SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

JEAN MÉMIN ALBERT N. SHIRYAEV

Un critère prévisible pour l'uniforme intégrabilité des semimartingales exponentielles

Séminaire de probabilités (Strasbourg), tome 13 (1979), p. 147-161 http://www.numdam.org/item?id=SPS 1979 13 147 0>

© Springer-Verlag, Berlin Heidelberg New York, 1979, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

HN CRITERE PREVISIBLE POUR L'UNIFORME

INTEGRABILITE DES SEMIMARTINGALES EXPONENTIELLES

J. MEMIN et A.N. SHIRYAYEV

I - INTRODUCTION

Soit X une semimartingale et $\mathcal{E}(X)$ la semimartingale exponentielle de C. Doléans-Dade [1] , solution de l'équation différentielle stochastique :

$$Z_{t} = 1 + \int_{0}^{t} Z_{s} dX_{s}$$
.

Soit (α, β, ν) le triplet des caractéristiques locales de X supposée spéciale, et soit τ = inf $\{t : \epsilon(X)_t = 0\}$ avec la convention inf ϕ = ∞ .

Nous montrons dans cet article le résultat suivant :

I - 1. THEOREME

S'il existe une constante C telle que :

$$V(\alpha)_{\tau} + \beta_{\tau} + \frac{x^2}{1+|x|} \cdot \nu_{\tau} \leq C$$

(où $V(\alpha)$ désigne le processus "variation de α ") alors la famille $\epsilon(X)_{t}$, t ϵ R^{+} est uniformément intégrable.

Ce théorème généralise un résultat de Kabanov-Litpzer-Shiryayev [6] obtenu quand X est une martingale locale, $\varepsilon(X)$ étant supposée positive ou nulle et un résultat analogue de Mémin [8] où cependant les hypothèses faites n'étaient pas traduites en termes de caractéristiques locales de X; par contre il n'y avait pas dans ce dernier travail de condition de positivité imposée à $\varepsilon(X)$.

La méthode suivie consiste à se servir de certaines décompositions multiplicatives introduites dans [8] pour les semimartingales exponentielles et à utiliser des critères d'uniforme intégrabilité de $\mathcal{E}(X)$ lorsque X est soit une martingale de carré intégrable, soit une martingale à variation intégrable, figurant dans [6] et dans [7].

II - NOTATIONS ET RAPPELS

Soit $(\Omega, \widetilde{\mathbf{F}}, (\widetilde{\mathbf{F}}_t), P)$ un espace probabilisé filtré remplissant les conditions habituelles ; tous les processus sont définis sur cet espace et sont à valeurs réelles. Si X est un processus et T un temps d'arrêt on note X^T le processus arrêté à l'instant T . Si X est continu à droite et admet des limites à gauche ΔX est le processus défini par :

$$\Delta X_{t} = X_{0} \qquad \text{si } t = 0$$

$$= X_{t} - X_{t-} \quad \text{si } 0 < t < \infty$$

$$= 0 \qquad \text{si } t = \infty$$

La notation X_{∞} désigne la limite presque sure finie ou infinie de X_{t} lorsque t tend vers l'infini si cette limite existe.

on note $\mathcal{M}_{\mathrm{loc}}$ l'ensemble des martingales locales M ; \mathcal{V} est l'ensemble des processus continus à droite, adaptés, nuls à l'origine, à variation finie sur tout compact de R ; quand A est élément de \mathcal{V} , on note V(A) le processus "variation totale de A". $\mathcal{H}_{\mathrm{loc}}$ est l'ensemble des éléments A de \mathcal{V} à variation localement intégrable ; on notera alors $\widetilde{\mathbf{A}}$ le compensateur prévisible de A ; rappelons que tout élément prévisible de \mathcal{V} appartient à $\mathcal{H}_{\mathrm{loc}}$. On notera \mathbf{A}^{C} la partie continue d'un élément de \mathcal{V} . Quand M est élément de $\mathcal{M}_{\mathrm{loc}}$ et \mathbf{M}^2 localement intégrable, on note <M.M > le processus croissant prévisible unique tel que \mathbf{M}^2 -<M.M > appartienne à $\mathcal{M}_{\mathrm{loc}}$.

