,u)dY(u) )2ds
~ ~0 e -03BBe EX2(t

+ s)ds,

and the last expression is finite by our hypothesis on F. Then it follows

from Schwartz’ Inequality that the left side of 

’

t-~ 

(~0 e-03BBs|F(t + s,u)|ds
2 d03C32(u)

~ 03BB-1 t-~ ~0 e-03BBsF2(t + s,u)dsd03C32(u)

is also finite, so that the L2-integral t j{ Uo ’ ;
exists. Clearly it is in the Hilbert space closure of (AY(u); A C(-~t]}.
But for v~  v~ t, by Fubini’s Theorem we have

E[(Y(v~) - Y(v~)) F(t + s,u)dY(u)]ds]~0 J
’ t ~2 ~ N ~o + 
~v 

I 
Uo J

- E[(Y(v~) - Y(v~)) ~ f -o e ’F(t + 

where the double integral in the middle expression exists by the above inequality.
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Thus the integrals may be interchanged, and we have from Definition 1

= f f[ + s.u)dsjdY(u)

+ t0v0(F(v,u) - 03BBe-03BBsF(v + s,u)ds)dY(u)dv.

Reasoning similar to the preceding shows that the second term on the

right is

j ( (F(v,u) - ~ + s,u)ds)dv dY(u),
o ~u ’’0

whence the coefficient of dY(u) in is

t0e-03BBsF(t + s,u)ds + tu (F(v,u) - 03BB~0e-03BBsF(v + s,u)ds)dV

= t0e-
03BBsF(t + s,u)ds + tu F(v,u)dv

- 03BB ~0e-03BBstu F(v + S.U)dV)dS.
Now the last term on the right may be integrated by parts for do2-a.e. u

to become

-tu F(v.u)dv - ~0e-03BBs(d ds t+su+s F(w.u)dw)ds.
Combining the last two expressions yields

03BB-1M03BB(t) = t0 (~0 e-03BBsF(u + s,u)ds)dY(u),

as was to be shown.

We next state two Corollaries, of which the first is now trivial,

while the second is immediate but rich in content.

Corollary 4. The incremental process

M03BB(t2) - M03BB(t1) = P03BB(t2) - P03BB(t1) + 03BB t2t1 (Xu - P03BB(u))du,
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- m  tl  t2  ~, is in H(t2) and has orthogonal increments. We have

M03BB(t2) - M03BB(t1) = 
t2t1-~003BBe-03BBsF(u 

+ s,u)ds)dY(u)

for any Levy canonical representation 1).

Corollary 5. If Xt is wide-sense stationary, so that we may choose

F(t,u) = F(t - u) and = 03C32du in 1), then

M03BB(t2) - M03BB( t1) = (03BB~0e-03BBsF( s ds) Y(t2) - Y(t1)),

where dY is a process of wide-sense stationary orthogonal increments.

Given a single observation of M~ (tZ) - for all a > 0 (fixed

tl  t2 and if it does not vanish identically then it deter-

mines F up to a constant factor. If V~ is known to vanish ’ then r

is similarly determined.

Proof. The equivalence of wide-sense stationarity with the

assertions on F and dQ2 is well-known ([1, The rest is

immediate from Theorem 3 and the uniqueness theorem for Laplace transforms.

4. Solution of the Main Problem, and Example.

We return now to the determination of F and dY in the non-

stationary case. In practice, the key to our methods is the calculation

of from r. This follows by a simple formula when R, and hence

P~, , are known. The proof is in [3, Theorem 3.1j, ’ and as it is rather

intricate we omit the details.

Lemma 6. For a. > 4 and tl  t2, we have

EM203BB(t2) - EM203BB(t1) = EP203BB(t2) - EP203BB(t1) + 203BB t2t1 E(Xu P03BB(u) - P203BB(u)) du.

This bring us to the main theorem, which in sense is a proof

without a theorem (the content depends on what is meant here by "effectively").
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Theorem l. A canonical pair (F(t,u), dY(u)) is determined effectively in

an interval ul  u  u2 by E(M2(u) - and dM (u), À > 0,

ul u  u2.

Proof. For notational convenience we take u 
= 0, u 

= t.

By Corollary 4 we have for any canonical (F’o,dYo),

6) EM203BB(t) = t0 (03BB ~0-03BBeFo (u + s,u)ds)2d03C32o(u).

Hence for every X > 0 the measure is absolutely continuous with

respect to d02(u). Our problem is to obtain a linear combination (possibly

infinite) ¿ (u) to serve as Y(u). In fact, we will determine a À
such that Y(u) = M~ (u) is possible. However, as a subsequent Example 8

o

shows, it is sometimes more convenient in practice to use a linear combina-

tion rather than fixing 03BBo. The only requirement is that the variance

should determine a measure equivalent to d03C32 as u varies, which is a
0

requirement not depending on the (unknown) Then we will have

i ciM03BBi (u) = u0 (ci ~003BBie-03BBiF (u + s,u)ds)dYo (u) .

and hence we can use i (u)) as dY(u) in a new canonical repre-

sentation.

We next show that, in fact, for all X excepting a certain

countable set the measures dEM,(u) and do are equivalent in (o,t).

