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GIRSANOV TYPE FORMULA FOR A LIE GROUP VALUED

BROWNIAN MOTION

by
R.L. KARANDIKAR

Let G be a Lie group of dxd matrices and X1 be a G-valued

continuous semimartingale, P be its distribution on ~1 = d([0,1],G).
Let AX 1 be the left translate of X~- by a G-valued adapted
continuous process with finite variation paths, and .~ be the distri-
bution of X2 on The question analogous to the classical Girsanov
theorem is : Under what conditions on A,X is P-«P1 , and what is
the density dP2 dP1 ?dP

We denote by Q the Lie algebra of G, and by W the sample space

Using the pathwise integration formula ( see Karandikar

[3] ) for multiplicative stochastic integration, we may define an
" exponential" mapping t : and a "logarithm" 1,: 0 -~ W, which
are independent of the chcice of the laws and, in a reasonable sense,

inverse to each other. Then we may denote by Y1, Y2 the processes
and by the corresponding laws on W . Next, using

the " integration by parts formula " for multiplicative stochastic inte-

gration ( Karandikar [4] ), we show that Y2= Yl+B , where the process
B is expressible in terms of A . Therefore the ordinary Girsanov theo-
rem in the additive set-up will give conditions for the absolute conti-

nuity Q2«~1 , and explicit expressions for the density. Returning to
0 by the exponential mapping e, we can in this way solve a multipli-
cative Girsanov problem.

We study in particular the case where X1 is a G-valued (multipli-
cative ) brownian motion.

I. GENERALITIES

We first introduce some notation. Let U,V be continuous semimartin-

gales ( on some fixed probability space 0 with a filtration (Ft) ,
not necessarily the same D as above ), taking values in the space
L(d) of all dxd matrices. We denote by U,V> the L(d) valued

process defined by 

~U, V>1 - E k  U k 1, V~
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The paths of are continuous with finite variation, equal to 0
for t=0 . We denote by V’U and YoU the Ito stochastic integral
and the Stratonovich stochastic integral of V with respect to U :

(V.U)t = t0VsdUs ( matrix product ) , (V03BFU)t = t0Vs03BFdUs
and we denote by U:V , UV the similar integrals, with matrix pro-
ducts on the right side ((U:V)t = t0(dUs)Vs ... ). As usual, we may

express Stratonovich integrals in terms of Ito integrals

(1) VU = V.U + 1 2 V,U > , UV = U:V + 1 2 U,V > .
These formulas can be verified by looking at the entries and using the
1-dimensional relation ( see Ito-Watanabe [2] ). In the Lie group - Lie
algebra setting, the Stratonovich integrals arise naturally.

We now assume that Uo=0 . The Ito exponential of U , denoted
by e(U), is the only solution to the stochastic differential equation

(2) V = I + V~U .

More precisely, this is the left exponential ( see Karandikar [3]. The
right exponential will not be used here ). It can be shown that e(u)=v
is invertible ( see Karandikar [3] ) and we can recover U from V by
the formula

(3) U = = ( hence e(U)=e(U’) =>U=U’ ) .

Similarly, we define the Stratonovich ( left ) exponential e*(U) as
the solution to

(4) V = I + VoU

It can be easily seen that if V is a solution to (4), then  V,U >=
V.U,U>, and therefore V = I+V.(U + hence

(5) ~~{U) = e( U + 
and e*(U) is invertible. Just as above, one can recover U from

by the formula

(6) U = ~~{V) = V-loV ( hence e*(U)=e-(U’) => U=U’ ) .
Let U and U’ denote two continuous semimartingales, such that

and’’let W denote e(U’). Then we have the integration by
parts formula for multiplicative stochastic integrals

(7) e( U + U’+  U,U’> ) = e( 

This is a direct consequence of Ito’s formula ( Karandikar [4]). The
same arguments with Stratonovich integrals in place of Ito’s integrals
will give
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(8) e*( U + U’ ) = with 

Also, (8) can be deduced from (7) and (5).

