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THE Q-MATRIX PROBLEM 2: KOLMOGOROV BACKWARD EQUATIONS

by

David Williams

Part 1. Introduction

(a) This paper is a sequel to [QMP 1] (=~lg~ ~ . The main result of [QMP 1~
is recalled as Theorem 1 below.

Here we introduce and study the KOLMOGOROV backward equations for arbitrary
chains. Theorem 2 solves the existence problem for totally instantaneous chains

which satisfy these equations. This theorem is therefore a kind of (dual§)
analogue of the ’existence’ part of the STROOCK-VARADHAN theorem ([15]) on
diffusions.

Two of the chief methods in [QMP 1], SEYMOUR’s lemma and KENDALL’s branching
precedure, again play a large part. However, because the chains constructed in

[QMP 1~ never satisfy the KOLMOGOROV backward equations, the branching procedure
has been substantially modified along lines suggested by FREEDMAN’s book [4] .
We therefore arrive at the splicing procedure described in Part 4. The splicing
technique provides a nice application of ITO’s excursion theory.

I hope to show in [QMP 3] that the methods of [QMP 1 , 2] may be used to make

some slight impact on some altogether more profound and important problems on

chains.

(b) Let I be a countably infinite set. Let Q be an I x I matrix

satisfying the DOOB-KOLMOGOROV condition:

(DK) : 0  qij  oo (Vi,j : i =1= j) .
For i E I and J C IN i, write

q...
(The symbol "_t’ signifies "is defined to be equal to".) As usual, define

qui °

We say that Q is a Q-matrix if there exists a (" standard" ~ transition

function fp(t)1 on I with p’ (0) = Q. The matrix Q is then called the

Q-matrix of ~P(t)~ and of any chain X with minimal state-space I and

transition function ~P(t~~ . We say that (equivalently, X) is honest

if P(t)l = 1 ,Vt, that is, if X has almost-surely-infinite lifetime.
THEOREM 1. Suppose that Q satisfies ((DK) and) the "totally instantaneous"
condition

(T I): q~ 
= 03 (Vi) .

Then Q is a Q-matrix if and only if Q satisfies "NEVEU’s condi tion"

(N~ : qbj J a ~ b~
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and the "saf ety conditiorit

(s): there exists an infinite subset K of I such that

Q(i,KBi)  oo , di .

Further, , we can then find an honest with p’ (0) = Q.

(c) The KOLMOGOROV backward equations. Let ~P(t~~ be an honest transition

function on I and define Q = P’ (0~ .
Let B(I) be the Banach space of bounded functions on I with the usual

supremum norm. With an eye to LEVY systems, define the operator ~ on B(I)
as follows:

1 
on the domain 2)(~) consisting of those f in B( I) such that

(i) for each i, the series def ining (~f). i converges absolutely,

(ii) l?f E B( I) .
We shall say that ~P(t~~ satisfies the KOLMOGOROV backward equations

(KBE) if

A S &#x26;
( that is : ~ (~ ~ C ~ (’C~~ where A is the strong

infinitesimal generator of P( t~~ acting on 0 Define the resolvent

~ n P(7~~ : ~, > 0~ of as usual:

((03BB)f)i ~ ~0e-03BBt(P(t)f)i dt (f E B(I) , i E I) .

It is standard that A ~  if and only if

(KBE)2: 
- 

(03BB - )(03BB)f = f (f ~ B(I)).°

Of course, (KBE) 2 must be read as implying that P(X) : B(I) ~ ().
As in [QMP 1], we write Vi for the ITO excursion law at i and wi for

a typical excursion path from i. It is easy to guess the following result from

work of REUTER [13] and CHUNG [2] on the stable case.

LEMMA 1. (KBE) is equivalent to the statement:

(IQ~): (Vi) 03BDi{wi : wi(O+)  IBi} = 0. 
.

This lemma is proved in Part 2.

Since v. 
1 

has total mass q. 
i 

and

wi(O+) = j} = 

qij (i + j),
condition (IQ~) implies that

(03A3) 
qi 1. 

= 

ji qij 
(~ ~) (V i).

