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THE Q-MATRIX PROBLEM 2: KOLMOGOROV BACKWARD EQUATIONS

by
David Williams

Part 1. Introduction

(a) This paper is a sequel to [QMP 1] (=fi6]). The main result of [Qmp 1]
is recalled as Theorem 1 below.

Here we introduce and study the KOLMOGOROV backward equations for arbitrary

chains. Theorem 2 solves the existence problem for totally instantaneous chains

which satisfy these equations. This theorem is therefore a kind of (dual!)
analogue of the 'existence' part of the STROOCK-VARADHAN theorem (ﬁﬁ]) on
diffusions.

Two of the chief methods in [QMP 1], SEYMOUR's lemma and KENDALL's branching

precedure, again play a large part. However, because the chains constructed in
[@MP 1] never satisfy the KOLMOGOROV backward equations, the branching procedure
has been substantially modified along lines suggested by FREEDMAN's book [4] .

We therefore arrive at the splicing procedure described in Part 4. The splicing

technique provides a nice application of ITO's excursion theory.

I hope to show in [QMP 3] that the methods of [QMP 1, 2] may be used to make
some slight impact on some altogether more profound and important problems on
chains.

(b) Let I be a countably infinite set. Let Q be an I X I matrix
satisfying the DOOB-KOLMOGOROV condition:

(DK) : 0< g <o Vi, j: i # j).
For i€ I and J c I\ i, write
(i, j) = = 9 -
Jjed
(The symbol "= signifies "is defined to be equal td'.) As usual, define
93 =795

We say that Q is a Q-matrix if there exists a C'standard') transition
function {P(t)] on I with P'(0) = Q. The matrix Q is then called the
Q-matrix of fP(t)} and of any chain X with minimal state-space I and
transition function fP(t)}. We say that {P(t)} (equivalently, X) is honest
if P(t)l =1,VYt, that is,if X has almost-surely-infinite lifetime.

THEOREM 1.  Suppose that Q satisfies ((DK) and) the "totally instantaneous’

condition

(TI): q = ® i) .

Then Q is a Q-matrix if and only if Q satisfies 'NEVEU's condition'

(N): z qQ . A q . < © (Va,b: a ¥ b)
j&fa,pp 0PI
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and the "safety condition’

(S): there exists an infinite subset K of I such that

Q(i,k\i) < o, Vi.
Further, we can then find an honest {P(t)} with P’ (0) = Q.

(c) The KOLMOGOROV backward equations. Let {P(t)} be an honest transition
function on I and define Q = P’'(0).

Let B(I) be the Banach space of bounded functions on I with the usual
supremum norm. With an eye to LEVY systems, define the operator Q on B(I)
as follows:

@), =  q (£.-£)
i Y

on the domain 9(&) consisting of those f in B(I) such that

(i) for each i, the series defining (Qf)i converges absolutely,
(ii) &f e B(I).
We shall say that {P(t)] satisfies the KOLMOGOROV backward equations
(KBE) if
(KBE) | : A c &
(that is: 9(4) c 9(@) and 4 =8® on 9(4)) where A is the strong

infinitesimal generator of iP(t)} acting on B(I) . Define the resolvent

{/1;(7\) :A >0} of {P(t)} as usual:

('15(7\)f)i = Jm e-)\t(P(t)f)i dt (feB(1),ie I).
It is standard that 4 C ﬁoif and only if
(KBE)Z: O -8)PM)E = £ (f e B(1)) .
Of course, (KBE)2 must be read as implying that /l;(l) : B( I) -> 9)(3) .
As in [QMP 1] , Wwe write vi for the ITO excursion law at i and w.1 for
a typical excursion path from i. It is easy to guess the following result from

work of REUTER [13] and CHUNG [2] on the stable case.
LEMMA 1. (KBE) is equivalent to the statement:

(1%): (v1) vyiw, i w(00)¢ N1} = oo

This lemma is proved in Part 2.

Since vi has total mass qi and

vi{wi:wi(m) =3} = a5 (i +3),
condition (1%) implies that
(=) g = I a (5 ) Wi),

J#i
1f {P(t)] satisfies (KBE) and (TI), it therefore follows that Q= P'(O)
satisfies (DK) , (N) and
(T1z): 9 = I g, = (vi),

J¥i

Suppose conversely that Q is an I X I matrix satisfying (DK) , (N) and
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(TIZ). Then Q automatically satisfies condition (S), so that there
certainly exists an honest {P(t)} with P’ (0) = Q. Recall however that the
methods of [QWP 1] never produce a {P(t)} satisfying (KBE). Still,
everything works out right.