 $\label{thm:compose} \mbox{Une semimartingale} \quad \mbox{X est speciale si} \quad \mbox{X peut être décomposé en} :$

(2.1) $X = X_0 + M + A$ où $M \in \mathcal{M}_{loc}$, $M_0 = 0$, $A \in \mathcal{V}$ et est prévisible, X_0 étant une variable aléatoire P.p.s finie. Une telle décomposition est unique et constitue la décomposition canonique de X; on note X^C la partie continue de la martingale locale entrant dans une décomposition de type (2-1), malgré l'ambiguité de cette notation lorsque X est élément de \mathcal{U} .

Soit X et Y deux semimartingales, [X,X] est le processus variation quadratique de X égal à

$$[X,X]_t = \langle X^c, X^c \rangle_t + \sum_{0 < s \le t} \Delta X_s^2$$
 et $[X,Y]$ est défini par

[X,Y] = 1/4 [X+Y,X+Y] - [X-Y,X-Y]); [X,X] et [X,Y] sont éléments de $\boldsymbol{\mathcal{V}}$. H étant un processus prévisible localement borné on peut définir l'intégrale stochastique de H par rapport à X; on notera H.X le processus obtenu : H.X_t = $\int_{[0,t]} H_s dX_s$.

On note enfin $\mathcal{E}(X)$ la semimartingale solution de l'équation stochastique : $Z = 1 + Z_$. X; cette solution est unique et donnée par la formule :

(2.2)
$$\epsilon(X)_{t} = \exp[X_{t} - X_{0} - 1/2 < X^{C}, X^{C}]_{t} \prod_{0 < s \le t} (1 + \Delta X_{s}) \exp(-\Delta X_{s}), t < \infty$$

L'expression (2.2) permet d'obtenir facilement la relation :

(2.3)
$$\varepsilon(X) \ \varepsilon(Y) = \varepsilon(X + Y + \lceil X, Y \rceil)$$

Pour toutes les questions touchant les notions introduites ci-dessus, martingales locales, semimartingales, intégrale stochastique, on peut se reporter au cours sur l'intégrale stochastique de Meyer ([9] p.245-400).

On note μ la mesure aléatoire à valeurs entières associée aux sauts d'une semimartingale X; μ peut être défini par la relation :

(2.4) $\mu(\omega, \mathrm{d} t, \mathrm{d} x) = \sum_{0 \leq s} \mathrm{I} \qquad \varepsilon(\mathrm{d} t, \mathrm{d} x) \qquad , \quad \varepsilon_{a} \quad \mathrm{mesure} \ \mathrm{d} e$ $0 \leq s \quad \{\Delta X_{S}(\omega) \neq 0\} \quad (s, \Delta X_{S}(\omega)) \qquad , \quad \varepsilon_{a} \quad \mathrm{mesure} \ \mathrm{d} e$ Dirac. $\mu \quad \mathrm{est} \quad \mathrm{une} \quad \mathrm{mesure} \ \mathrm{d} e \quad \mathrm{transition} \quad \mathrm{positive} \ \mathrm{d} e \quad (\Omega, \mathcal{F}) \quad \mathrm{dans}$ $[0, \infty[xE \quad \mathrm{muni} \ \mathrm{d} e \quad \mathrm{la} \quad \mathrm{tribu} \quad \mathrm{de} \quad \mathrm{la} \quad \mathrm{tribu} \quad \mathrm{de} \quad \mathrm{la} \quad \mathrm{tribu} \quad \mathrm{de} \quad \mathrm{la} \quad \mathrm{la}$

$$y \cdot \mu_t(\omega) = \int_0^t \int_E y(\omega, s, x) \mu(\omega, ds, dx).$$

Soit $\mathfrak P$ la tribu prévisible sur $\mathfrak Q$ x R^+ ; on note $\mathfrak v$ le système de Lévy de X , c'est-à-dire la mesure aléatoire unique telle que : pour tout y $\mathfrak P$ $\mathfrak E$ mesurable positif, le processus y . $\mathfrak v$ est croissant prévisible et lorsque $E[y \cdot \mu_t] < \infty$ pour tout t fini on a : $E[y \cdot \mu_t] = E[y \cdot \nu_t]$, ce qui revient à dire que le processus

y . ν est le compensateur prévisible de y . μ . (ν est encore appelée plus généralement la projection prévisible duale ou compensateur de μ).