If !p(t)l satisfies (KBE) and (TI) , it therefore follows that Q = P~ (0~
satisfies (DK) J (N) and

(TI03A3): qi = 03A3 qij = ~ (i).

ji
Suppose conversely that Q is an I x I matrix satisfying (DK) , (N) and
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(TIE). Then Q automatically satisfies condition (S) , so that there

certainly exists an honest ~P(t~~ with p’ (0) = Q. Recall however that the

methods of [QMP 1~ never produce a ~P(t~~ satisfying (KBE). Still,

everything works out right.

THEOREM 2. Suppose that Q is an I x I matrix satisfying (DK) , (N) and

(TIE). Then there exists an honest transition function ~P(t~~ with generator

j4 satisfying ~ ~ ~.
Note. In [QMP l] , the proof of the apparent ’detail’ that ~P(t~~ in Theorem 1

can be chosen to be honest was proved by a trick. Since that trick would not work

for Theorem 2, we are forced to give the proper (and very much shorter!) proof this
time. All that is needed is a direct application of the quasi-left-continuity

property in the form for RAY processes.

(d) Let Q be an I x I matrix satisfying (DK) and (z) . Note that if

f E 2)(~) , then f~ e 2)(~) so that S(~) is an algebra. An amusing corollary

of Theorem 2 is that if condition (TI) also holds, then 2)%) separates points

of (I) if and only if condition (N) holds. This corollary is amusing for two

reasons: (i) I can not prove it directly; (ii) it is false if condition (TI)
is dropped I Is it possible that the corollary is more than merely amusing?

(e) Our construction will make it clear that the ~P(t~~ in Theorem 2 can

not possibly be unique.

The lack of uniqueness of fp(t)l in Theorem 2 will be obvious to devotees

of the Strasbourg school for the following reasons. Let Q be as in Theorem 2

and let X be a RAY chain with generator A satisfying A c !~. Since X is

totally instantaneous, the Baire Category Theorem implies that X almost surely

visits uncountably many fictitious states during any time-interval. The set of

fictitious states is therefore non-semi-polar and so (DELLACHERIE [3]) contains
a (non-semi-polar) finely perfect set. This finely perfect set is the fine support

of a continuous additive functional cp (DELLACHERIE ~3 ~ , AZEMA ~1 ~ ~ and we can
use cp to change the LEVY system of X without destroying the condition A c ~.

Part 2. Proof of Lemma 1

Let {P(t)} 1 be an arbitrary ("standard") honest transition function on I

and set Q = P~ (o) . Let X be a good (RAY) chain with minimal state-space I

and with transition function ~P(t~~ .
Let b be a point of I. ° Let f be the usual first-

entrance and last-exit functions occurring in the decompositions:

(1) = 

See, for example, CHUNG [2]. Let Tb be the hitting time of b. 0 Then

Fib(t) ~ P1(T b _ t] - (i  b).
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Introduce the taboo transition function on I~b as usual:

= j~ . °

Since ~P(t)~ is honest,

(2) 
b 

"

It is standard that

(3) 

This follows because g~..(’) is an entrance law for and g . (0 +) = 

q ..
PROPOSITION 1. The condition

(b ~-~~ ; 0

holds if and only if

(4) X 
" I~b~ .

Proof. Set

(5) E 
b 

Let 03B6b(wb) denote the lifetime of excursion wb from b. Then 03BDb  03B6-1b is

- the classical LEVY-HINCIN measure of the subordinator associated with inverse

local time at b . o Hence from standard theory (NEVEU [12] , KINGMAN [9]) based

on (9) below,
= °

Because

wb(0+~ = i~ - qbi ~~ ~ ~~ ’

it is clear that (b Q-~~ holds if and only if

(6) 

Proposition 1 now follows on comparing (2), (3) and (6).

Condition (IQ~~ of Lemma 1 therefore holds if and only if (4) holds for

every b in I. o

Use the ’hat’ notation:

&#x26;(X) =E dt (X > 0) 
.Jo

for Laplace transforms. Thus (1) takes the form

(7) pib(~‘~ - Pbj(~~ - 
and, for obvious probabilistic reasons,

(8) = Pi,7 (~ ) _ ~ ib (~ ) Pb J (~ ~ . °
Further, since ~P(t~~ is honest,

1 - ?~E J pbj(~~ - i

so that

(9) Pbb(~} 1 ~’ = ~gb(~~ .
Proof that (KBE) => ( I Q-~~ . Assume that (KBE) holds. Take b in I . o Set

u = ~{b} E B( I) . is the characteristic function of {b}.) Then the

equation
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= u

yields

(10) 1 = 

= 

From (9) and ( 10) ,

03BBb(03BB) = 03A3qbi[ 1-ib(03BB )]

so that (6) holds and (bQ~).
" 