THEOREM 2. Suppose that Q is an I X I matrix satisfying (DK), (N) and

(TIZ) . Then there exists an honest transition function {P(t)] with generator

A satisfying A C q
Note. In [QMP 1], the proof of the apparent 'detail’ that {P(t)} in Theorem 1

can be chosen to be honest was proved by a trick. Since that trick would not work
for Theorem 2, we are forced to give the proper (and very much shorterl) proof this

time. All that is needed is a direct application of the quasi-left-continuity

property in the form for RAY processes.

(d) Let Q be an I x I matrix satisfying (DK) and (Z). Note that if
£ c9(@), then 2 e 2(9) so that () is an algebra. An amusing corollary
of Theorem 2 is that if condition (TI) also holds, then 9(@) separates points

2£ (I) if and only if condition (N) holds. This corollary is amusing for two

reasons: (i) I can not prove it directly; (ii) it is false if condition (TI)

is dropped: Is it possible that the corollary is more than merely amusing?

(e) Our construction will make it clear that the {P(t)} in Theorem 2 can
not possibly be unique.

The lack of uniqueness of {P(t)} in Theorem 2 will be obvious to devotees
of the Strasbourg school for the following reasons. Let Q be as in Theorem 2
and let X be a RAY chain with generator A satisfying A4 C Q Since X is
totally instantaneous, the Baire Category Theorem implies that X almost surely
visits uncountably many fictitious states during any time-interval. The set of
fictitious states is therefore non-semi-polar and so (DELLACHERIE [3]) contains
a (non—semi—polar) finely perfect set. This finely perfect set is the fine support
of a continuous additive functional ¢ (DELLACHERIE [3], AZEMA [1]) and we can

use ¢ to change the LEVY system of X without destroying the condition A4 C 52

Part 2. Proof of Lemma 1

Let {P(t)} be an arbitrary C'standard') honest transition function on I
and set Q = P’(O). Let X be a good (RAY) chain with minimal state-space I
and with transition function {P(t)}.

Let b be a point of 1I. Let j(i,j (S I\b) be the usual first-

f
ib’ Bp
entrance and last-exit functions occurring in the decompositions:

t t
) e = [ @y (enas, (1) = [ a6, (c-9) ds.
o

See, for example, CHUNG [2]. Let T, be the hitting time of b. Then

Fo(t)=p [t < t] = JZfib(s)ds (i +0b).
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Introduce the taboo transition function {bP(t)} on I\b as usual:

i .
bpij(t) = P, > t; x(t) = 4.
since {P(t)} is honest,
(2) g p..(t) = 1-F_ (t).
g4+ bb ij ib
It is standard that
(3) g (t) = T oq., - .p,.(t).
bj i$b bi b ij

This follows because gb.(-) is an entrance law for be(t)} and gbj(0+) =q
PROPOSITION 1. The condition

(bq.-b): vb{wb: Wb(0+) & I\b} = 0
holds if and only if
() gbj(t) = iibqbi . bpij(t) (Vt>0, je I\b) .
Proof . Set
(5) g (t) = 3 g (t).
b jtb O

Let Z,b(wb) denote the lifetime of excursion wb from b. Then vb o é;l is
- the classical LEVY—HIN\(/JIN measure of the subordinator associated with inverse
local time at b, Hence from standard theory (NEVEU [12] , KINGMAN [9]) based

on (9) below,

v{gy >t = g (t).
Because
vb{wb: wb(0+) =i} = a, (i 41v),
it is clear that (bQ->) holds if and only if
(e) g (t) = .ibqbi[l_Fib(t)]'

Proposition 1 now follows on comparing (2), (3) and (6)

Condition (IQ—>) of Lemma 1 therefore holds if and only if (4) holds for

every b in I.

Use the 'hat' notation:

®
t(\) = J e "e(t) at n > o0)
(o]
for Laplace transforms. Thus (1) takes the form
A A A A A
(7) P, (M) = %ib(l)pbb(x), pbj(X) = pbb(K)ng.(X),
and, for obvious probabilistic reasons,
A A A
(8) bPy ) = By - 2, 00,00
Further, since {P(t)} is honest,
A A A
1= Xgpbj(ﬂ = AP, (M 1+ (V)]
so that
A -1 _ A
(9) BopM T = n = g (V).