Pour les questions touchant les mesures aléatoires et leurs projections prévisibles duales on peut se reporter à Jacod [4] et à [6].

On appelle caractéristiques locales d'une semimartingale spéciale X le triplet (α,β,ν) unique où :

 $_{\alpha}$ est le processus prévisible élément de ${\it H}_{\rm loc}$ intervenant dans la décomposition canonique (X = X_0 + M + $_{\alpha})$

$$\beta = \langle X^C, X^C \rangle$$

v système de Lévy de x - x_0

(voir [5], ou les articles de Grigélionis [2], [3]).

III - DEMONSTRATION DU THEOREME

 $\label{eq:soit} \mbox{Soit X une semimartingale spéciale de décomposition canonique}$

$$x = x_0 + M + \alpha$$

Faisons une remarque préliminaire : ayant $\[\epsilon(X_t) = 0 \]$ pour $t \ge \tau$, l'uniforme intégrabilité de la famille $\[\epsilon(X)_t, t \in R^+ \]$ est équivalente à l'uniforme intégrabilité de la famille $\[\epsilon(X)_{t \land \tau} \]$, $t \in R^+$ donc à celle de la famille $\[\epsilon(X^\tau)_t \]$, $t \in R^+$. Il est facile de voir que $\[X^\tau \]$ admet comme caractéristiques locales le triplet $\[(\alpha^\tau \ \beta^\tau \ \nu^\tau) \]$ où $\[\alpha^\tau \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ désignent les processus $\[\alpha \]$ et $\[\beta^\tau \]$ et $\[\beta^\tau \]$ lié à $\[\nu \]$ par :

 $\nu^{\tau}(\omega,[0,t]\ x\ F) = \nu(\omega,[0,t_{\Lambda}^{\tau}]\ x\ F) \quad \text{pour tout} \quad t \quad \text{fini et}$ $F\ \epsilon\ \xi. \ \text{On a donc à montrer l'uniforme intégrabilité des} \quad \epsilon(X^{\tau})_{t} \quad \text{à}$ partir des hypothèses :

$$V(\alpha^{\tau})_{\infty} + \beta_{\infty}^{\tau} + \frac{x^2}{1+|x|} \cdot \nu_{\infty}^{\tau} \leq C$$

Dans la suite, pour ne pas alourdir les notations, on écrira X, α , β , ν au lieu de X^{τ} , α^{τ} , β^{τ} , ν^{τ} .

La démonstration proprement dite est découpée en plusieurs lemmes. On notera \mathbf{X}^0 la semimartingale nulle en $\mathbf{0}$ définie par $X^0 = X - X_0$; on a la relation :

(3-1)
$$\varepsilon(X)_{t} = \varepsilon(X^{0})_{t}$$

Soit X¹ la semimartingale définie par :

$$x_t^1 = \sum_{s \le t} \Delta x_s^0 I_{\{|\Delta x_s^0| \ge 1/2\}}$$
 et soit $Y = x^0 - x^1$, on a

alors le lemme

III - 1. LEMME

a) Y est une semimartingale spéciale de décomposition canonique

$$Y_t = N_t + A_t$$
 où $N_{\epsilon} \mathcal{M}_{loc}$, $N_0 = 0$

A est prévisible et appartient à \mathcal{A}_{loc}

- b) On a les majorations suivantes pour les sauts des processus Y,N,A: Pour tout t < ∞ $|\Delta Y_t|$ < 1/2; $|\Delta A_t|$ < 1/2; $|\Delta N_{t}| < 1$.
- c) Sous l'hypothèse du théorème I-1., on a :

$$V(A)_{\infty} \leq 3C$$
 et $\langle N, N \rangle_{\infty} \leq 6C$.

Démonstration :

Comme pour tout $t < \infty$, il y a un nombre fini de sauts de X^0 d'amplitude supérieure ou égale à 1/2, le processus X^1 appartient à \mathcal{P} ; donc Y est une semimartingale; mais par définition on a $|\Delta Y_t| < 1/2$, et une semimartingale à sauts bornés est spéciale ([9] théorème 32); on peut donc considérer la décomposition canonique N + A = Y.