Proof that ( I Q-~~ _> (KBE). Assume that ( I Q ~ holds. Take b in I. Then

from (4), (7~ and (8) it follows that for u E B( I~+ and h = n P(~.~u ,

But from (9) and 

= 

so that bb(03BB)-1hb - 03BBhb = 03A3 qbi[1-ib(03BB)]hb
03BBhb - ub = 03A3 qbi[hi-hb].

Thus h = ~ D() (you should check this carefully) and

(~, - ~~P(~.~u - u .

Note. I leave the problem of giving the correct interpretation of (KBE) in

the form

= 

to people who are more expert (and more interested:) in analysis.

Part 3. KOLMOGOROV’s chain" K1"

There is a substantial literature on K1. The paper ~8~ by KENDALL and

REUTER gives a most exhaustive analysis which is taken up in CHUNG’s book ~2~.
See also FREEDMAN ~4~. REUTER ~14~ uses Kl very effectively to obtain results

on the rate of convergence of to 1 as t J 0 for Markov p-functions.

ITO’s excursion theory allows us to rephrase the (LEVY-) KENDALL-REUTER-CHUNG
description of K1. For Kl itself, ITO’s idea provides no more than a rephrasing.

However, excursion theory gives the natural language for the "splicing procedure"
of Part 4. For Part 4 , we need the modified form 03B2 |NK1 of Kl described later

in this part. We can use ITO’s idea effectively only because of the path-

decomposition result which explains how chain can be obtained by welding
a certain strictly elementary chain onto an Kl chain.

THE CHAIN 

Let I be the set {0,1,2,...}. Pick (finite) bk > 0 and (finite)

ak > 0 (k E N~ such that Zb = o~ and

Ebk(ak+?~~ 1  o0 (d~. > 0~ .
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Set
’ 

1

b1 b2 b3 .../ a1 -a1 0 0 ...

Q = ~ o -~ o ....

B a3 0 0 -a3 ...
.......

REUTER [14] gives an analytic proof that there exists a unique honest transition

function ~P(t~~ with P’(0~ = Q. He mentions that CHUNG and I had been able to

provide probabilistic proofs of this fact. I guess that CHUNG’s proof is

essentially the same as mine and goes like this.

Suppose that a RAY chain X with Q-matrix Q exists. Then we see that for

k E N, X leaves k by jumping to 0. Hence, with the notation of Part 2,
- a.t

(12) fi0(t~ - a. e 1 (i ~E N) , ,

(13) 
Since g O. (.) is an entrance law for and = bj ( j E N) , we

have 

(14) gOj(t) = b.e - a J .t (j EN) . 
But now the various equations in Part 2 determine {P(t)} uniquely from (12) -

(14). Thus, for example, (9) and (14) give

(15) OO(03BB) = [03BB+03BB E bj(aj+03BB)-1]-1.
The existence of {P(t)} follows ’constructively’ and we see that (11) is exactly

the right restriction on (b , a : n E N).
The standard RAY-KNIGHT compactification E of I for X (see Part 2 of

[QMP 1]) may contain points not in I (this will happen if and only if

lim inf a  oo) . However, we shall always have

- E = I,t > O} = I.

Thus, almost surely,

X(t) E 0; I ,Vt > o.

THE ITO DESCRIPTION OF K1(b ,a )
The discussion above shown that we can restrict excursion paths wo(.) from

0 to constant functions with

(0~~0(w0~ ~ -~ for some j in N

and that 

03BDO{wO: wO(O+) = j, 03B6O(wO) ~ dt} = - a.t dt.
ITO [6] and MAISONNEUVE [11] expand on the idea that, in terms of the local time

L(t,O) = meas{s ~ t: = 0},
the excursions from 0 form a Poisson point process (with values in the space of

excursions) with characteristic measure v . We can therefore build X from v
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THE CHAIN 03B2|NK1(dn,an - 03B2 )

A 
n a n ) chain 03B2Y is a chain identical in law to a n n 

chain which is killed at rate ~ while it is in N but not killed while it is

at 0. . Here 03B2 > 0 and the parameters an,bn (n E N) satisfy

E b n = ~, E b 
n 
la 

n 
 ~, a 

n 
(V n).

