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Some remarks on Malliavin’s comparison lemma and related topics

by

J.C. Taylor

Université de Strasbourg
Seminaire de Probabilités 1977/78

Introduction. Let M be a connected non-compact C3-manifold and let L be a

strictly elliptic second order differential operator on M with locally Lip-
schitz coefficients. If K C M is compact with non-void interior let e de-

note its equilibrium potential. If h is a non-degenerate C3-function on
MBK valued in ] 1, [ the comparison lemma in question gives upper and lower

estimates for eK(y) of the form c a(h(y)) , , where a is the equilibrium
potential for ] 1, ~ °o] corresponding to appropriate diffusions on IR that are

explicitly described in terms of h and the operator L .

A purely analytic (and short) proof of these estimates (for locally
Holder continuous coefficients) due to Azencott (and inspired by [6 ] and [11])

appears as part of the proof of proposition 5.2 in [2 ]. However, Malliavin

[ 7] obtains these estimates by comparing the trajectories of various diffusions

and this article, which presents Malliavin’s ideas (and additional remarks), can

be viewed as an illustration of the use of various probabilistic techniques.
In particular it is remarked that the functoriality of diffusions follows

immediately once they are defined as solutions to the martingale problem.
10. The diffusion associated with L. . For simplicity (and also because (1 ] is not

generally available) it will be assumed Ll=0 . An exposition of Azencott’s

arguments for this case is given in [12] (the general situation being considered

in(1]) . .

