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Introduction

In [3] under mild conditions on the potential kernel, a

representation for the equilibrium potential was derived. Gene-

ral as they were, there was some dissatisfaction with these con-

ditions on the grounds that, for example, potential kernels of

many Levy processes failed to fulfil these conditions. In

this note, we resolve this problem with a set of conditions which

include many Levy processes and those in [3].

In §1, Revuz measure is examined and we prove that whenever

Ufn increases to a class D potential, fn converges weakly

to its Revuz measure, provided it is finite. We consider only

Hunt processes satisfying hypothesis L.

In §2 we introduce the following condition: There is a ver-

sion u(x,y) of the potential kernel such that

y -~ u(x,y) is lower semi-continuous and there

exists a c~ > 0 such that is con-

tinuous and positive.

If these are satisfied, we show that u can be modified to v

so that the relation

s (x) - 

is valid for any class D potential s and its Revuz measure

p. And then p is unique.
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§3 is devoted to showing that the conditions i [3] are in-

cluded in those of the present article.

We gratefully acknowledge the kindness of Professor P. A.

Meyer in accepting to publish this note in spite of the large

overlap with [6]. Thanks are due to Professor K. L. Chung for

discussions and encouragement.

.. no 
’

~1. We use%duality assumptions except Hypothesis L. Xt will

denote a Hunt process with a locally compact metric state space.

Proposition 1. Let ~ be an excessive reference measure.

Then f,g > 0 and Uf  Ug ~ a.e. imply

(1) 
.

where integration is always relative to ~ unless specified.

Proof. We may assume f and g are integrable. Indeed,

if (g,~) - ~, there is nothing to show. If (g,~)  ~, replace

f by with 0  cp  1 and apply the result to

fcp and let ’

Suppose first that for some a >0, Uag. Since

is excessive, increases with S and tends as 

to (f,~). From the resolvent equation for P >a,

= 

so that

(~-a) (US (Uag - Uaf) ~~) ~

Since Uaf, by assumption we get

0 .
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The left side is thus > 0. Multiply by S and let S to

conclude ( g , ~ ) > ( f , ~ ) .

Now suppose Uf  Ug. Let 0  03BB  1. Then 03BB Uf Ug a . e .

Let An be the set

An = 
n n

We claim that lim inf An = E, -a.e. Indeed, if x E An for

inf initely many n, then 03BBU1f > U1g for inf initely many n ~

Ug and this set has 03BE-measure 0. Now for any n,

~U1 (f 1A )  U1g

on An and hence U1g everywhere. From what we

have already shown, a  g. This being true for all n,

a f  g. Let a increase to 1.

Proposition 2. Let s be excessive and finite a.e. Let

f n be such that lim Uf n = s a . e .. Let g > 0 and Ug  s.

Then

( 2 ) g ~ lim inf f .

Proof. Let a  1 and A the set

An = {Ufn ~ 03BBUg}.

Then 1 a.e.

n

on An
n

and hence everywhere. By Proposition 1,

03BBg1An ~ fn.
Let n fi ~ and use the Fatou lemma and note that 03BB  1 is arbitrary. Q.e.d.
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Corollary 3. Let s be excessive and finite a.e. Sup-

pose Ugn  s and lim Ufn = lim Ugn = s . Then

( 3 ~ 

Proof. From Proposition 2, for all n,

lim inf im,
i.e.

lim sup lim inf fm.

By the same reasoning can be applied lim sup liminf gn. Q.e.d.

Proposition 4. Let A be a natural additive functional

with potential s. Let Ufn ~ sand limUfn = s. Suppose

lim fn ~ . Then for all bounded continuous (p

(4) lim fn cp exists.

Proof. Note that lim fn exists because from Corollary 3, I

if Ugn ~ UA = s, I then lim gn = lim fn and gn~. Suppose

0 cp  1 is continuous. We know U[fncp] -~ = 

E.[ 0 cp(xt)dAt] and

(1-~)] ] -~ UA ( 1- ~ . Let gn and hn be such that Ugn and

Then since lim Uf n = s = U~1, lim Ug n = U , A
lim Uhn = UA ( 1-cp) . From Proposition 2

lim lim inf fn cp

lim hn ~ lim inf fn(1-cp) . .
But

U(gn+hn)~UA = lim Ufn ~ lim fn = lim gn + lim hn
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 lim inf fn03C6 + lim inf fn (1-03C6)

 lim sup fn03C6 + lim inf fn(1-03C6) ~ lim fn.
Showing that lim fn03C6 exists. Q.e.d.