If we adjoin a coffin state 6. and put 03B2Y in 0394 f rom the killing-time on, we

obtain 03B2Y as an honest chain on {0394,0,1,2,...} with Q-matrix

4-i - - 0 - - - 0 - - 0 - -’_’-- - - - - - - - - - - - - - - - - 

B0 / 
I -oo bl b2 ... °

fi i ) - a, 1 0 ... 

~ I (a2- ~~ 0 -a2 . o o )i ,

~ . ~ ~ ~.. !

(The dotted lines separate out the components involving ~ .~ ) Again the Q-matrix

determines a unique honest transition function on ~~,0,1,2,...~ . . We shall always

work with the PO law of 03B2Y: that is, we suppose that 03B2Y starts at O.

An excursion path w0( . ~ of ~Y from 0 will start at some value 

and then will either die at some finite because y jumps to 0 or

will jump to 0394 at some finite time in which case ~. The

excursion law w 0 of y at 0 is specified by the two equations:

(16~ = j ~ ~ E dt~ = ’

( 17~ = j ~ ~ E .

From (17~, , we see that

(18) 03B203BDO{wO:03B6O(wO) = ~} = a - .

This means that
(19~ ) the total time

P z meas. . ~t : ~Y(t~ - = 0~
spent by 03B2Y at 0 is exponentially distributed with rate cx. .

It is also clear from (17) that

(20) the probability that 03B2Y jumps to 0 from state j is

p J . /p ( " N ) 
= /03B1

where ~, is the measure on N with ~,j - ~.(~ j~ ~ ) = bj/aj . .
Further, , (16~ ) and (17~ ) imply that 

~ ~ ~

(21) the expected total time spent by ~ Y in state j 

fi 1~ ./~(N~ - a .

A PATH-DECOMPOSITION RESULT

Define

y - sup ~t : ~Y(t~ = 0~ .
process X starting at 0 with ITO excursion law at 0 which
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is the restriction of w 0 to the set ° Then X will be a

/a ,a ) chain. Let L(., 0) denote the ’local’ time spent at 0

by X. With (19~ in mind, let r~ denote an exponentially distributed variable

independent of X and with rate a. Set

y* = > rm~ .
Then t  ~y ~ is identical in law to ~~Y(t~ : t  ~y~ . o We can therefore

construct a chain identical in law to the chain t  ~y~ by inserting

appropriate excursions into the interval ~O,r~ which represents the growth of

local time at 0 f or ~ Y . The t 2 0 ~ is independent of the

chain ~~Y(t~: t  y~ and is easily described. Indeed, the chain

~ ~ Y( t + ~y ~ : t ~ 0 j starts at a point j of N chosen according to the

distribution in (20), stays at j for an exponentially distributed time of

rate a., and then jumps to and stays in A o Hence

(22) given an exponentially distributed random variable r of rate a we can

construct ,a ) chain 03B2Y* such that the time spent by 03B2Y* at 0

is EQUAL TO (not just identical in law to) r. Of course, we shall have to

expand Q by taking products (Q -> i2 x ~ (say)) in this construction but we

must extend T by r (w ,c~ ~ = r (c~ ~ .

Part 4. Proof of Theorem 2

We say that I is tree-labelled if I is labelled as the set of vertices

of the tree

We then write Z, for the set of immediate successors of i so that we have
i

the following local picture of i U Zi:

We also write R : I~ 0 -~ I for the immediate predecessor map so that Z. _ ~ l~i~~ 0
i

SEYMOUR’s lemma (Lemma 9 in 1~~ implies that under the hypotheses of

Theorem 2, I may be tree-labelled in such a way that

(23) c(i) ~ 03A3 [qij - q-ij]  o0

where
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_ q.. if j E i U Z. 
i

_ 0 otherwise.

We now suppose that the hypotheses of Theorem 2 hold and that I is already

tree-labelled as just described.

LEMMA 2. There exists a probability measure ~, on I such that

(24~  o0

and a positive recurrent chain X (with minimal state-space I) with ~, as

an invariant measure and with generator A 
- 

satisf in A C ~ .

