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Random Fourier Series on Locally Compact Abelian Groups

Mo B. Marcus and G. Pisier

In 1930 Paley and Zygmund [9] introduced the problem of

whether the random series

(1) 03A3 akekcos(kt + ak), t~[0,203C0]
k=0 

" " "

converges uniformly aos., where and are sequences of real

numbers and is a Rademacher sequence, that is, a sequence of

independent, symmetric random variables taking on the values +lo

This problem was subsequently studied by Salem and Zygmund [11],

Kahane [6] and others (see [8], [10]). In [8] we give a necessary

and sufficient condition for the uniform convergence of the series

in (1). An interesting aspect of this result is that the condi-

tion remains valid when the sequence (ek) is replaced by other

sequences of random variables, for example, independent gaussian

random variables with mean zero and variance 1 (N(0,1)). Our re-

sults in [8] are a consequence of the Dudley-Fernique [2], [3]

necessary and sufficient condition for the continuity of stationary

Gaussian processes and a line of approach initiated in [4] (see

also [7]). In this paper, by adding some technical modifications

we show that the results in [8] extend directly to the more general

class of random series mentioned in the titleo The case of compact

abelian groups is included in [10].

Let ~G be a locally compact abelian group with identity
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element 0. Let K c G be a compact symmetric neighborhood of 0.

Let r denote the characters of G and let A c r be countable.

Therefore, {yIYEA) is a countable collection of characters of Go

(We only consider Fourier series with spectrum in A. Therefore, in

all that follows, we may as well assume that r is separable, so

that the compact subsets of G are metrizable.) We also define the

following sequences of random variables indexed by YEA: a

Rademacher sequence, (g ) independent N(0,1) random variables and
{03BE03B3} complex valued random variables satisfying

(2) sup E|03BE r2  ~ and lim inf E|03BE|[ > 00
YEA 

Y 
y(A Y

Let (a ) be complex numbers satisfying S fa 12 - 1 and consider the
Y YEA

random Fourier series

(3) xEK.

For each fixed xEK the series converges aos. so the sum is well

defined, We will give a necessary and sufficient condition for the

series (3) to converge uniformly a.s. on K.

Define K e K = (x + and in a similar fashion define
n

® Kio Let T(x) be a non-negative function on K ® K and let

(4) e  e)

where ~ is the Haar measure on G. Define

(5) T(u) =  u)

n .

and let ~,n 
= Ki)o Therefore 0  ~2 so that the domainn 

i=1 
i - T - z
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of T is the interval [0,~2~. Note that T viewed as a random

variable on [O,p,2~ has the same probability distribution with re-

spect to normalized Lesbesgue measure on [0,~,2~ that T(x) has with

respect to normalized Haar measure on K ® Ko In keeping with

classical terminology we call T the non-decreasing rearrangement

of T (with respect to K C K). In terms of ~,, T and K we de-

fine the integral

(6) I(K~~~T(S)) - I(T(S)) - I(T)

= /’ 2 ----- 1/2 
,~= 

0 s(1og T 4 S s 4) 1 2 
dso

Finally, we define a translation invariant pseudo-metric a on G

by

(7) = ( 2 
1/2

= ( S ly(x-y)-ll) 2 1/2 .

To see the motivation for this note that when |2 = 1 for all

Y EA then a(x-y) = ( ~ E Z(x)-Z(y)I2)1/2 . We can now state our result.

Theorem 1 : Employing the notation and definitions given above let

If I(cr)  °° the series (3) converges uniformly
x EK

a. s. and

(8) E Z 2 1/2  C(sup E ~ 2)1/2C( ~ ~a ,2)1/2 + I(a)]( ) ( ~I ~~ ) 
_ 

( 
y 
p ~ Y~ YEA Y
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where C is a constant independent of and a. Let

{Yk,k = 1,2,...~ be an ordering of YEA and let and {~k~
be the corresponding orderings of {a03B3}, {~03B3} and {03BE03B3}. If I(a) = m

then for all open sets U c K

n

(9) sup 
n xU k=l

on a set of measure greater than zeroo (Note that neither (2) nor

(7) depend on the order of so that the implications of

I(a)  ~ are also valid for all orderings {Yk} of YEA.)

proof: The first step is a adaptation of Dudley’s theorem on a

sufficient condition for continuity of the sample paths of a

Gaussian processo It is well known that this theorem is also

valid for processes with sub-gaussian increments. Let 

T an arbitrary index set, be a real valued stochastic processo

The process is said to have subgaussian increments if there exists

a 6 > 0 such that for all s,tET and À > 0

Let (S,p) be a metric (or pseudo-metric) space. We denote by

Np(S,e) the minimum number of balls in the metric (or pseudo-

metric) p that is necessary to cover S. The following theorem

is an immediate consequence of Theorem 401 [7]; it is similar to a

theorem of Fernique, [13].