Proposition 5. Let A be natural additive and v its

Revuz measure [1]. Then

1. For every f with Uf ~ UA we have f v( 1 ) . If

B is a natural additive functional with UA,
then (1) ~ v ( 1 ) where  is the Revuz measure of B.

2. Let fn be such that Ufn =  UA and lim Ufn = UA.
Then for all bounded positive continuous ~p

v (cp)  lim inf 

3. If v ( 1 ) I Ufn ~ UA and lim Ufn = UA, I then

lim fn03C6 = v ( cp )
for all bounded continuous 03C6, i.e. fn converges

to v weakly.

Proof. 1. If Uf ~ UA, then v ( 1 ) is proved as in

Proposition 1.

2. If 03C6 ~ 0 is bounded and continuous, I U03B1A03C6 = 
So by Fatou,

lim inf fn03C6 (03BE is excessive).

As a the left side above increases to (v,cp) . That proves 2.

3. From 1, v (1) ~ fn and from 2, lim inf v (cp) .

These obviously give 3.



423

Corollary 6. Let D be relatively compact open and s = PD1.
Suppose the process is transient so that PD1 is given by a natu-

ral additive functional A. Then the Revuz measure of A is con-

centrated on D.

Proof. By (4.15) , p. 88 of [7] ] we can choose functions f n
with support (f) c D so that Uf ~ s. If 03C6 is continuous > 0

and vanishes on D, then from 2 of Proposition 5 we see

v (cp) ~ lim inf = 0. Q.e.d.

Remark. The same proof shows that if s = UA satisfies

s = PDs for an open set D, then the Revuz measure of s is

concentrated on D.

Proposition 7. Let A be a natural additive functional
m

with Revuz measure v. Then we can write A = ¿ 1 An’ An natu-

ral such that the Revuz measure of An is finite.

Proof. Let f be integrable so that Uf >0 everywhere.

Put s = UA1. Define sn inductively as follows:

Put So = s. Now So 
= s0^Uf + x1 where x1 - s^Uf. By

a theorem of Mokobodzki [2],

s0 = s1 + Rx1 = s1 + s1

, say,

where s. ~ sOnUf and Rx1 is the smallest excessive function

dominating x1. Similarly we can write

s11 = s2 + Rx2 = s2 + s12, say,
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where s2  s ~ and x2 = s 1 - 2Uf . We then have s =

s1 + s2 + s2. In general, if s = s1 +... + s + s , we write

s1n = sn+1 + s1n+1,

where sn+1  s1+1 - R{ (s1 - (n+1 )Uf)+}.
We claim that s1 decreases to zero. It is clear that

n

R(s1 - (n+1)Uf) decreases. Further s1 - (n+1)Uf  s - (n+1)Uf.
If Dn = {s > (n+1)Uf}, then PD s > s.1D > (s - (n+1)Uf)+ so

that sn+1  P s. So it suffices to show that PD s tends to

zero. Because s(Xt) is a class D potential, we need only

show that TD a.s. If T = lim TD , on the set T oo,
n n

(n+1 ) Uf (XTD ) . ° Now lims(XT ) and lim Uf (XTD )n n ~n ~n
exist and both are finite almost surely and the latter ~ >0.

Therefore T = °° a.s.

Thus we have written

m

s = ¿ s.
1 

~*

where s.  i . Uf . If A. is the natural additive functional of

s., then Revuz measure of A. is finite and A = 03A3Ai as de-

sired. Q.e.d.
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§2. In [3] the starting point was the following conditions

on the potential kernel u:

1) y -~ u(x,y)-1 is finite and continuous

2) iff x = y.

Using these it was shown that there is a a-finite measure n

such that 
’

(1) PK1 (x) - (K compact) .

There has been dissatisfaction with these conditions on the

grounds that these do not cover, for example, many Levy processes.