Soit une suite $(T_n)_{n \in \mathbb{N}}$ de temps d'arrêt, localisante pour N et A . En un temps d'arrêt T totalement inacessible on a :

$$\Delta A_T^{n} = 0$$
 et $\Delta N_T^{n} = \Delta Y_T^{n}$ et $|\Delta N_T^{n}| < 1/2$.

En un temps d'arrêt T prévisible, on a :

Pour le c) on a
$$x^0 = x^1 + y = x^1 + N + A = x^1 + X^1 +$$

 $(\overset{\circ}{X}^{1})$ désignant le compensateur prévisible de $\overset{\circ}{X}^{1}$ ainsi $\alpha = A + \overset{\circ}{X}^{1}$

par conséquent $V(A) \leq V(\alpha) + V(X^{1})$.

X¹ admet la représentation

par conséquent $V(A) \le V(\alpha) + 3 \frac{x^2}{1+|x|}$. ν

d'où la première majoration du c).

Maintenant de N = Y - A on déduit :

$$[N,N] \le 2[Y,Y] + 2[A,A]$$
 et donc
 $\langle N,N \rangle \le 2\langle Y^C, Y^C \rangle + 2x^2 I_{\{|x|<1/2\}} \cdot v + 2V(A)$,

d'où la majoration de c) .

Le lemme suivant est un cas particulier de la proposition II-1. de $\left[7\right]$; étant donné sa simplicité nous le démontrons directement.

III - 2. LEMME

Soit V élément de \mathcal{H}_{loc} et \tilde{V} son compensateur prévisible avec $\Delta V_t \neq -1$ pour tout t fini, alors :

$$\varepsilon(v) = \varepsilon(L) \varepsilon(V)$$
 où $L = \frac{1}{1 + \Lambda V}$. $(V - V)$

Démonstration

Comme $\Delta V \neq -1$, $\frac{1}{1+\Delta V}$ est un processus prévisible localement borné ([9] p.314); on peut donc considérer l'intégrale stochastique

$$L = \frac{1}{1 + \Lambda V} \cdot (V - V) \text{ et}$$

$$\varepsilon(L)$$
 $\varepsilon(V)$ = $\varepsilon(L + V + [L,V])$ d'après (2-3)

Mais
$$L_t + \mathring{V}_t + [L,\mathring{V}]_t = \frac{1}{1 + \Delta \mathring{V}} \cdot (V - \mathring{V})_t + \mathring{V}_t + \frac{\sum_{s < t} \Delta L_s \Delta \mathring{V}_s}{\delta};$$

et il est clair que ce processus, comme processus à variation finie, a même partie continue que $\,\,{
m V}\,\,$ et mêmes sauts :

en effet
$$\left(\frac{1}{1+\Delta \tilde{V}}\right)^{c} = V^{c}$$
 et $\left(\frac{1}{1+\Delta \tilde{V}}\right)^{c} = \tilde{V}^{c}$

enfin
$$\Delta V = \frac{1}{1 + \Delta \tilde{V}} \cdot (\Delta V - \Delta \tilde{V}) + \Delta \tilde{V} + \frac{1}{1 + \Delta \tilde{V}} (\Delta V - \Delta \tilde{V}) \Delta \tilde{V} .$$

 $L_t + V_t + [L, V]_t$ est donc égal à V_t , d'où le résultat.

III - 3. LEMME

Soit A élément de 10c

sous l'hypothèse $\widetilde{V(A)}_{\infty} \leq K$ on a les inégalités :

$$\mathbb{E}[\sup_{t} |\varepsilon(A)_{t}|] \leq \mathbb{E}[\sup_{t} \varepsilon(V(A))_{t}] \leq \exp(2K).$$

Démonstration :

On peut écrire
$$|\epsilon(A)_t| = \exp(A_t^C) |\pi(1 + \Delta A_s)|$$
; comme $\exp(A_t^C) \le \exp(V(A_t^C))$ et que $V(A)_t = V(A^C)_t + \sum_{s \le t} |\Delta A_s|$ on obtient : $|\epsilon(A)_t| \le \exp(V(A^C)_t) |\pi(1 + |\Delta A_s|) = \epsilon(V(A))_t$. Comme évidemment $V(A^C) \le V(A)$, on déduit de l'hypothèse que $|\epsilon(A)_t| \le \exp(K) |\pi(1 + |\Delta A_s|)$.