We are going to apply this formula in the situation described in the
introduction. Let X be a continuous semimartingale such that XO=I,
and let A be a continuous semimartingale with finite variation paths,
such that A~=I . We assume that these two processes take their values
in the set of invertible matrices, and define

(9) Yt = t0 X-1sodXs
(10) Bt = t0 (As Xs)-1dAsXs ( Stieltjes integral )
Then the paths of B have finite variation, and we have :

THEOREM 1. AX = e*(Y+B) .
Proof. We have according to (9) and (6). Similarly, we set
a = so that A=e*(a). Then AX = ~~(a)s~(Y) , which we try to
identify with the right side of (8). We must have hence

U’=Y, W=X . Then we must have a , , and therefore since W=X ,
= = = B . . Note that we didn’t really

use in this proof the fact that A has finite variation.

II. CONSTRUCTION OF THE MAPS e AND

. Let W be the set of all continuous mappings w : [0,1] ~ L(d)
such that w(0)==0 . We denote by Yt the coordinate mapping 
on W , and by Yt the a-field a(Ys’ s~t).

Let 0 be the set of all continuous mappings w : [0,1] ~ L(d)
such that co(0)==I , and w(t) is invertible for every t . The coordinate

mappings and fields are denoted here by Xt and ~t .
If one is interested in a particular pair the mappings in W

will be restricted to be Q-valued, and those to be G-valued.

This makes no essential difference, as we shall see.

We say that a probability law on W ( ~1 ) is a semimartingale mea-

sure if the corresponding coordinate process is a semimartingale ( w.r.

to the corresponding filtration, made right-continuous and complete ).
Our aim in this section consists in constructing Borel mappings

~ ; W > ~ , L : ~ > W such that, for any semimartingale measure on W,
X~~ is a version of the Stratonovich exponential and for any

semimartingale measure on U , , Yo.~ is a version of the Stratonovich

" logarithm " ~~(X) . These mappings, however, do not depend on the
choice of a measure on W or 03A9 .
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For n>1 , wEW , define s?(w) and for i>0 inductively
by

sn0(w) = tn0(w) = 0 and for i~0

= inf~ 2-n or s>1~
= inf) f 2 n or

2 n or

2 n or t>1 ~ .
Here the norm I [ is chosen so that the logarithm of a matrix ( i.e. the

inverse mapping of the usual matrix exponential exp ) is defined on
the neighbourhood of the identity. We now set for s,tE[O,l]

= E log( n 
j~Q 

1 1+1

~n(s,w) =  exp( Y(s039Bsnni+1(w),w) - Y(s039Bsni(w),w) )

It is easy to see that if w is G-valued , is Q-valued,
and similarly in the other direction. Let 

WO = { e (~w) converges uniformly {
00 = ( converges uniformly {

We denote the corresponding limits by ~(w)=~{.,w) and .C{c~)=,C(.,c~) ;
outside Wo or ~0 we set for all t . Of course,
since the coordinate mappings are denoted by Yt on W , Xt on 0 , we
may write instead of ,~(t,c~) , Xt(t(w)) instead of 

THEOREM 2. Let Z be a continuous L(d)-valued semimartingale defined
on some filtered probability space (0, ~, 

1) Assume that Then f or -. 0Ee the path Z ~ { 6 ) belongs
to Wo and the path e~(Z)(.,e) of the Stratonovich exponential 
is equal to ~(Z~(6)).

2) Assume that ZO=I and Z takes its values in the set of inverti-
ble matrices. Then for »-a.e. eE@ the path z.(e) belongs to ~0 , and
the path ~~(Z){.,6) of the Stratonovich logarithm ,E~{Z) is equal
to ~6 ) ).

COROLLARY . Let P be a semimartingale measure on n ( Q be a semi-
martingale measure on W ). Then the image measure .~{P) is a semimar-
tingale measure on W( e(Q) a semimartingale measure on ~ ) and we
have

(11) = w P ( ,C{~(w)) _ w ).
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Proof. The proof relative to the exponential is outlined in Karandikar

[3] ( Sem. Prob. XVI ), and fully given in Karandikar [5]. Keeping the
notation t~(9) for ti(Z~(6)), the statement amounts to the fact that

J (t,e) _ ~ log( n 
~0 

1 -Lf.L

converges p,-a.s. to :~~(Z)(t~8) , uniformly in We rewrite

as

log( I + Z-1(t039Bt
ni)[Z(t039Bt ni+1)-Z(t039Bt ni)] )

=  Z-1(t039Btni)[Z(t039Btni+1)-Z(t039Btni)]

- 1 2  ( Z-1(t039Btni)[Z(t039Btni+1)-Z(t039Btni)] )2
+ higher order terms.