Now we give a set of conditions - such that (1) is still true -

which are more general that that of [3] and which include the

case of Levy processes. In the next section we shall show that

these conditions are indeed more general than those in [3].

More precisely, we shall prove the following: Suppose

y -~ u(x,y) is 1. s. c. for fixed x and there exists a í.P > 0

such that ..such that 

is continuous. Then we can find a version v of u so that
and

y -~ v(x,y) is l.s.c., x -~ v(x,y) is excessiveYfor every na-

tural additive functional A with Revuz measure v:

UAf = 

So suppose that we denote by u a density for U:

(2) Uf(x) = u (x,y) f (y) dy.
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Proposition 1. . Suppose y -~ u(x,y) is l.s.c. Let A be

a natural additive functional with Revuz measure p. Then

(3) U(fp) = 

Proof. It is enough to prove (3) when f >0 is bounded

and continuous. Let Ufn ~ UA1. From part 2 of Proposition 5,

§1. r

lim inf 
= 

v (cp)

for all bounded continuous ~ ~ 0. Since u(x,.) is l.s.c. and

f is continuous, this implies

lim inf U ( fnf ) > u (x,y) f (y) u (dy) .

The left side above is just UAf. Q.e.d.

Remark. If for each compact K there exists x such that

inf u(x,y) > 0, the above implies, takinq f = 1 , that p is a
yEK
Radon measure. Also, we cannot claim equality in (3), in general.

For example, let D c Rn be an open set and G its Green func-

tion. Choose a compact set K of zero measure and put u(x,y) =

G(x,y), if y ~ K, and u(x,y) = 0, if y E K. Then y -~ u (x,y)

is l.s.c. if p is the equilibrium measure of K, 

Proposition 2. Suppose y .~ u(x~y) is l.s.c. and for some

0 cp, u (x,y) ~(x) dx is strictly positive. Then the Revuz

measure of a natural additive functional is a Radon measure.
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Proof. If s = UA1, we masy assume s03C6dx  oo. Let

By 1. s . continuity,

U03C6pd  ~ lim inf (U03C6)fndx = lim inf 03C6Ufndx ~ 03C6s dx  ~. Q.e.d.

Theorem 3. Let y -~ u(x,y) be l.s.c. and suppose that

n
there is cp > 0 such that is continuous. Let A be natu-

ral additive with Revuz measure ~ and s = UA1. If x -~ 

is super median, then

(4) s = Up = 

In any case there is a version v of u such that x-~v(x.y) is

excessive, y -~ v(x,y) is l.s.c. and

(5) s = 

A

Proof. If Ucp is strictly positive, we have seen in Propo-

sition 2 above that p is a Radon measure. In all cases we can

write s = Esn where each sn has finite Revuz measure, by Pro-

position 7, §1. Thus there is no loss of generality in assuming

that ~ is finite.

A
It is given that and Ucp is continuous. We will show

A 
.

in §4 that we may assume that UcP is bounded. If 03C6 = a+b, be-

A A
cause Ua and Ub are ls.c. with sum continuous, both have to

be continuous. So making cp smaller does not affect continuity.

We may thus assume 

Let Ufn Then by Proposition 5, §1, fndx converges

weakly to p.

03C6U  = U03C6d  = lim (U03C6)fn = 03C6s  ~.
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On the other hand, by Proposition 1, s. We deduce

(6) Up=s a.e. 
,

If x -~- u(x,y) is super median and u its excessive regulari-

zation, then u.  u, Uu - Uu a . e . , s a.e. Hence Un=s

everywhere. Since s, we also have s.

It remains to prove the last claim.

Claim 1. Let Ua denote the resolvent corresponding to U.

Then for every y

(7) , u(x,y) almost all x.

To prove this, note that aUau(x,y) is l.s.c. in y. Since for

each f > 0, 

( 8 ) u ( x , y ) for each x for almost all y.

n
Let be such that is continuous. As we observed be-

fore, for each Borel function 0 p 1, the same is true of

aUau(x,y) being l.s.c., the same is true of the left

side of

(9) 

the inequality in (9) holding for almost all y as seen from (8).

The right side of (9) being continuous, (9) holds for all y.