Maintenant $\pi_{\substack{s \leq t}} (1 + |\Delta A_s|) = \epsilon(\sum\limits_{s} |\Delta A_s|)_t$; d'après le lemme III-2 on a l'égalité $\epsilon(\sum\limits_{s} |\Delta A_s|)_t = \epsilon(L)_t \underbrace{\epsilon(\sum\limits_{s} |\Delta A_s|)}_t$ où

$$L = \frac{1}{1 + \Delta(\sum_{s} |\Delta A_{s}|)} \cdot (\sum_{s} |\Delta A_{s}| - \sum_{s} |\Delta A_{s}|) ;$$

 $\epsilon(L)$ est alors une martingale locale positive telle que $\epsilon(L)_0$ = 1 car L_0 = 0; on a donc $E[\epsilon(L)_t] \le E[\epsilon(L)_0]$ = 1.

D'un autre côté
$$\sum_{S} |\Delta A_{S}| \leq V(A)$$
 et $\varepsilon \left(\sum_{S} |\Delta A_{S}|\right)_{\infty} \leq \varepsilon \left(V(A)\right)_{\infty} \leq \exp(K)$ d'où

 $F\left[\prod_{S} (1 + |\Delta A_{S}|)\right] \leq \exp(K)$, et par conséquent

$$E[|\varepsilon(A)_{t}|] \leq E[\varepsilon(V(A))_{t}] \leq \exp(2K)$$

d'où le résultat puisque $t \rightarrow \epsilon(V(A))_t$ est croissant.

Comme corollaire de la proposition I-1. de [8] on peut obtenir le lemme suivant que nous démontrons encore ici directement.

III - 4. LEMME

Soit Z une semimartingale ayant une décomposition $Z = L + V \quad \text{où } L \quad \text{est élément de } \mathcal{H}_{\text{oc}} \quad \text{avec} \quad \Delta L_{\text{S}} \neq -1 \quad \text{pour tout}$ s fini, V étant élément de \mathcal{V} .

On a alors la décomposition

$$\varepsilon(Z) = \varepsilon(L) \ \varepsilon(W)$$
 où $W_t = V_t - \sum_{s \le t} \frac{\Delta L_s \ \Delta V_s}{1 + \Delta L_s}$

Démonstration :

Nous montrons d'abord que le processus $\int\limits_S \frac{\Delta L_s}{1+\Delta L_s}$ est élément de $\boldsymbol{\mathcal{V}}$. Comme pour tout s fini $\Delta L_s \neq -1$ et qu'il y a un nombre fini de sauts de L tels que ΔL_s ϵ [-3/2, -1/2[, pour s ϵ]0,t], t < ∞ on a:

$$\sum_{0 \le s \le t} \frac{\Delta L_s \Delta V_s}{1 + \Delta L_s} I_{\{\Delta L_s \in]-3/2, -1/2[\}} < \infty P.p.s.$$

D'autre part/

$$\sum_{0 \le s \le t} \frac{\Delta L_s \Delta V_s}{1 + \Delta L_s} I_{\{\Delta L_s \notin]-3/2, -1/2[\}} \le$$

$$\stackrel{<}{\underset{=}{\overset{\sim}{=}}} 2 \sum_{0 \leq s \leq t} |\Delta L_s \Delta V_s| = 2 V([L,V])_t < \infty \qquad P.p.s.$$

W est donc élément de ${\mathcal V}$.

Montrons maintenant que Z = L + W + [L, W];

$$W_{t} + [L,W]_{t} = V_{t} - \sum_{s \leq t} \frac{\Delta L_{s} \Delta V_{s}}{1 + \Delta L_{s}} + \sum_{s \leq t} \Delta L_{s} \Delta W_{s}$$

$$= V_{t} - \sum_{s \leq t} \frac{\Delta L_{s} \Delta V_{s}}{1 + \Delta L_{s}} + \sum_{s \leq t} \Delta L_{s} \Delta V_{s} - \sum_{s \leq t} \frac{\Delta L_{s} \Delta V_{s}}{1 + \Delta L_{s}} \Delta L_{s}$$

$$= V_{t} \quad \text{d'où le résultat.}$$

Reprenons la semimartingale X du début du paragraphe III, et Y = N + A du lemme III-1. Appliquant le lemme III-4. à $x^0 = N + A + x^1 \quad \text{on a la décomposition} \quad \epsilon(x^0) = \epsilon(N) \ \epsilon(B)$ où $B_t = A_t + x_t^1 - \sum\limits_{s \le t} \frac{\Delta N_s (\Delta A_s + \Delta X_s^1)}{1 + \Delta N_s} \; ;$

comme dans le cadre de la démonstration du lemme III-3. on a :

