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LOCAL TIME AND PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS
By Edwin Perkins

In this note we use the notion of local time of a semimartingale to obtain

pathwise uniqueness results for one-dimensional Ito equations. The first such use

of local time (to our knowledge) seems to be in [1] (see Th. II.3.1) . . Since the

well-known results of Yamada and Watanabe [4, Th.l] involve an approximation of

f(x) = ~x) by C2 functions and an application of Ito’s lemma, it is not surpris-

ing that this approach simplifies matters somewhat. Although our main result

(Cor. 2, Th. 4) is slightly more general than Th. 1 of [4] (since it also applies

to certain diffusion coefficients which need not be Holder continuous of any order

(see Examples 3)), it is the simplicity of the proofs that we wish to stress.

We first consider equations with random diffusion coefficients and no drift,

and then use a result of Zvonkin [5] to handle bounded measurable drifts.

Assume ) satisfies the usual hypotheses and Bt is a ~Ft~ - Brown-

ian motion (in the usual sense). Unless otherwise indicated, we assume throughout

this work that X is an F -measurable random variable, a : : [0,~)  IR  03A9 ~ IR

is jointly measurable, and Q(s,.,.) is Borel x F s -measurable for all s. . We say

that X(t,w) is a solution of

(1) 

with lifetime p if I satisfy =p >0 a.s.

and X satisfies (1) on E[0,p[[ [ (we may set on [ ~p,~[ [[ ) . We say that

pathwise uniqueness holds in (1) if whenever X1 and X2 are solutions of (1)

with lifetimes pl and p 2 , respectively, then pl = p2 and X1(t) = X2(t) for

all 

If Y is a semimartingale, L~(Y) denotes its local time (see Meyer [2, p.365]) . .
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Theorem 1. Suppose there is a solution, of (1) , and measurable mappings

6 : 03A9~ (0,co) and p : [0,~) 03A9 ~ [0,~] such that

(2) 0+03C1-1 "1 (z)dz=.a.s. (i.e..> 
1 p*(z)dz 1 increases to co a.s. as ~~0+ )~+ J~

(3) If 

T (X.)

~ ~ 
m 1 

for all a.s.

Then pathwise uniqueness holds in (1).

~

Proof. If X is another solution of (1), let T = T (X,) A T (X ) and

Xmi(t)=Xi(t039BTm). Define ~n(03C9) byn-1c 
-1 

Using the continuity of

local time we see that w.p.l , 
~

L0Tm(Xm2-Xm1) = limn~~n-1 In 03C1-1(x)LxTm(Xm2 - Xm1)dx
~ lim supn~~n-1 Tm0 03C1-1 (Xm2(s)-Xm1(s)) I (Xm2(s)-Xm1(s) ~ (~n,n-1))

(a(s,X~(s)) 
~ lim - 

1 1 

f{s,Xl (s) )ds = 0 .

Therefore

E(~(t)-X~(t)~)=E(~ ~(X~-X~))=0 .
and pathwise uniqueness follows.[]

Corollary 2. Suppose there are measurable mappings 6: ~(0,~) , ,

P: and g (meU)

such that in addition to (2) we have (w.p.l)
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(4) (Q (s,x+y,w) - Q (s,x,w) )2  p (y,w) (c m (s,w) + c (s,x,w) 
2 

gm (x,w) ) ) for all

0y6((u) , , s~m and !x) ~m . .

(5) ) and g (’,M) are Lebesgue integrable over compacts. .

Then pathwise uniqueness holds in (1) . 

Proof. . If f is as in Theorem 1, , then for s 5 m and Ix~ - m , ,

.

Therefore if X is a solution of (1) , ,

Tm(X)0 f(s,X(s),03C9)ds ~ m0cm (s,03C9)ds+
Tm0 

gm (X(s),03C9) 03C32(s,X(s),03C9)ds

= I c m (s,w)ds + 
 ~ a.s. .

The result follows from Theorem 1. . []

Remarks. . 1) By being just a little more careful in the proofs of the previous two

results one can weaken the hypotheses of Corollary 2 to the following:

Suppose there is a sequence of measurable functions hn: : [0,°°)  03A9~ [0,~)

that integrate to one a.s. . and satisfy ) for some random

variables 6 , decreasing to zero a.s., , and for each m E N there are sequences

of functions and , uniformly (Lebesgue ) integrable on

[O,m] and [-m,m] , , respectively, , that satisfy

for all ssm , and 0  y  an (~) .
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Note that the hypotheses of Corollary 2 imply the above conditions by taking

hn (y) = p 
1 
(y) I (e 

n 
 y  n 1) , , where £ 

n 
(03C9) is defined by 

n 

p 
1 
(y)dy =1 . . An

analagous modification may also be made in Theorem 1. 
n

2) The above results also hold if B is replaced by a continuous local mar-

tingale M provided we assume slightly stronger measurability conditions on o

(such as (s,w,x) -+a(s,x,w) is 0xBorel-measurable, where 0 is the optional

a-field) to ensure that (1) makes sense, and replace ds with d[M,M)s in the

integrability conditions on f and c (i.e. in (3) and (5)).