EXTENDING THE LEVY SYSTEM

Before proving Lemma 2, let us see why it implies Theorem 2.

Def ine 
t

Define 

c o ds,

where c is defined at (23). From (24), it follows that cp is a (finite-
valued) CAF of X . Define a new process X which agrees with X up to

the time of the first "new" jump of X , where

P~~1 > t ~ I X ~ l 

P[(03C31) = j I (03C31-) = i] = q-ij].
Def ine further "new" jumps 03C32,03C33,. o . in the obvious way. Then X, defined

for t  03C3~ = lim03C3n , is a Markov chain with generator Ã ~ . If a = m

(almost surely) , then is honest and Theorem 2 is proved.

Note that

ai 
= inf X(t~ ~ X(t-~ U 

Hence the "new’ jump times o of X are stopping times relative to the

family of ~-algebras ~t = s S t~ (completed in the usual way) . Suppose
that X is made into an honest process X~ by the usual adjunction of a coffin

state /’:... Then

0394(03C3~) = 0394 A  o

But, in the standard RAY-KNIGHT compactification of I associated with 0394
( see [QMP 1 ~ ~ ,

= )
exists and satisfies

~ * ~(~~-}~ - )
on  ~~ . (This follows from the quasi-left-continuity property appropriate
to RAY processes. See GETOOR [5] .) Hence 0394(03C3~-) = p on {03C3~  ~}. We can

therefore modify X to an honest process X with generator A by making
X agree with X up to time 03C3~, putting (say) X(03C3~) = 0  and

letting X run again (when necessary) .
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Proof of Lemma 2

The proof of Lemma 2 takes up the remainder of the paper.

We may as well simplify notation by writing Q instead of Q . We therefore

suppose that Q is an I x I matrix satisfying and the further

condition:

(Q~) qij > 0 => j E Z .
(The "=" condition in is easily shown to be harmless.)
Remarks (i~ It is not surprising that the condition determines the crucial

case of Theorem 2. Readers unfamiliar with FREEDMAN’s book [4] mi~ght find it

rather difficult to arrange for a chain satisfying and (IQ-~~ to be able

to return to state 0 (more or less immediately:) after leaving it. It is in

puzzling out such things that much of the charm of chain theory remains.

(ii) I have an alternative proof of Lemma 2 based on the properties of

branch-points of RAY processes. This alternative proof makes it easier to

understand intuitively how certain chains satisfying and ( I Q-~~ are able

to return to O. However, I believe that the present proof is ’better’ (in a sense

which I hope to clarify in [QMP 3]). The alternative proof is no shorter than

the one given here.

CHOICE OF INVARIANT MEASURE

Define

Q(~c( i~ , i~ , i E I~ 0 .

Let c be a given non-negative function on I. (Of course, this function c

now plays the role of the ’correction term’ c in (23).) Then

(24) there exists a probability measure ~, on I such that

(24i) (dk~ , I 
 o~,

and 

1 1

(24ii) j (Z03C0(j))  bj 03C0(j) b03C0(j) 03C0°03C0(j), j ~ I B [O ~ ZO] .

To prove (24), first choose a totally finite measure v on I with

v 
k 

> 0 and such that Ec iv i  ~ . Then make an obvious recursive use of

the following elementary proposition.

PROPOSITION. Suppose that v and b are measures on N with

vk > 0 , bk > 0 (dk E N} and 1  ~. Then there exists a measure *
on N such that

0  ~~ ~ v~ (dj~ ~ ~~~~~(N~ ~ b~ (dj~ ~ 0
[Proof of proposition. Choose ~ such that 1  r~  b (N~ . 0 Let ~. be a

probability measure on N with 0  ~,k _ ~ (dk~ . Choose K so that

~,(~ 1,2,...,K~~ > 

Set
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*j ~ (min03BD*kk~K)03BBj (j ~ K),
_ ( j > K).]

THE CHAINS 

Our matrix Q continues to satisfy (DK) , and (Q~,~ . Let ~, be

any probability measure on I satisfying (24 it) . By splicing together various

chains X~1 , we shall construct a positive recurrent chain X with minimal

state-space I, with generator A satisfying A C ~ and with (necessarily unique~

invariant probability measure p .

will be a chain on i U Z but we may consider 1 U Z, as naturallyi 1

labelled via the correspondence

i -> O,il -> 1,i2 -> 2,.0..