By the methods used in Karandikar [3], [5] it can be shown that a.s.

J converges uniformly to ~ Z-l.Z, Z ’Z > . Denoting this
process by U , we have  U,U > =  Z* -Z,Z" ~Z > and

Therefore, applying (5) and (3)
£~(U) _ s( U + = Z

Which implies that according to (6). The corollary is almost

obvious, and left to the reader.

III. THE MAIN RESULT

We may now translate theorem 1 in the situation of path spaces, to

get our main result. Let be a semimartingale measure on 0 , and

let A(t,w) be a G-valued, t-adapted continuous process with finite
variation paths, such that A(0,w)=I . Let o be the mapping from [1

to Q defined by
(12) XCt~~C~)) - A(t,w)X(t,w)
We denote by P2 the image law of P under cp .

We now denote by a the process on W ( Q-valued )

C~3 ) 

and by Bt the process on W ( Q-valued ).

(14) Bt(w) = .

Finally, let Q=Q1 be the image of P~ under £ , , and Q be the image
of Q1 under the mapping t from W to W defined by

(15) Y(t,t(w)) = B(t,w) + Y(t,w) . ,

Then theorem 1 gives at once the following result :
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THEOREM 3 . 1) ,Clew)) = L(03C6(03C9)) a. s. Pl. Hence Q2 is the image of P2
under L , and P the image of Q under &#x26; .

2) if and only if Further, if then

d~2 1
(16) -1(~) _ --~(,~~) a.e. P~- .

dP dQ~ 
20142014

Proof. The first statement follows from theorem 1 and theorem 2, 2),
both processes being versions of the Stratonovich logarithm of AX

under the law P. The other statements follow from the fact that
P1,P2, Q1, Q are semimartingale measures, and therefore ~ and 
are almost inverse to each other under any of them ( theorem 2, (11)).

Let us apply this to the case of brownian motions on G : we

choose some euclidean norm on the Lie algebra  , and an orthonormal
basis (D1,...,Dm) relative to it ( we denote by D1,...Dm the corres-

ponding left invariant vector fields on G ). Let Q1 be the probabili-
ty law on W for which (Yt) is a m-dimensional motion in the eucli-

dean space % ( that is, the components Yt of Yt in the basis Di
are independent real-valued standard brownian motions ). Then, according
to Ibero the Stratonovich exponential e~(Y) is a G-valued

brownian motion corresponding to the left invariant " laplacian" L =

Em D2 . Otherwise stated, the law P1 of this G-valued brownian motion

on 0 is the image of Q1 under e , and Q1 is the image of P 1
under ~.

The classical Girsanov theorem asserts that the law Q ? of Y+B

under ~1 will be absolutely continuous with respect to if the

~-valued process B on W is continuous, of finite variation, with
a density b ( progressively measurable ) such that

(17) E 0 /B-dY - ds ] = 1

Here ~ ~ I is the euclidean norm in Q and . denotes the correspon-

ding scalar product. Besides that, the function under the sign E is

equal to the density 

In the multiplicative set up, this corresponds to the absolute con-
tinuity with respect to Pl of the law P2 of the process AX , ! where
A is a G-valued process given as a ( deterministic ) multiplicative
integral :

(18) = I + j 
t 

, = 

where the Q-valued process on 03A9 is absolutely continuous
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with a progressively measurable density a(t,w), and a,b are related

by
(19) b(t, ~C~)) = 

Therefore, the condition for absolute continuity is the uniform inte-

grability of the local martingale e(M), where

(20) M t(03C9) = 

t0 

(X-1sa

sXs). (X
-1sdX s)

and in that case, the density is equal to There is no obvious

sufficient condition for absolute continuity, except the case where G

is compact and the density a is bounded.
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