Theorem 2: Let S = T a compact topological space, be

a stochastic process with subgaussian increments and let
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p(t,s) = (E{X(t)-X{s))2)1/2 be continuous on T x T. Define

p = sup p(s,t) and assume that

(10) J(S,p) = J(03C1) = (log N03C1 (S,u))1/2 du  oe.

Then there exists aversion S = {X(t),tET} of the process, with

continuous sample paths, satisfying the inequality

(11) + P + 
tfT

where t0~T and C’ - C’(b) is a constant independent of po (Note

that N 
P 
(S,u) = N 

P 
(S,u) so, in particular, J(S,p) - J(S,p).)

We will use this theorem in the special case in which p is

translation invariant. In this case we can relate the integrals

defined in (6) and (10). In order to do this we need the

following lemma which is a generalization of Lemma 2.1 [4].

Lemma 3. Let T be a translation invariant pseudo-metric on G

then .

~l 
  

~4
(12) ~ 

T 
(~) _ ® 

T 
(~ 2).

proof: Since this lemma is the only ingrediant in the proof of

Theorem 1 that is not supplied in [8] or [10] we will sketch the

proof. Note that when G is compact we can take K = G. In this

case the proof is elementary and (12) reduces to

(G) mT() ~ NT (G, ) ~ (G)m03C4(~/2) .
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Let B(t,e) =  E~ and let ® K,E) denote the maximal

number of balls of radius e in the T pseudo-metric centered in
4

K C K and disjoint in ® K.. Then for all tfK ® K we have

4
n ® K.) > n K ® K)
i=1

and

M(K e K~ E/2) ~ N (K e K,e)

Denote the centers of the M (K C K,c/2) balls of radius c/2
4

centered in K ® K and disjoint in e K. by ~t.,j - 1,...,M (K C K,e))i=l ~ J T

then

4

4 ~ ( U {B(tj,/2) ~ ~ Ki})

~ MT (K ~ K,/2) (B(0,/2) ~ K ~ K)

> ® 

This proves the right side of (12) ; the proof of the left side is

similar.

We note two other standard results

(13) N(K ® 

(14) N (K ® K,2a)  

and define the integral expression

(15) I(T{u)) - I(T)
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= 

~’2 
ds= 

0 s2(log 4 41/2 
ds

s

for T as defined in (5). The next lemma follows from (12), (13),

(14) and integration by partso

Lemma 5: Let T = sup T(x) and assume that J(K,T) - J(T)  m, then

xK~K

the following inequalities hold:

(16) . -C 1 T + 21(T)

(17) -C T + 1-I(T)  J(T)  C r" T + 2I(T)~~~~ 2 ~ ~~~~ ~ 2 

18 -C T + 1 I T)  J(T)  C’3 + 2I(T)C ) 3 _ _ 3 

r ,

where C1,C2,C2,C3,C3 are all positive and finite.

The next step in the proof is a Jensen type inequality for the

non-decreasing rearrangements of a family of random functionso

Let (f~,~~,P) be some probability space with expectation operator E

and let x~K ® K, be a family of random non-negative

functions such that  °° for xEK ® K. Following (4) and

(5) we define the random families mT ( ~ ~ ~) ( E) and T(.,w). We have

Lemma 6: 

19> 
2 
 
0 0

This lemma is a generalization of Lemma l.l [7~o The proof is

essentially the same as the one given in [8].
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We can now obtain the implications of I(Q)  ~ in Theorem 10

Let denote the probability space of {03BE03B3} and (03A92,2,P2)
denote the probability space of and denote the corresponding

expectation operators by El and E2. The series (3) is defined on

the probability space (01 x ~2, ~l x x P~). ° We shall refer

to this space as and denote the corresponding expectation

operator by E (not to be confused with the space used to explain

Lemma 6).

Without loss of generality we can assume sup ~2  1; the

second assumption of (2) is not used in this part of the proof.

Fix and consider

(20) xEK

as a random series on Note that

and

are both processes with sub-

gaussian increments (see e.g. Chapter 2, Section 2 [5]) and both

and (E ~ Z (x, ~u )-Z r~ 2 1/2 are less
than or equal to

(21) (03A3 |03B103B3|2|03BE03B3|(03C91)|2|03B3(x-y)-1|2)1/2.

By Theorem 2 with to = 0 and (18) we have

(22) E2[sup|Z(x,03C91)|] ~ D[( 03A3 |a03B3|2|03BE03B3 (03C91)|2)1/2 + I(03C3(u,03C91))],

for some constant D, where we use the facts that
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and

E 2 ~Z(0~~ 1 )~ -  (E 2 ~Z(0~~ 1 )12)1/2
- ( ~ ~a ~2 ~ (~ )~ )1/2.