By 6) they are equivalent in (o,t) if and only if

7) 0 = d03C32o{0  u  t: (u + s,u)ds = 0},

and we can assume without loss of generality that the Laplace transform

exists for all u. Then for each u it can vanish at most on a countable

set of À without making Fo(u + s,u) = 0 for all s ~ 0, since it is

analytic in ~. It follows from this that for any continuous measure dv(X)

we have
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8) 0 = : Q ° 
(u + s,u)ds = 0} 

,

except on a do2-null set of u. Indeed, if dQ2{0  u  t: F (u + s,u) = 0’ 0 00

for all s > 0~ ~ 0, then denoting the set in brackets by A we would have

for 0  t’  t X , " = V~+ ~ F 
" 
(t’,u)dY 

° 
(u), and it would follow

that H(t), which contradicts the definition of a

canonical representation. From 8) it follows by Fubini’s Theorem that 7)

holds for all B except in a dv-null set for every continuous dv. On

the other hand, the right side of 7) is upper-semicontinuous in X because

the integral is continuous in ~. (so that do2 o applied to the complement

is lower-semicontinuous). Hence for every s > 0 the set of B for

which da 2o (0  u  t: Jo ° 
(u + s,u)ds) == 0} - e is closed and null

for every dv. Since every uncountable closed set supports a nontrivial

continuous measure (since it contains a monotone image of the Cantor set)

the above set must be countable. Letting E + 0, we see that

7) holds outside a countable set of X. ,

It remains to "effectively" determine a X.. outside this set

(which is of course easy in "practical" cases). In any case, we may proceed

as follows. We first obtain a measure which is equivalent

to the (as yet unknown) d03C32o in any one of various ways. For

example, d21 EKi(t)dÀj is always such 
a measure since the exceptional set

of X is erased. Denoting this by do-, we next obtain a Radon-Nikodym

d erivative dEM203BB(t) 2 wh ich is continuous in X for all t. By 6) this

dOl (t) " ’

will always be continuous along the rationals for d03C321-almost-all t, whence

we can extend it to all X by continuity, and use 0 on the exceptional set

(if Now, as before, da (0  u  t: dEM203BB(u) d03C321(u) 
= 0} exceeds any e > 0 on an

at most countable, closed set. An element not in such a set can be effectively

determined by systematically checking all points 0  X = N until
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such an element is found. Hence, choosing En -~ 0, we can determine by

induction on n a nested sequence of closed intervals of the complements.

Then any 03BB0 in the intersection will satisfy d03C321{0  u  t: dEM203BBo(u) d03C321(u) = 0} = 0.

Consequently, the same equation holds with Q2 in place of Q2, and

dY(u) = d o (u) is a possible choice of dY for a canonical representation 1).

It remains only to determine F(t,u) for known dY, as was

done above Theorem 3. Thus we have F(t,u) = d~(X(t)Y(u)) ~ , which is computed
d03C32 (u) 

from r, our assumed expression for R, and Lemma 6 (the covariance

E(K 03BB1(u)M03BB2 (u)) is also in [3] if needed for the case 
- 

dY(u) = d(E (u))).
We remark that, since F(t,t) is not involved in the representation of Xt,
we should define F(t,t) = lim F(r,t) in order to obtain the right-continuity

r~t+

of F in t > u for each u.

We conclude with an example which involves a process Xt else-

where studied by P. Levy.

ft
Example 8. Suppose that (2t - u)dW(u), where W(u) is a Wiener

process,Levy ([4],[5]) has checked that this representation is canonical,

and he also has obtained infinitely many other noncanonical representations

1) of the same process Xt. . However, our approach is from the opposite

direction, in the sense that we should begin from the covariance. In this

case, we have easily r(s,t) = 3s t - 3 s for 0 ~ s ~ t, and we take

Xs - r - 0 for s ~ 0. We claim next that the predictors (i.e. projections)

are given by 0 for t  0 and R(t + s,t) = (1 + 2st 
- i 

)Xt - 2st 
-2 

J t0 Xudu

for t > 0. Since our method takes this as starting point, we will not

discuss the derivation, but only remark that such assertions are easily

checked. One need only use r and a little integral calculus to show

that + s,t) ~’ Xt+s)) = 0 for v  t. It follows without

difficulty that for t > 0,
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(t) = (1 + 2(J~t) 1)X - 2~ 
2 

X du

- 2t0(u-1xu - u-2u0 X 
v
dv)du

= (1 + 2(03BBt)-1)Xt - 2(03BB-1t -2 + t-1) t0 Xu du.

We want to choose a convenient linear combination of to use as

dY (u) . We observe that M 1 (t ) - M 2 (t) = t _ 1X - t t-2 t0 X du, and it is

straightforward to check that E( M1 (t) - M 2 (t))2 - t. Thus

Y(t) = Ml(t) - M2(t) is a Wiener process ’ and we can use it for a canonical

representation of Xt if it generates H(t). This must be checked here

only if we do not assume a priori that a canonical representation exists.

Otherwise it suffices that be absolutely continuous with respect

to du, which is practically obvious. In any case, we can easily solve for

Xt in the present case, obtaining Xt = 0 (M1(u) - + t(M1(t) - M2(t)).
Now straightforward computation yields du M 2 (u)) = 2t - u,

hence our representation is Xt = t0 (2t - u)d(M1(u) - M2(u)). Of course,

this is entirely equivalent to the original representation of P. Levy, but

here dW is expressed in terms of dX instead of conversely.
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