Let M be a connected manifold of class C2 .
If (U,03C6) is a chart of M and u E 

then

~~~~ °’ 
2 i=1 i 

where vo~ = u . The coefficients are assumed to be locally Holder continuous and
the matrix (a..(x)) to be positive definite.

Denote by 03A9 (M) the set of continuous functions M IR+ ~ M u { a } (the one-

point compactification of M) that are absorbed by 3 i.e. w(t) = 3 implies

w(t+s) =3 for all s > 0 . Let Xt : n (M) -~ M u {a} be the canonical co-

ordinate maps = and let Ft = s ~ t}. Define

6(w) = inf{tlXt(w) = S} .
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Let X (M) _ (S~ (M) ’ Ft ’ Xt ’ ~ °
Definition 1. A probability P on (S~(M) , F~) is said to be a solution of

the (x,L) -martingale problem if

(1) for all f E i.e. twice continuously differentiable and with

compact support,

Ct = 
is a martingale with respect to (03A9(M) , Ft , P) ; and

(2) 

Theorem 2. (Azencott; cf [12]),

For all x 6 M there is one and only one solution Px to the (x,L) -martin-

gale problem.

Definition 3. (St (M) , F , Px)x~M " (X (M) ’ is called the diffusion

associated with L . .

It turns out (see [12]) that because of the above uniqueness the

process (X(M) , satisfies the strong Markov property. In [2 ] Azencott

characterizes its transition semigroup as the minimal sub-Markovian semigroup (Pt)
such that for all f e 

C

(a) (at = 0 , and

(b) P f(x) = f (x) for all x E M .

2°. The functoriality of the diffusion.

Consider M1,M2 two connected C2-manifolds and let 03C8 : M1 ~ M2 be a
proper map of class C2 . Let L1 , L2 be two strictly elliptic operators on the

corresponding manifolds for which L11 and L21 are both zero and such that, for

all f ~ C2c(M2) 
L1 (fo03C8) = (L2f).03C8 .

Let and the families of probabilities that define

the corresponding diffusions.

Proposition 4. The canonical map S~ (~) : (Ml) -~ S~ (M2) induced sends

P~ to for all x E In other words, the diffusion associated to L is

a covariant functor on the obvious category.

Proof: ° The formula X~oS2(~) _ for all t > 0 determines S~(~) . Let xem I

and let Q = S~(~)*Px be the image of Px under S2(~) . It is then easy to see

that Q is a solution of the (~(x) , L2) -martingale problem.

Remarks. 1. The result is not new. It is merely another way of showing the

functoriality of the semigroup with infinitesimal generator L which can be re-

alised as the transition semigroup of a strong Markov process.

2. Use of [ 1] rather than [12] allows one to drop the condition

that L.l=0.
i
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3. A particular case of this situation is known as the theorem of Eells-

Malliavin (see [ 8 ] p.168).

4. Let M1 = IRnB{0} , M2 = IR+ nd 03C6(x) = ~x~ . If L1 = 0394 and L2g =
= g" + (n-1) ~x~ g’ ten the image of Brownian motion on M 1 under 03C8 is 

priate Bessel process on (R+ (pointed out by J. Faraut).

5. The properness of 03C8 is used twice. First, to define 03A9(03C8) and

secondly to ensure that for all f E Cc(M2) (foXt -foX20 -t0L2 foX2sds)o03A9(03C8) is

integrable (because it is exactly :) . The

arguments given on p,109 of [12] suggest that the first use is not essential and

consequently the result is probably true as long as the integrability is preserved.
The case of a fibration with non-compact fibre is perhaps worth considering

3°. The associated increasing process.

Let M and L be as in 1° and for f E C2(M) let Ct = Ct = foXt -
- foX0 -t0LfoXsds . Then for all x E M , is a local martingale on

(Q(M) , Ft , ~ , Px) in the sense that there is an increasing sequence of

stopping times T  ~ such that is a uniformly integrable martingale for
all n. Consequently it is natural to determine the increasing process associated

with up (i.e. to compute  C,C > ) .

Theorem 5. Let f E C2(M) . Then, for each x ,  C,C >t = oXsds on

[0,~) where Lf2 -2fLf , which in local coordinates (U,~) is

Eai.(x) a-~ a-~ with = f (the square of the length of the intrinsic gradientlJ i i
of f associated with L) .

Proof: Before giving a complete proof of this result the special case of M = IRn
will be discussed and then an easy "proof" will be given which unfortunately
contains a flaw.

1) M = . If o~ is a positive square root of a then the solution PY of the

(y,L) -martingale problem can be constructed via the unique solution of the stochastic

integral equation

Yt = y + 

where (B ) is Brownian motion on IRn and b (x) = (bl(x) ,...,b (x ) (see

Girsanov [ 5 ] theorem 3).

For f E C2(M) Ito’s lemma states that

foYt =f (y) + t0 ~f ~yi (Ys) dYi+ 1 2 t0 ~2f ~yi~yi (Ys) d  Yic, Yjc > s 

= )a.. (y (Y )~f ~yi(Ys ds

+ 1 
2 1,)- 7 s Yl Y7 s
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where Yt and denote the i -coordinate of the vector Y 
t 

(resp. B ) and