YEA 
Y ~ Y 1

The series (20) is a Rademacher series therefore by Kahane’s

inequality we have

2 1/2
(23)  C 

xEK x EK

where C is a constant independent of the values of

a By Lemma 6 we have

( 24 ) 

s 
2 1/2

1~2 f 
_f 

0 2 

0 

4 4 1 2 

where o is given in (7). Also

25 E ~ a 2 ~ ~ ) 2)1/2  ( ~ Ia ,2)1/2,( ) Cl 
YEA 

I YI I Y(l I - 

YEA 
Y

using (23), (24), (25) and (16) in (22) we obtain (8)0

We now show that the series (3) converges uiformly a.s. It

follows from (24) and Lemma 5 that I(Q)  °° implies  °°

a.s. (Pl). Therefore by Theorem 2 there exists a set

~l c l, such that for has a version which

is continuous a.s. (P2). Therefore by the Ito-Nisio theorem

(Theorem 2.3.4 [5~) the series (20) converges uniformly a.s. (P2)
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for each o This implies, by Fubini’s theorem, ’ that the

series (3) converges uniformly aos. (P).

We now obtain the implications of I(Q) - ~. The major result

in this direction is Fernique’s necessary condition for the con-

tinuity of stationary Gaussian processeso Consider

(26) xEK,

We use the following version of Fernique’s theoremo

Theorem 7. A necessary condition for the series (26) to converge

uniformly a.s. is that J(K,a)  co.

Proof: Fernique’s theorem (Theorem 801.1 [3]) is proved for

real valued processes on Rn but only minor modifications are

necessary to adapt the proof to the case considered hereo Instead

of G(x) it is sufficient to prove Theorem 7 for the real valued

process

(27) Y(x) = E + E g03B3Im(a03B303B3(x)),xK,

where is an independent copy of {g 
Y 

since

E(G(x)-G(y))~ = E(Y(x)-y(y)) 2 = and the series (26) and

(27) either both converge uniformly a.s. or neither does.

The only point in the proof of Theorem 8.1.1 [3] that needs

to be extended is Lemma 801.20 Let H = 0} and form the

quotient group G’ = G/Ho There exists a cannonical mapping of G

onto G’; let K’ be the image of K under this mapping. Denote by

a’ the metric on K’ that corresponds to the pseudo-metric a on K.
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Lemma 8: There exists a 6~ > 0 and 4 a compact symmetric neighbor-
hood of 0 S C K such that if s,tE e S. then a’(s-t)  6.. implies-

s-tES.

Proof: Let S be a compact symmetric neighborhood of 06K’ such
~ 

8 8
that e S c K’. Let P = min(a’(x),x6 e Since 0 is the

i=l i=l’- 
4

unique zero of a’ on K’ we have P > 00 Let S. then

s-t Si. Set 03B40 = 03B2/2 then 03C3’(s-t) ~ 03B40 implies s-tS.

Consider S as given in Lemma 8 and let T = e S.o

Following the notation of Theorem 8.1.1 [3] we define

B(S,80) - U where B(s,6) denotes an open ball of radius’ 0 
SES 

0

6 in K’ with respect to the a’ metric. Let T, we

show that for b  6.., T = Al and B(t,6) n T = A2 are

translates of each other, i.e. if uEA1 then u + t - sEA2. To do

this we need only show that u + t - SET. Since there

exists a t’(S such that a(t-t’)  ~~. Set

u + t - s = t’ + (t-t’) + (u-s)o

4
Since t,t’ET = e Si, by Lemma 8, t-t’ES. Similarly u-sES and

since tiES we have u + t - SET.

Consider the process

(28) Y’(x)= E gY Re(aYY(x)) xEK’.

This is a real valued stationary Gaussian process with

(E Y,(x)-Y,(y)I2)1/2 - and an equivalent of Lemma 8.1.2 [3]
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holds for this process.

Assume that the series (28) converges uniformly a.s. on K’.

By the Landau, Shepp,Fernique theorem (Corollary 204.6 [5]) we have

E(sup Y’(x))  co. We refer to the second paragraph of 8.1.4 [3]
xcK’

with S and T as given above. This shows that there exists a

6’ > 0 such that

b~ (log N ~(S,u))1/2du  ~

and since S is compact we also have J(s,a’)  co. Finally, since

K’ is compact, there exists a constant C > 0 such that

N ,(S,u) > C N , (K’,u)o Therefore J(K’,a’)  ~. To obtain

Theorem 7 for Y(x), xfK we note that the series (27) and (28)

either both converge uniformly a.s. or neither doeso Furthermore

E(sup Y’(x)) = E(sup Y(x))
xEK’ xfK

and N,(K’,u) = N (K,u). Therefore we obtain Theorem 7.