Since cp > 0 and 0  p  1 , arbitrary (7) is established.

Claim 2. For each y, x -~ USu(x,y) is super median for

each B.

Indeed, applying US to both sides of (7), we see that

U~u for all a, i.e. that UBu(x,y) is super median

in x for each y.
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Claim 3. is increasing in a. Indeed, if g

is function such that U g is super median for each $ >0, then,

as seen by using the resolvent equation is increasing in ~.

Claim 4. Put

(10) u(x,y) = lim 03B1U03B1u(x,y).

a~oo

Then u(x,’) = u(x,’) almost everywhere, y -~ is l.s.c.

and x -)- u(x,y) is super median. If v(x,y) is the excessive re-

gularization of u, then for every class (D) potential s with

Revuz measure p

(11) s = Vp = 
.

The limit in (10) exists by Claim 3, and is super median in

x by Claim 2. It is also l.s.c. in y since is

l.s.c. in y for each a. Operating both sides of (6) by aU

and taking limits, we see

(12) = s(’).

Since s is excessive, we can replace u by v in (12) to get

(11). Since Uf is excessive of class (D) with Revuz measure f,

we get

= Vf = Uf,

i.e. u(x,y) = v(x,y) = u(x,y) almost every y it is also clear

that v(x,y) is l.s.c. in Y being the increasing limit of

That completes the proof of the theorem.
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A simple consequence of Proposition 1 is that if u is

infinite on the diagonal, then points are polar. Let us assume

that Eoints are polar and u(.,y) is finite almost everywhere

for each y. It is clear from the proof of the above theorem that

v ( . , y) is also finite almost everywhere. The construction of §2 in

[4] when applied to v gives us a kernel w satisfying

(13) y E D,

is valid for all open sets D and x -~ w(x,y) is excessive for

every y.

The proof of the following proposition is the same as the

proof of Theorem 5, §3 of [4]. Only small changes are needed and

we will only indicate these.

Proposition 4. The set of all y such that

(14) v(.,y) ~w(.,y)
has measure zero for any Revuz measure associated to a natural

additive functional.

Proof. Let Ufn = Vfn increase to s = UA1. Then for all

bounded continuous cp, t tends to UA03C6 = = 
.

This means that v (x,y) fn (y) dy tends weakly to The

rest of the proof is verbatim the same as that of Theorem 5, §3

of [4]. Q.e.d.

The above proposition implies: If s is a class D potential

with Revuz measure ~, then

(15) 
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As in Theorem 8 of [4] we have uniqueness with regard to w.

Since the proof is similar and simpler, we will only outline the

proof.

Corollary 5. The set of y such that v(’,y) ~ w(.,y) is

left polar, i.e. Xt- never hits this set

Theorem 6. Let s be a class D potential. If m is a Radon

measure such that

s = Wm,

then for all Borel ~, where p is the Revuz mea-

sure of s.

Proof. Step 1. Suppose first that m is concentrated on a

compact set K. Then PDs = s for each open neighbourhood D of

K. There is a sequence fn which vanish off D such that Ufn
increase to s. The Revuz measure of s is then concentrated on

D. This being true for all open D containing K, ~, the Revuz

measure of s is also concentrated on K.

Step 2. Suppose m is concentrated on a compact set K.

Then wdm = wd~, ~ - Revuz measure of s. The proof is verbatim

the same as that of Step 2 in Theorem 8, §3 of [4].

Step 3. The general case. Let  be the Revuz measure of s.

For any compact set K, if then s domi-

nates sK in the strong order. So  dominates the Revuz measure

of s.,, so from Step 2, dominates w(x,y)1K(y)m(dy).
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This is true for all compacts K and Wm = W~, so we must have

w(x,y)m(dy) E w(x,y)p(dy).

The proof is thus complete.

§3. In this article we compare the conditions in [3] with those

of this note.

Let {Ua, denote the resolvent for the Markov process.

It is well-known that there is a dual resolvent {Va a > 0} - with
respect to the excessive reference measure ~. We will simply

A
write U and V when a = 0.

Proposition 1. Suppose u is a density for U such that

y ~ u(x,y) is l.s.c. Put

(1) Uf(y) = u(x,y)f(x)dx, f~0.