Yt ic = f Zo..(Y )dBjst s s

Consequently

Ct = foYt -f.oY -fOLfoYsds = .El t0(grad f.a) .oY and hence  Cf.Cf > =

= II grad f.03C3~2oYsds = t0~~f~2oYsds .
Remark. This shows that the result holds in general up to the exit time from a co-

ordinate neighbourhood of x and so we could hope to prove it in general by patching

things together with stopping times.

2) An incomplete proof for general M .

In the second article in [ 9 ] on the Littlewood-Paley inequalities MEYER

defines a weak-type of infinitesimal generator A for the transition semigroup

(P ) of a "right" process. Specifically, f E D(A) and Af = g if

1) f is bounded and universally measurable on the state space E ;

2) g is universally measurable on E and U |g| is bounded for all p > 0 (where

(U ) is the associated resolvent) ; and

3) for all p > 0, f = U (pf -g) .
In the present context it is clear that, for each C (M) , P f -P f =

fs PuLfdu and so ~ ~t Ptf(x) = PtLf(x) . Hence, ~0 e-pt(~ ~t Ptf)dt = 

which implies f E D(A) and Af = Lf . Now providing D(A) is an algebra the

computation of  ef ,ef > t as Af2 -fAf given in ( 9] ] p. 145 is applicable.
However, it is not known whether D(A) is an algebra and consequently the proof

is incomplete.

The fact that C2(M) is an algebra does however play a key role in the

following proof.

3) A martingale proof (suggested by both MEYER and YOR , details due to

YOR, c.f. article by YOR in this volume).

First of all note that it suffices to prove the result for f E C2c(M)
since the general result is obtained by using a sequence (T ) of stopping

times Tn  03B6 that increase to § .

If f E C2c(M) then as noted above f E D(A) and so (Cft) is a martin-

gale that is locally square integrable (MEYER [10] p. 143).

If Jt = and rt = foX0 + f 0 LfoXsds then

Jt = 2(foXt) 0393t = f2oXt + 03932t -2{Cft + f2oXt -2CtTt 
Set Q = R if (Q -R ) is a local martingale. Then, since f2 E C2(M) ,

(see MEYER [10] theorem 38 p. 315) and

rt -r~ = It then follows that
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Jt = t0Lf2oXsds - 2t0{Cfs+0393s}d0393s
= -2fLf}oX ds .

0 s

Consequently,  Cf,Cf > - -2fLf}oXsds is a local martingale that is pre-

visible and of bounded variation. Hence, it is constant. Since it vanishes at zero

this completes the proof.

4. The corresponding time change

Let f E C2(M) and consider the additive functional A - t t0~~~2oXsds
( =  >t where Ct = foX t -foX -t0LfoXs ds) defined for all t > 0 (note
that 0 by convention). Set o = sup At and denote by TS the stopping

time equal to inf{t  > s} with the convention that inf ~ _ ~ . Then

AT , for all s  0 .
s 

As is shown in the appendix, the random variable M s = CT s is defined for

all s > 0 (not only on {so}) by a limit argument and satisfies

T

foX + MS + 0 sLf.Xudu ,
where is defined appropriately if o _ s (note that T = 03B6 if c _ s) .

s

If > 0 for all x , i.e. if f is non-degenerate, then

j T sLfoXudu = s0(aoXT) dv where a = (Lf ) /II Df II 2 , , providing
s ~ cr. Consequently, for s ~ o , , if foXT YO + MS + )dv .

s v

MALLIAVIN [ 7 ] remarks that (Ms) is a Brownian motion. As shown in the

appendix, this is so up to the (FT )S -stopping time a . In other words,

(M ) is a stopped Brownian motion.

5°. The comparison lemma. ,

Let K C M be compact with non-void interior and consider the equil-

ibrium potential 2K of K on MBK i.e. = where T is the

hitting time of K . It suffices to study 2K on a connected component of

MBK and so to simplify notation it will be assumed that MBK is connected.

Denote by f a non-degenerate proper C3 -function defined on a neigh-
bourhood of (I~)c with values in . Then f(MBK) is an interval I

with end points ab and it will be assumed that as x -~ 3 in M f(x) con-

verges to b . Replacing f by if it is clear that one can

assume b = + ~ . To simplify matters it will be assumed that 3K = {f = 1} .

Let u be a C~ -function on I . Then L(uof) = 2 I af (I 2 (u ~ of ) +

+ Lf(u of) = of + a (uof) } where a = as can be seen by a

computation in local coordinates. Consequently, the differential operator L

modulo ~~f~2 factors through f if and only if a is constant on the level

hypersurfaces of f . In this case the "radial" behaviour of the diffusion

associated with L on MBK can be reduced to that of a 1 -dimensional dif-

fusion on IR . However, when this is not so estimates are obtained for the

behaviour of e K on MBK by studying two diffusions .
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Let a~(r) = max = r} and a’(r) = min{Lf(x)/

(x)~f(x) = r} . These two functions can be extended from [l,°o) to all of

IR so as to be Holder -continuous functions on IR since f ~ C . The two dif-

fusions in question are determined by the differential operators D = 1 2 d2 dr2 + a d dr