Let (Yk’ k = 1,2,...~ be an ordering of A c ro Our main re-

sult on necessary conditions for the convergence of random Fourier

series is contained in the following lemma 0

Lemma 9: In the notation established above we have

(29) (E sup~akk03BEk03B3k~2)1/2
n k=l

_  
k n k=l

and
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(30) (E sup~ 03A3akk03B3k~2)1/2 .

n k=l n k=l

In particular, if E a e y(x) converges uniformly a.s. then so
yeA Y Y

does E aYgYY(x) and

(31) (Et) E a g y)~)~~ ~ a E Y~I2) 1/2.

(Here C,C’ and C" are finite constants independent of 

proof: Belyaev’s dichotomy states that a stationary

Gaussian"process on the real line either has continuous sample

paths a.s. or else is unbounded on all intervalso This dichotomy

also holds for G(x) and is a consequence of results of Ito and

Nisio. (A proof can be made using Theorems 3.4.7 and 3.409 [5]0)
00

Consequently, we have that either ~ akgkYk(x) converges uniformly
k=l

a.s. on K or else for all open sets U c K

n

(32) sup sup~ I E a.s.

n xeU k=l

We also note that by Levy’s inequality and the Landau, Shepp,
00

Fernique theorem., if 03A3 akgkYk converges uniformly a.s. then

(33)  °°.

n k=l

Inequality (29) is a consequence of the closed graph theoremo

Let B1 be the Banach space of sequences of complex numbers
m

{a1,a2,...} for which E akgkYk converges uniformly a.s. on

K and = (E supll n E  co. . Let B2 denote the
n k=1
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Banach space of sequences of complex numbers {a~ - {al,a2,. " for
m

which E akk03BEk03B3k converges uniformly a,so on K for all sequences
k=1

of complex random variables satisfying 1 and

ll {a}~2 = sup (E sup~akk03BEk03B3k~2) 1/2 
 °°. Then  ~ implies

n k=1

I(o’)  ~ by Theorem 7, (33) and {17) and I(a)  ~ implies 

of Theorem I (which we have already proved) and Levy’s inequality.

Therefore (29) follows from the closed graph theorem applied to the

identity mapping of Bl onto B2.
To obtain (30) we write gk 

= 

gk + gk where

gk 
= N] {ICA]) is the indicator function of the set A)

and N is chosen so that (E|g"k|1/2 = (2C) l. . Then for all j

 (E sup~ E + (E sup~ E o

nJ k=1 nJ k=1

By Theorem 5.3 [12]

(E  N(E sup~ 03A3 akk03B3k~2)1/2
nj k=1 nj k=1

and by (29)

E sup~ 03A3 akgk03B3k~2)1/2  1 sup~ n .

nJ k-1 n~ k=1

putting this together we have



86

(E sup~ n E .

n~j k=l n~j k=l

passing to the limit as j -~ ~ we obtain (30) with C’ = 2N.

If S a e y(x) converges uniformly 
a,so the right side of

(30) is finite by Kahane’s theorem; therefore Y E EA aYgYY(x) con-

verges uniformly a,s, by (30) and the extended Belyaev dichotomy.

By Lemma 9, and what we have already proved, we have that

I(a) is a necessary and sufficient condition for the uniform

convergence a,s, of s akekYk. This, essentially, is all we need

k=l

to complete the proof of Theorem 1. For instance, if is also

independent (besides satisfying (2)) then by Theorem 5.1 [12],

 ~ is a necessary and sufficient condition for the uniform

convergence a,s, of the series in (3). Also, one can easily show

that I(o) = =° implies E sup~~ S n °°. For the actual

n k=l
completion of the proof of Theorem 1 we refer the reader to

Lemma 2.5 [8] and the brief "Proof of Theorem 1.1" on page 2.11

[8]. This material, although written for the case G = R, extends

immediately to the case considered here.

All the results of [8] have versions for the more general

class of random series considered in this paper. These include a

central limit theorem for Z(x) and the identification of the uni-

formly convergent series of the type given in (3) with a Banach

space of cotype 2. An application of random Fourier series to a

non-random problem in the study of lacunary series is given in [10].

Note that it is not necessary to assume that sup 2 in

Y 
~
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(3). Let (§ ) be simply. a sequence of complex valued random
Y

variables on the probability space (03A91, J1,P1). Then a necessary

and sufficient condition of the series (3) to converge uniformly

a.s. is that

(34) I((03A3|a03B3|2|03BE03B3(03C91)|2|03B3(s)-1|2)1/2)  ~ a.s. (P1).
’f 

y y

From (34) we can obtain results even when the I§ ) do not have
Y

second moments. For example, let {03BE03B3} be independent copies of §
Y

where = 
. Then we have

I((z(a  m

y ~

implies z 
a e § y(x) converges uniformly a.s. (see Theorem 2.9 [8])o

ve plan to elaborate upon these remarks and to give a more

detailed proof of Theorem I in a later paper.
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