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A note on L2 maximal inequalities

by

Jim Pitman*

1. Introduction

According to the L2 maximal inequality of Doob [3], for a

martingale 

(1.1) 

And an inequality of Newman and Wright [9] states that (1) holds (with

constant 2 instead of 4) if Xk = D1 + ... + Ok where D1,...,Dn is

a collection of mean zero random variables which are associated, meaning

that for every two coordinatewise non-decreasing functions fl and f2
on Rn such that the variance of f.(D ,...,D ) is finite for j = 1

and 2, the covariance of these two random variables is non-negative.

(See Esary, Proschan and Walkup [5], Fortuin, Kastelyn and Ginibre [6] ,

and other references in Newman and Wright [9] for uses of this concept

of association in statistical mechanics and other contexts.)

This note offers a simple general method for obtaining L2 maximal

inequalities of this kind. Amongst other things, it is shown that Doob’s

inequality (1.1) admits the following improvement: the random variable

max IX I can be replaced by the larger random variable
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(1.2) max X+k - min X-k

where X+ = max (X,0), X’ = min (X,0) . .

This is a little surprising in view of the observation of Dubins

and Gilat [4] that the constant 4 in Doob’s inequality is best possible.

Still, it turns out that even with this refinement, equality can never

be attained in either (1.1) or its extension to continuous time martin-

gal es except i n the trivial case of a marti ngal e whi ch i s identically

zero.

2. Inequalities in Discrete Time

Gi ven a sequence of random vari abl es Xi , ... , Xn , define

OXk = Xk - Xk-1 , k = 1,...,n , ’

where X~ = 0 by convention, so AX. = X. , and

’n = °

The following Lemma is just an al gebrai c i denti ty for sequences of

real numbers, expressed for convenience in terms of random variables:

Lemma. ° Let X1’...’X and M1,...,Mn be sequences of random variables

such that

(2.1) Mk = Xk whenever 0 . .

Then

(2.2) X2n = (Mn - Xn)2 + 2 03A3nk=2 Mk-1 0394Xk + nk=1 (0394Mk)2.
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Remark. . Here is another way of expressing condition (2.1 ) : : viewing k

as a time parameter, there are random times

0 = ... °

such that if

Lk = max {Tj : ’ Tj  k}

then

Mk = XLk , k = 1,...,n.

That is, Mk is the value of the process X at the last time T~ .
before time k, , with Mk = 0 for k  T~ . . The most important example

is

Mk = 
max 

Xj,

in which case the times Tk are ladder indices.

Proof of the Lemma . For two arbitrary sequences and

Ml , ... ,Mn there i s the product di fference rule

(2.3) = Mk-1 OXk + Xk °

In particular

~ + Mk 

whence

(2.4) 0394(2Mk Xk - M2k) = 2Mk-1 0394Xk + (2Xk - Mk - Mk-1 ) 0394Mk.



254

If (2.1) holds the last term in (2.4) reduces to (AM.)~ , and (2.2)
results from adding (2.4) from k = 1 to n .

Theorem. Let Xl,...,Xn be a sequence of random variables with

EX~ co, and suppose is a sequence with whenever

AM. ~ 0 . If

(2.5) 

then

(2.6) E(Mn - ~)~EX~ , and

(2.7) EM  4EX . .

Proof. Integrate (2.2).

It seems that in most cases of interest (2.5) is a consequence of

the stronger condition

(2.8) 0 for 2 ~ k ~ n . °

Suppose for example that is a martingale or positive sub-

martingale. Then (2.8) holds if M. is Fk-measurable, that is if the
random times T. in the remark above are stopping times. For

Mk = max Xj the resulting inequality (2.7) is Doob’s inequality (1.1).

The inequality (2.6) in this case seems to be new, though of course it

could be obtained with constant 4 instead of 1 from Doob’s inequality.