This labelling allows us the obvious interpretation of the f ollowing set-up:

(25) is of type E 

(26) is of type Z. ~ ( i E ’

J J 1

(27) { aj : j E is defined recursively via

J _ - . 
aj ~~(j~ 

’

(28) ~~, : i E is defined via the consistency condition:i - ..

a 
i 

= cc, 
i i E Z. jCZi

For i E I‘ 0, we now regard as a killed chain with state-space

i U Zi (not as an honest chain with state-space i U Z, i U 0394). For (26) to make

sense, we must have

a . J > 03B2i (j E Z.) -

and this is exactly guaranteed by 24(it) .

SPLICING THE CHAINS TO OBTAIN X

Define. IO ~ {O} , I1 - and, generally,

In+1 = 03C0-1In (n ~ 0).Define X[0] _ . The state-space of is 0 U I1, of which state 0

is instantaneous and states in I1 are 
stable. (Important. We start X[O]

at the 

- 

Each visit by X[0] to a state i in II is exponentially distributed

with rate a i defined by (27) . Define

L[0] (t,k) ~ meas{s~ t : (s) = k} (k E 0 U I1)
and

 
[0] 

_ inf L[O, (t,0) > 1}.
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The number of visits by X[°] i to a state i in I1 before time ~[°]
has (the Poisson distribution of) mean b.. 0 Hence

(29) = i/ O (i ~ I1).
Formula (29) confirms DOEBLIN’s interpretation of the fact that (-1 restricted

to 0 U I1 is the (unique modulo constant multiples) invariant measure for the

positive recurrent chain X[°] .
As already mentioned, each i-interval (i E I1) of X[°] i (that is: each

visit made by X[°] -) to state i) is exponentially distributed with rate ai. 0

Because of ( 19) , the consistency formula (28) arranges that under the P law

of X , the total time spent by X at i also has the exponential

distribution of rate a.. 0
1

Because of the path-decomposition result described at the end of Part 3, we

can therefore build up from any i-interval (i E I ) of a chain with the

P(1) law of X by inserting suitable excursions (into Z.) throughout this

i-interval. It is important that one excursion has to be inserted immediately

after the right-hand end-point of the i-interval.

We now assume that fr each i I . each i-interval of X[°] is built

into a chain with the law of in the manner just described. This

operation produces a chain Xn on 0 U I1 U I2 for which states in 0 U I
are instantaneous and states in I2 are stable. For each path,

(30) X[o] (t) - X[1] (’~ol(t)) ~
where

~°1(t) _ 
L[ 1] ( t,J) _ meas~u ~ t : X[ 1] (u) E J ~

for I2 .
Set

i[1] _ inf~ t : L [ 1] ( t , 0) > 1 ~ .
Then for so that from (29),

EL~1](2[l,,i) - ~.i/~.° (i E I1~ .
An easy calculation based on (21) confirms that this last equation also holds

for i E I . Thus the restriction of 03BC..t to I U I1 U I2 is invariant for X[1) . .
Proceed in the obvious inductive fashion to produce a chain

X[n] -) on 

I 
I U I1 U ..o 0 U In L’ I n+ 1

instantaneous stable

with invariant measure ~, restricted to k ~ n + 1 ~ . The sequence

(X[ n ] : n = 0,1,2,0..) is time-projective in the obvious sense which generalises (30),
and we have arranged that

= ~(I~/~0  ~-

n

I now claim by analogy (:::) with the situation studied by FREEDMAN in Chapter 3 of
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[4] - and if you will not accept analogy, you can systematically reduce our case

to that considered by FREEDMAN - that the projective limit chain X on I exists.

The chain X is positive recurrent with unique invariant probability measure
and Xr LnJ i is simply X observed while it is in I 0 U I 1 U ... I n+1 .

PROOF THAT X SATISFIES A ~ 
Define

~j ~ ~~~j~ /aj ’ ~ j 1 ~ j ~j E I~ D~ . °

Suppose

i E I2, k E I3, ,
= i. ’~~k~ = j.