and D- 

= 1 2d2 dr2 + a- d dr.

Fix x ~ MBK and hence f(x) = r ~ !R . . Let U = {lf} and let T be

the hitting time of U for the diffusion on M . The strictly increasing pro-

cess (A ) ) , A = oX sds determines a time change (T ) such that if

~t " ~T ~ ~t " ~~’

(1) Y - Y~ + M + " and

(2) (M ) is a Brownian motion stopped at o = sup A t^T .
Let a denote either a or a and let (U ) be the solution of

the stochastic integral equation

U = r + + 

for the existence and uniqueness, see [5]) . .

When a = a let U 
t 

denote the corresponding solution.

Proposition 6. (Comparison Lemma).

The following results hold:

(1) U* for all t  o~

(2) = oo =~ u~ == "

(3) foX = 1 
=~ 

U’_ = 1 , where S~ are the exit times from (l,oo) of the

processes (U.) .
[ 7]). To prove (1) first replace a by and let

(U ) be the corresponding solution. Then the following modification of a

lemma due to SKOROKHOD ([13] p. 125) shows that Y ~ U+~t for all t > 0 .

Let G = U+~t -Y and k = -aoX . Then G + t0ks ds Px -a,s .
since = x} = 1 implies Y -r Let S == inf {t|0t03C3T,
Then S is an (F ) stopping time and S > 0 P -a.s.. This follows

since k is continuous in t,k = a (r) -a(x)  0 and so kt(03C9) > -~ for

0t03B4(03C9) . If t’ = S(03C9)  °o then G (D) = 0 , = a (f(XTt, (03C9))) -

-  0 . Since > -e if -03B41(03C9)  t  S(03C9) it follows
that for such t , 0  Gt(03C9) -Gs (03C9)  ~(t -S(03C9)) -~(t -S(03C9)) =0 . Con-

sequently, S(03C9) = . G > 0 on {t03C3T} .
Similarly, replacing a by a -e it follows that U ~ Y for

all 
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To complete the proof of (1) it therefore suffices to show that

lim = In view of Girsanov’s result on uniqueness [5], this follows

from YAMADA [14] (Theorem l, 2) .

The remaining statements (2) and (3) are immediate consequences of

(1) since d (the lifetime of the diffusion on MBK) can be viewed as

the entrance time of when starting from x E MBK .

60. Extension of the stopped Brownian motion (M) . .
If the martingale (Mt) on (St(M) , Px) was in fact a Brownian

motion then the solution (U ) of the stochastic integral equation

Ut = r + Mt + t003B1oUsds
would describe the diffusion on IR starting from r that corresponds to the
. 

f.. t . 1 t 
1 d2 dr2 d

infinitesimal generator 1 2 d2 dr2 + adr ’
Then the comparison lemma could be directly applied to show that

= 1} ~ and 1 -eK ~x) ~ P~{US+ _ + ~} = 1 = 1} where

= = 1} and T = Hence, = 1} ~ e. K (x)  = 1} , I
+

where the times Sr now refer to exit from (1, + .

Therefore, in some way (Ut) has to be extended so as to describe the

diffusion on . Malliavin does this by tacking onto the trajectories

t  Ut(03C9) the trajectories of the diffusion on IR that start from U03C3(03C9) .
As he points out "this identification is not completely straightforward and a

little additional construction seems to be needed [ 7 ] " .

Rather than follow this route I propose to outline results of DAMBIS

[ 3 ] which immediately permit (Mt) to be "extended" so as to give a Brownian

motion (a trick used in [ 3 ]) on a larger probability space. This will then

quickly give the desired extension of the process (Ut).
Let (S~,~t,F,P) satisfy "les hypotheses droites". Denote by (Xt) and

(Yt) two right continuous martingales on this space and let T be a stopping

time. Set Zt = X + Yt 
Theorem 7. (DAMBIS [ 3 ]) (Zt) is a right continuous martingale. Furthermore,

if (Xt) and (Yt) are square integrable with (At) and (Bt) the corres-

ponding associated increasing processes, (Zt) is square integrable and the

increasing process (Ct) associated with (Zt) is given by the formula

Corollary 7. Let (Mt) be a Brownian motion on stopped at the

stopping time T. Then there exists (i) a Brownian motion (ii)

an (Ft) -stopping time T, and (iii) a map -~- S~ such that:

(1) To-rr = T ;

(2) Mto03C0 = and

(3) = P on G .
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Proof: (DAMBIS) Let (Bt) be a Brownian motion on 
_

F - Gt ~ H , ’ F = G ~ H and P = P ~ Q. Define M 
where wand Bt = Bto03C1 where 03C1(03C9,03BB) = 03BB . Then and (Bt)
are continuous martingales on Furthermore (Mt) stops at T = 

which is an -stopping time.

Define Bt = M t +B t Then (Bt) is a square integrable continuous

martingale whose associated increasing process is TAt+t -TAt = t .

Pro,posit~ ion 8. Let (Vt) be the solution of the stochastic integral equation on Q

(*) Vt = r+Bt + t003B1oVsds .
Let be the solution of the stochastic integral equation on S~

Ut = r+Mt + t003B1oUsds .
Then = 

"

Proof: is the solution of the stochastic integral equation

V - r+B - + t^T03B1oV ds . Since (U solves the same equation the
t tAT 0 s t

result follows.

Let S± be as in the statement of proposition 6. Let R± be the exit