A

Then U satisfies the maximum principle:

A A

(2) sup(Uf (y)) = sup(Uf (y) : f (y) > 0).

n n
Proof. By Fubini, Uf(y) = Vf(y) for almost all y. (2)

A A

holds with U replaced by V since the latter corresponds to a

sub-Markov resolvent. Let E = (Uf =Vf) and g = 1E.f .Then Ug
and Ug = Vg on (g>0). Thus f>0) > sup(Ug: g>0) = sup(Vg: g>0) _
sup(g)= sup’~f. Lower semi continuity takes care of the rest. Q.E.D.
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Corollary 2. Suppose the assumptions of Proposition 1 hold.

A

If there is an f strictly positive such that Uf is continuous

and positive, then there is a strictly positive g such that Uq

’ 

is bounded continuous and strictly positive.

Proof. If 0  cp  f , then Uf = + U ( f-cp) . Therefore con-

tinuity of the left side implies the continuity of each summand

on the right because each is lower semi continuous. So let us show
A

that there is a strictly positive g  f such that 0  Ug ~ 1.
A 

,

On each compact set K, Uf is bounded. So by the maximum

principle U(f1 ) is bounded everywhere. Also as K increases

to the state space E, these functions increase to Uf, which is

strictly positive. Thus by Dini, to each compact set K corre-

sponds a compact set L - which we may assume contains K -

A

such that U(f1L) is strictly positive on K and bounded else-

where.

A sum of suitable multiples of these functions gives us the

desired function g. That completes the proof.

In the rest of this article we assume that u satisfies the

conditions in [3], namely that

iff x = y 
’

and y -~ u(x,y)-1 is finite and continuous.

Proposition 3. There is a strictly positive function b

A
such that 0  Ub  1 everywhere.
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Proof. For any fixed x, the measure U~(x,dz) is abso-

lutely continuous relative to dz. We claim it is equivalent

to dz. Indeed, U1(x,f) = 0 implies P t f(x) = 0 almost all t,

which in turn implies that Uf(x) = 0. Since u(x,y) >0, this

can only happen if f = 0.

Also U~Uf (x)  Uf (x) for all f > 0 and hence u(x,y)

almost all y where (p is the density of U’(x,dz). In parti-
A

cular we have a strictly positive function (p such that U~p is

finite almost everywhere.

The required function b can be constructed, using the max-

imum principle as in Corollary 2. Q.e.d.

Proposition 4 (The continuity principle). Let f ~ 0 and

A

Uf be finite and continuous on support (f), which is assumed com-
A

pact. Then Uf is continuous everywhere.

Proof. Let K be the support of f. Note that dominated

A

convergence cannot’be used to conclude the continuity of Uf

off K. We proceed as follows.

First Uf being continuous on K is also bounded and hence

bounded by the same constant everywhere, by the maximum principle.
n

The continuity of Uf on K and the continuity of u(x,.) imply

that the set of functions {u(x,y)f(x), y EK} is uniformly inte-

grable on K.

Therefore, given e > 0, there is a 6 > 0 such that, A c K,

~ (A)  6 imply

- ~A j u(x,y)f(x)dx  e

for all y EK and hence everywhere by the maximum principle.
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This fact together with the boundedness of Uf on E imply

that the family {u(.,y)f(.), y E E } is uniformly integrable

on K. See T19, p. 17 of Meyer [5]. Since u(x,.) is con-

tinuous, the proof is complete.

A standard argument using the above proposition and Lusin’s
A

theorem shows the following: If Uf is finite almost everywhere,
A

then we can write f = Ffn so that for every n, Ufn is

bounded and continuous on E.

We have shown in Proposition 3 that there is a strictly posi-
n

tive function b such that Ub ~ 1. We can write b = Lbn so

that Ubn ~ 1 and is continuous everywhere. The function

~~ A

a = bn is strictly positive everywhere and 0  Ua  1 and

is continuous. Thus we have

Theorem 5. There is a strictly positive function a such

A 
,

that 0  Ua ~ 1 and Ua is continuous everywhere.

Therefore the conditions in [3] imply the conditions here.
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