Let us draw (the off-diagonal elements of) the Q-matrix of for

n = 0,1,2. The general pattern will then be clearo The following pictures

explain why we chose the as we dido (The actual calculations of the Qr i
are left as amusing exercises.)

Q[O] : O bj ai 

i

b. b. 
_

i 
.

Q[1]: O bj i bj j

bi 
i bj j bk k

0 1 > i bj j k > k
r

Recall that Q has the picture

Q : 0 b i > i bj j bk k -> ....

We see that Q (componentwise) as n ~ oo .

FREEDMAN’s convergence theorem, Theorem (1.88) in [4], now identifies Q as the

Q-matrix of X. (For the reader’s convenience, we provide a simple direct proof
of FREEDMAN’s theorem in the next section.)

We do not need Freedman’ s convergence theorem because we can argue directly
the desired stronger result ~. The pictures of ’ Q 2 ’ . . ~ °
are not necessary either but they may help clarify the following argument.

Suppose that i E In 1) o Then each excursion from i made by -j
will begin at some predecessor of i. The splicing which takes X( n-1, i to i

will remove the possibility of a jump from i to a predecessor of i. Every
excursion wi from i made by X[n) -, will satisfy Z. and we shall

1 - n i i

have
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= 

q~ 
for the process Further splicings Xr -, -~ ... will not change

the measure 03BDi. o w. (o+)-1. Hence X satisfies A 

AN ANALYTIC APPROACH

There may be readers who are prepared to accept that for b E In’ , Xr Lmj i n)
satisfies 

_

(3l) " ~’ = 

but who will hesitate to accept that we can "let n - oo to deduce that (31) holds
for X". In such circumstances, we can resort to analytic methods which leave no

room for doubt. (CHUNG, FREEDMAN and I believe however that it is best to tighten

the probabilistic reasoning.) We shall deal analytically with the problem of (31)
in a moment. First, let us test out the analysis by giving a short direct proof

of FREEDMAN’s convergence theorem.

{[Proof of FREEDMAN’s convergence theorem. Let X be any chain on a countable

set I. Let (J ) be an increasing sequence of subsets of I with union I. 0
n

Let X be "X observed only while it is in J " . Let p(t;i,j),Q(i,j),...
n n

(instead of p..(t),q..) refer to X and let p (t;i,j), Q (i,j),... refer to

X . We must prove that

Q(i,j) (n ~ oo) . .

We know thatWe 

know 
that 

p( s; i , j) ds

is the P -expected time that X spends at j before X-time t o Hence

rt rt

(32) p(s;i,j)ds v ( t0 p(s;i,j)ds, (nf).

Since

(33) Q ( i , j) = ]
- 03BB~~

we have

I (~)
By an obvious ’holding-time’ argument, = Q(i,i),Vi. It is therefore

enough to prove that when j ={= b .

From (32),

~(X;i,j) ~ ~(X;i,j). .
Hence, from (?) and (8) , ,

~;~J), g~;b,j) ~ °

But, from (3),

Let n -~ oo to find that

~(X;b,j) ~ 

and now let 03BB ~ co to get the desired result. See KINGMAN [10] for a deeper

convergence theorem.]
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It is very important that the monotonicity in (32) only takes effect
after n is so large that i,j E J . (Otherwise, one could prove some

extraordinary results.)
Discussion of (31). Assume that X[m, satisfies the appropriate version of (KBE)
for each m. 0 Fix b and j and restrict attention to those m such that both

b and j belong to k  By Proposition 1 ,

g~m, (~~b~j~ - bp~m~ (~’~l~j~ . 

As we have strict monotonicity (see Warning above) on the right-hand-side.

Hence

(34~ g(~.~b~j~ - ~ .

i E b
Since (34) holds for all b and j , X satisfies 

We can of course try to carry the analysis the whole way by defining explicitly
the generator A of our chain X. Compare KENDALL (7~ ..

THOUGHT ON BRANCH-POINTS OF X

Suppose that = 0 , i( 1~ , i~2~ , ... E I and that

1~ E °

It seems intuitively plausible from our pictures of the Q[n] that if

n~II2 03BEi(n) ) > o ,

then, in the RAY-KNIGHT compactification of X, the sequence (i(n~} converges

to a branch-point x of X with

n ~i(n~ ~
n2 2

- (k 2 1).
k2n+2
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