To obtain the improvement (1.2) of Doob’s inequality for a martingale

(Xk) , let M+k = max Xj , M-k = min X-j, so
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(2.9) (M+n - M-n)2 ~ 2(M+n - Xn)2 + 2(M-n - Xn)2,
and use (2.6) twice.

Considering a square integrable martingale (Xk) , , from (2.2) it

is plain that the process Y defined by

(2.10) Yk = (Mk - X k )2 - = 2 ~ J k =2 
is a martingale. It follows that the inequalities (2.6) and (2.7) for

the maxi mum of a marti ngal e are sharp but not attai ned i n di screte time

except in the trivial case when X = 0 . In continuous time the situation

i s different. As will be seen i n the next section, equal i ty obtai ns in

the continuous time analogue of (2.6) if and only if the maximal process

i ncreases continuously, while there can never be equal i ty i n (2.7) except

for the zero martingale.

Condition (2.8) also holds if X, and 0394X1,...,0394Xn
is a sequence of associated random variables with 0 , 1 ~ k ~ n . .

In this case (2.7) holds with constant 1 instead of 4 , , which can be

seen by applying (2.6) after reversing the order of the increments. This

is the inequality of Newman and Wright [9]. .

3. Inequalities in Continuous Time

To obtain an analogue in continuous time of the formula (2.2), let

(Xt, t ~ 0) be a semimartingale with right continuous paths adapted to

a filtration (~’t) satisfying the usual conditions (see for example

Meyer [7]) and suppose that
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(3J) is a process of locally bounded variation such that

{t : : Mt = X.} a.s. contains the support of the random

measure 

for example Mt - Xs . .

Then by following the steps used to derive (2.4) using stochastic

differential calculus one obtains the formula

(3.2) = (W - X )~ + 2 f M dX+ 
where = ~ (AM ) , and a continuous time analogue of the"

theorem of the previous section follows immediately.

Suppose now that X is a square integrable martingale. Then the

process Y defined by .

(3.3) Yt = X2t - (Mt - Xt)2 - [M,M]t = 2 t0 Ms- dXs
is a martingale. This observation extends a result of Az6ma and Yor [2],

who showed that for Mt = X the process Z defined by

(3.4) Zt = (Mt - X~)~
is a martingale if X has continuous paths. Indeed, we see from (3.3)

that Z is a submartingale for any square integrable martingale X

and any process M satisfying (3.1), and that Z is a martingale if

and only if M has continuous paths.

Considering again the maximum process M, Azéma and Yor [1] gave a

characterization of the increasing process X,X) associated with the

sqaure-integrable martingale X as the dual predictable projection of

the (non-adapted) increasing process
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t - 

where I = sup X . As a consequence of these remarks concerning the process Z of
~ 

(3.4), this characterization of X,X> now extends to all square integrate martin-

gales whose trajectories have no upward jumps.

Consider now the continuous time version of the improvement (1.2) of Doob’s

inequality (1.1) : : for a square integrable martingale t  ~),

(3.5) 

To partly confirm a conjecture of Dubins and Gilat [4], let us show that equality
obtains in (3.5) only in the trivial case when X~ = 0 a.s..

Indeed, by inspection of (2.9) and (3.3) it is plain that equality in (3.5) implies
that both the process M+ and M’ are continuous, where

Mt = sup XS, Mt = sup XS," " 

and moreover that

Mt - Xt = Xt - a.s., i.e.

(3.6) M+ t + M - t a.s., ’ t - > 0. °

But the left side of (3.6) is a continuous process with bounded variation, while the

right side is a martingale. This forces X = c for a constant c, and then

obviously c = 0.

(I thank Marc Yor for suggesting this argument, which simplifies considerably my
earlier one).

4. Concluding remarks

The importance of the property (3.1) of the maximal process seems first to have
been appreciated by Azema and Yor ~2~.
Usi ng thei r method one can neatly obtai n Doob’s maximal inequality i n L p for any p > 1

(see Dellacherie j10~), but it is still not clear how to obtain the right extension
to Lp of the refinements described here for L2.
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