3) If we take gm = 0 in Corollary 2 we obtain (essentially) Theorem 1 of

Yamada and Watanabe [4J. . It is interesting to note, however, that by setting 

one can obtain pathwise uniqueness in cases not handled by that theorem, as the

following examples show:

Examples 3. (i) a(x) =1 + for p > 0 . .

The mean value theorem shows that for some c > 0 , and for all 0  y  1 , ,

.

Since is integrable over compacts, pathwise uniqueness follows

from Corollary 2.

(ii) a(x) =1 + [log v 2) ] p , , for p > 0 .

~. 
. _ ,~-,
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Note that a is not Holder continuous of any order at zero. Again, the

mean value theorem shows that (4) holds for all 0  y  1/4 , , with p(y) _

y|log y|, gm(x)= c|x|-1(log (xl - 1)-(2p+1)I -3 4 1 2 (x) and cm 
= 0 . . Hence path-

wise uniqueness holds.

Of course in the above examples, pathwise uniqueness also follows from a

result of Nakao [3], stating that pathwise uniqueness holds in (1) if

0  E _ Q(s,x,w) = Q(x) _ M and Q is of bounded variation on compacts. By ad-

ding a non-negative function, g(x) , , of unbounded variation on every interval of

positive length, and satisfying Levy’s modulus of continuity for Brownian motion

(for example, the absolute value of any "typical" Brownian path) to the above

a’s one obtains a coefficient satisfying the hypotheses of Corollary 2 but

neither the hypotheses of Nakao nor Yamada and Watanabe. 0

Theorem Q. Suppose that Q , b : : [0,~) satisfy the following conditions:

(6) a and a - 1 are bounded and continuous

(7) b is bounded and measurable

(8) There exists a non-decreasing p : : [0,") -~ satisfying (2), functions

g : ~t + [0,°°] and c : : -~ [0,°°] that are integrable on compacts, and

~ > 0 such that for all Iyl I  d , , and (s,x) , ,

(g(x) +c(sf) . .

Then pathwise uniqueness holds in

(9) ) 
Moreover there is a solution of (1) (with infinite lifetime) adapted to the fil-
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tration generated by X and B(t) . .

Proof. The last assertion follows from the first by means of Corollary 3 of [4]. .

Let X1 and X2 be solutions of (.9) (with necessarily infinite lifetimes). .

By Theorems 2 and 3 of Zvonkin [5] there exist T > 0, , depending only on the

bounds of b, a and a 1 , , and a mapping u : : [0, T] x ]R -~ ~t such that

(10) For each fixed t , , u(t,’) ) is a bijection of ~t with inverse v(t,’) . .

(11) Both ux(t,x) and vx(t,x) are bounded and Holder continuous of order

a f or each a  1 . .

(12 ) ) Yi (t) = u(tA T , , Xi (t A T) ) ) (i =1,2) ) are solutions of

Yi(t) =u(O,XO)+ 0 Q(s,Yi(s))dBs , ,
where

8 (s,x) = ( 
, v ( s , x ) ) J ( 6, v ( s , x) ) 

.

We claim that â satisfies the hypotheses of Theorem 1. . Note that for s ~ T

and 0  y  d there are positive constants c1,c2,... such that

(03C3(s,x+y)-03C3(s,x))2~ c1((ux(s,v(s,x+y))-ux(s,v(s,x)))2
+ )

~ ( (8) and (11) ) >

 (g (v (5 , x) ) + c (s) + 1) p (y) , ,

where p (y) = c4 (y + p (c3y) ) . . It is easy to check that + p (y) -ldy = ~ (recall

that p is non-decreasing) . . Moreover,
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j g(v(s,Y,(s))+c(s)+lds= r g(X (s))ds+ (c(s)+l)ds
c IT g(X (s))a IT c(s)ds+TS C5 

0 
g (Xl (s) ) 0 (s ,Xl (s) ) ds + 

0 

c (s) ds + T

~-~g(x)LxT(Xl)dx + IT c (s)ds + T
 oo a.s.

since has compact support. Theorem 1 implies that Y -Y , whence

Xl =X on [0,T] a.s. Finally we may prove that Xl -X~ by applying the above

argument on each of the intervals [iT,(i+l)T] as in the proof of Theorem 4 in

[5~ D

Remark. An obvious stopping time argument shows that theorem remains valid if,

instead of (8), there exist functions g , c , each integrable on compacts such

that for all !y)6 , s~m and 

p((yj)(g~(x)+c~(s)) . .
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