 $|\epsilon(B)_{t}| \leq \epsilon(V(B))_{t}$ et par conséquent on obtient

(3.2)
$$|\varepsilon(X^0)_t| \leq \varepsilon(V(B))_t \varepsilon(N)_t$$
.

 $\mbox{Rappelons que } |\Delta N_{_{\mbox{S}}}| < 1 \mbox{ pour tout s fini et que} \\ < N, N>_{_{\mbox{∞}}} \le 6C \mbox{ .}$

Nous avons maintenant besoin du théorème suivant que l'on peut tirer de [6] lemme 5 pour la partie a) ou de [7] théorème II-2. et proposition I-5.

III-5. THEOREME

Soit M élément de \mathcal{M}_{loc}

- a) Si M est de carré intégrable et si ${\langle M,M\rangle}_{\infty}$ est borné, alors ${\epsilon\left(M\right)}_{\infty}$ est de carré intégrable. De plus si ${\Delta M}_{S}$ > -1 pour tout s fini, on a ${\epsilon\left(M\right)}_{\infty}$ > 0 P.p.s.
- b) Si M est à variation intégrable et si le compensateur prévisible de $\sum\limits_{S} |\Delta M_{S}|$ est borné, alors $\epsilon(M)$ est à variation intégrable.

D'après ce qui précède on peut appliquer la partie a) de ce théorème à la martingale locale N ; comme N $_0$ = 0 on a donc $E[\epsilon(N)_{\infty}]$ = 1 et on peut définir sur (Ω, \mathbf{f}) une probabilité P'équivalent à P par

$$\frac{dP'}{dP} = \varepsilon(N)_{\infty} .$$

On a alors le

III - 6. LEMME

Le P'-compensateur prévisible de V(B) est égal au P-compensateur prévisible de $V(A + X^1)$.

Démonstration :

Comme B^C = (A + X)^C et que $V(B^C)$ = $(V(B))^C$, ce processus continu étant prévisible, on a seulement à montrer que le P'-compensateur prévisible de $\sum_{s} |\Delta B_s|$ est égal au P-compensateur prévisible de $\sum_{s} (|\Delta A_s| + \Delta X_s^1|)$.

Soit C le compensateur prévisible de $\sum\limits_{s}(|\Delta A_s+\Delta X_s^1|)$. Soit H un processus prévisible positif tel que :

$$\begin{split} & E_{p}, \left[\int_{0}^{\infty} H_{S} \ dC_{S} \right] < \infty \qquad \left(E_{p}, \ d\acute{e}signant \ 1'esp\'{e}rance \ relative \`{a} \ P' \right) \\ & E_{p}, \left[\int_{0}^{\infty} H_{S} \ dC_{S} \right] = E \left[\int_{0}^{\infty} \varepsilon \left(N \right)_{\infty} H_{S} \ dC_{S} \right] = E \left[\int_{0}^{\infty} \varepsilon \left(N \right)_{S-} H_{S} \ dC_{S} \right] = \\ & = E \left[\int_{0}^{\infty} H_{S} \ \varepsilon \left(N \right)_{S-} \ d \left(\sum_{u} \left| \Delta A_{u} + \Delta X_{u}^{1} \right| \right)_{S} \right] = E \left[\sum_{S} \varepsilon \left(N \right)_{S-} H_{S} \ \left| \Delta B_{S} \right| \ \left(1 + \Delta N_{S} \right) \right] = \\ & = E \left[\sum_{S} \varepsilon \left(N \right)_{S} H_{S} \ \left| \Delta B_{S} \right| \right] = E \left[\varepsilon \left(N \right)_{\infty} \ \left(\sum_{S} H_{S} \ \left| \Delta B_{S} \right| \right) \right] = E_{p}, \left[\sum_{S} H_{S} \ \left| \Delta B_{S} \right| \right] \\ & d'où \ 1e \ r\'{e}sultat. \end{split}$$