_+

times from (1, + ~) for the diffusion on IR with differential generator D .
+

since these diffusions when started from r can be realized by V (solutions of
, , 

+ -i + + -1 - -

equation (*) with a = ar) 03C0 1{US+= {VR+= ~} and 03C0 1{UC_= {VR- - 1} . "

Consequently, the previous corollary (3) and the comparison lemma imply the

following result.

Corollary 9.

°°} and

1} _. 1} . "

+_
Finally, in view of the equations (*) with a = a it follows that

P {VR+= ~} = 1 -h+(r) and 1} = h (r) where h ± are the solutions

, , 

+ 
,

of the problem for D on (1,~) with boundary value 1{1} . "
Hence, this yields.

Corollary 8. h+ (r)  h (r) .

Appendix. The definition and properties of (M )

1. Let Cft = Ct = foXt -foX0 -t0LfoXudu . Then, for all x, (Ct) is a local

martingale on Let be a sequence of stopping times Tn  ~
that reduces (Ct) ([10] p.292) and the local martingale (Ct -A) , where
A = f0~~f~2oXsds .
2. Fix s = a and consider with associated increasing process

" Then reduces the local martingale "
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Lemma . For all a,b  0 (C AT ) is a uniformly integrable martingale on
03A9,F,FTp,Px) . a n

_ 
n 

2
Proof: E[ C2 TanTnnb ] = E[ A TanTn.nb ] _ a and so, if X - t CTa^T (n+1 ntnb 

, (X t }
is a uniformly integrable martingale relative to (F ) . Hence, IF ] - X .

The uniform integrability follows from the first inequality. T(n+1) =Tn Tn

Define CTant to be lim CTa^Tn^t . Then CTant agrees with its usual value for

t  ~ and if its value is given by this limit rather than by

C - -foXo -03B60 LfoXudu .
Lemma . (CT nt) t is a uniformly integrable martingale on .

a

Proof: Let tl  t2 and n E Then E[ 1^CTa^Tn^tl] = 

E[ l^CTa^Tn^t2] and

uniform integrability implies E[ l^CTa^tl] = ] ’

Furthermore, a ~ n,t implies a and so

is uniformly integrable.

Corolla (c. f . DAMBIS [ 3 ] lemma 6) . 
a 

is a martingale on ,Px} ’
a a

Proof: If a  b then E[ CTa~Tb|FTa] - 

C Ta .

Lemma. . (CT -o’na) 
a 

is a martingale on ,Px} ’

Proof: For each n , (C2T nT nt AT nT nt}t ls a martingale. Since CT nT nt ~
a n a n a n t

~ CT nt in L1 (by theorem 4.15 (iii) in [ 4 ]) and AT nT nt + AT nt monoton-

ically as n ~ ~ it follows that (CT At ) - AT ^t)t is also a martingale. By
a a

repeating the argument it follows that CT -AT )a is a martingale where

CT = CT At. Note that AT = cna .
a a a

Finally, the following result concludes the proof that (CT) is a Brownian

motion stopped at c . 
a

Proposition a CT is continuous a.s.

a

Proof: It is obvious on [ 0,~) . . If a = c (W) then Ta (c~) _ ~ (c~) and CT (c~) is

a

defined by a limit from the left. For a > Ta(w) - ~(~} and so the result

follows.



455

Bibliography

[1] AZENCOTT, R. Methods of localization and diffusions on manifolds.

Unpublished manuscript.

[2] AZENCOTT, R. Behaviour of diffusion semi-groups at infinity,

Ball. Soc. Math. France 102 (1974), 193-240.

[3] DAMBIS, K.E. On the decomposition of continuous submartingales,

Theory Prob. and Appl. 10 (1965), 401-410.

[4] DOOB, J.L. Stochastic processes, John Wiley &#x26; Sons Inc.,

New York, London, Sydney, 1953.

[5] GIRSANOV, I.V. On Ito’s stochastic integral, Soviet Math. 2 (1961),

506-509 [Dokl. Akad. Nauk SSR 138 (1961), 18-21].

[6] KHAS’MINSKII, R.S. Ergodic properties of recurrent diffusion processes,

Theory Prob. and Appl. 5 (1960), 179-196.

[7] MALLIAVIN, P. Asymptotic of the Green’s function of a Riemannian

manifold and Ito’s stochastic integrals, Proc. Nat.

Acad. Sci. U.S.A. 71 (1974),381-383.

[8] MALLIAVIN, M.P. and Factorisation et lois limites de la diffusion

MALLIAVIN, P. horizontale au-dessus d’un espace riemannien

symétrique, in Springer Lecture Notes 404,

Springer-Verlag, Berlin, Heidelberg, New York, 1974.

[9] MEYER, P.A... Démonstration probabiliste de certaines inégalités

de LITTLEWOOD-PALEY, in Seminaire de probabilités X,

Springer Lecture Notes 511, Springer-Verlag, Berlin,
Heidelberg, New York, 1976.

[10] MEYER, P.A. Un cours sur les intégrales stochastiques, Ibid.

[11] MEYERS, N. and The exterior Dirichlet problem for second order

SERRIN, J. elliptic partial differential equations, J. Math.

and Mech. 9 (1960), 513-538.



456

[12] PRIOURRET, P Processus de diffusion et equations différentielles

stochastiques, in Springer Lecture Notes 390,

Springer-Verlag, Berlin, Heidelberg, New York, 1973.

[13] SKOROHOD, A.V. Studies in the theory of random processes, Addison-

Wesley, Reading Mass., 1965.

[14] YAMADA, T. On a comparison theorem for solutions of stochastic

differential equations and its applications, J. Math.

Kyoto Univ., 13 (1973), 497-512.

Department of Mathematics,
McGill University,
805 Sherbrooke St. W.,
Montreal, Quebec.
H3X 2G4