Notons
$$D = \widetilde{V(B)}^{P'} = \widetilde{V(A + \chi^1)}^{P}$$

 $({f P}'$ désignant le P'-compensateur prévisible), on a la majoration :

$$D_{\infty} \leq 6C$$

En effet, $D_{\infty} \leq V(A)_{\infty} + \widehat{V(X^{\dagger})}_{\infty}^{P}$ et d'après le lemme III-1. $V(A)_{\infty} \leq 3C$; mais $V(X^{\dagger}) = |x| I_{\{|x| > 1/2\}} \cdot \mu_{\infty}$

donc
$$V(X^1)^P = |x| I_{\{|x| \ge 1/2\}} \cdot v_{\infty} \le 3 \frac{x^2}{1 + |x|} \cdot v_{\infty} \le 3C$$
.

On peut maintenant terminer la démonstration du théorème. D'après le lemme III-2. on a la décomposition :

(3.3)
$$\varepsilon (V(B))_{t} = \varepsilon (U)_{t} \varepsilon (D)_{t}$$

où U est une P'-martingale locale, à variation localement intégrable définie par $U=\frac{1}{1+\Delta D}$. (V(B)-D); $\epsilon(U)$ est alors une martingale locale positive; de plus U satisfait aux hypothèses de la partie b) du théorème III-5.; en effet

$$\sum_{S} |\Delta U_{S}| = \sum_{S} \frac{1}{1 + \Delta D_{S}} |\Delta V(B)_{S} - \Delta D_{S}|$$

$$\leq \sum_{S} \Delta V(B)_{S} + D_{\infty}$$

$$= \sum_{S} |\Delta V(B)_{S}| + |\Delta D_{S}|$$

$$= \sum_{S} |\Delta V(B)_{S}| + |\Delta D_{S}|$$

et $\sum_{s} |\Delta U_{s}|^{P'} \le 2 D_{\infty} \le 12 C$

 $\mathcal{E}(U)$ est donc une P'-martingale à variation intégrable ; on en déduit que $\mathcal{E}(N)$ $\mathcal{E}(U)$ est une P-martingale uniformément intégrable. D'après (3-2) et (3-3) on a donc

$$|\varepsilon(X^0)_t| \leq \varepsilon(N)_t \varepsilon(U)_t \varepsilon(D)_t$$

et comme $\epsilon(D)_t \leq \exp(D)_t$ on en déduit :

$$|\varepsilon(X^0)_t| \le \varepsilon(N)_t$$
 (D) exp(12 C)

mais $\mathcal{E}(N)$ $\mathcal{E}(D)$ est une P-martingale uniformément intégrable ; on a donc le résultat voulu.

REFERENCES:

- [1] C. DOLEANS-DADE: Quelques applications de la formule de changement de variable pour les semimartingales. Z.Wahr. 6 (1970).
- [2] B. GRIGELIONIS: Random Point processes and martingales. Litovski mathem. sb. XV, 3 (1975).
- [3] B. GRIGELIONIS: On representation of random measures as stochastic in tégral with Poisson measure. Litovski mathem. sb. XI, (1971).
- [4] J. JACOD: Multivariate point processes: predictable projection, Radon-Nikodym dérivatives, representation of martingales. Z. Wahr. 3 Z. Wahr. 3 (1975).
- [5] J. JACOD et J. MEMIN: Caractéristiques locales et conditions de continuité absolue pour les semimartingales. Z. Wahr. 35 (1976).
- [6] Y. KABANOV, R. LIPTZER et A. SHIRYAYEV: Continuité absolue et si singularité des probabilités localement absolument continues (à paraître).
- [7] D. LEPINGLE, J. MEMIN: Sur l'intégrabilité uniforme des martingales exponentielles. Z. Wahr. 42 (1978).
- [8] J. MEMIN: Décompositions multiplicatives de semimartingales exponentielles et application. Sem. de Prob. XII, Lect. Notes in Maths. 649, Springer Verlag.
- [9] P.A. MEYER: Un cours sur les intégrales stochastiques. Sem. de Proba. X Lect. Notes in Maths. 511, Springer-Verlag.