Proof that (KBE) => (IQ->). Assume that (KBE) holds. Take b in I. Set
uE X,y € B(1). (X{b} is the characteristic function of {b} .) Then the

equation

bj
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O =BPM)u = u
yields

(10) Mpp(M) - 1 = 2 bqbi[’;‘aibm -

)]

A
Ppb

p, (A) £ q [f -1].
bb itb bi- ib
From (9) and (10),
A o
rg, (M) = iibqbih'fibm]
so that (6) holds and (b %) .
Proof that (IQ*) => (KBE). Assume that (IQe) holds. Take b in I. Then

A
trom (4), (7) and (8) it follows that for ue B(I)" and h= P(\)u,

A -1 _ A

B (M) By, -y = ii bqbi[hi £, 0Mn].
But from (9) and (6),

A -1 _ A

PyopM) hy = Ay = i bqbi[l 1My
so that

Ay, ~u = I q.|[h,-h].
b b i+b bi~ i b

A
Thus h = P(A\)u € 2(&) (you should check this carefully) and
2 \A

A-D)PA)u = u.
Note. I leave the problem of giving the correct interpretation of (KBE) in
the form

d

3t P(t) = gr(t)

to people who are more expert (and more interestedl) in analysis.

Part 3. KOLMOGOROV's chain "K1"

There is a substantial literature on K1. The paper [8] by KENDALL and
REUTER gives a most exhaustive analysis which is taken up in CHUNG's book [2].

See also FREEDMAN [4]. REUTER [14] uses K1 very effectively to obtain results
on the rate of convergence of p(t) to 1 as t ¢ O for Markov p-functions.

ITO's excursion theory allows us to rephrase the (LEVY—) KENDALL-REUTER-CHUNG
description of K1. For K1 itself, ITO's idea provides no more than a rephrasing.
However, excursion theory gives the natural language for the"splicing procedure'l
of Part 4. For Part 4, we need the modified form BLHKI of K1 described later
in this part. We can use ITO's idea effect?vely only because of the path-

PIN

decomposition result which explains how a K1 chain can be obtained by welding

(o]
a certain strictly elementary chain onto an ol K1

THE CHAIN Ki(b ,a )
n n

chain.

Let I be the set {0,1,2,...} . Pick (finite) b_> O (k& N) and (finite)

k
a >0 (k€ N) such that b, = © and

(11) Ebk(ak+7\)-1 < x> o0).
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Set
00 b b, b \
- 1 2 3 "
al —al .
Q = a -a, een
(o] - .
a 33

REUTER [_14] gives an analytic proof that there exists a unique honest transition
function {P(t)} with P'(0) = Q. He mentions that CHUNG and I had been able to
provide probabilistic proofs of this fact. I guess that CHUNG's proof is
essentially the same as mine and goes like this.

Suppose that a RAY chain X with Q-matrix Q exists. Then we see that for

k€ N, X leaves k by jumping to O. Hence, with the notation of Part 2,

_ —ait .
(12) fio(t) = ae . (ie N),
_ J N
(13) oPis(t) = 8540 (i,je N) .
Since go.(-) is an entrance law for {op(t)} and ng(o+) = bj (j e }j) , we
have ¢
-a.
J .
14 At = b.e € N).
(14) gOJ( ) 5 (je N

But now the various equations in Part 2 determine {P(t)} uniquely from (12) -
(14). Thus, for example, (9) and (14) give

-1,-1
(15) ’;‘;00()\) = [A+x 3 b.(a.+N)"]7.
JjeN J J
The existence of {P(t)} follows 'constructively' and we see that (11) is exactly

the right restriction on (bn ra i e LI) .
The standard RAY-KNIGHT compactification E of I for X (see Part 2 of
[QMP 1]) may contain points not in I (this will happen if and only if
1lim inf an < 00) . However, we shall always have
E = {xeﬁ: P(t;x,I) = I,Vt > o} = I.
Thus, almost surely,

x(t) e I,Vt 20; x(t-) € 1,Vt > 0.

THE ITO DESCRIPTION OF Kl(bn,an)

The discussion above shown that we can restrict excursion paths wo(-) from
O to constant functions with
Wy (O,éo(wo)) > {j} for some j in N
and that
-ajt
H +) =3 = .
vO{wo. wo(O Y=3, éo(wo) e dt} ajbje dt
ITO [6] and MAISONNEUVE [11] expand on the idea that, in terms of the local time

L(t,O) = meas{s < t: X(s) = O} ,
the excursions from O form a Poisson point process (with values in the space of

excursions) with characteristic measure vo . We can therefore build X from vo .
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N
THE CHAIN ﬁl~K1(c1 I B)
A BINKl(b a B) chain BY is a chain identical in law to a Kl(bn,an-ﬁ)

chain which is k111ed at rate P while it is in N but not killed while it is

at 0. Here P > O and the parameters an’bn (n S y) satisfy
= > °
an 0, Z‘.bn/an < o, a, B (Vn)

If we adjoin a coffin state A and put Y in A from the killing-time on, we

obtain BY as an honest chain on {A,O,l,2,...§ with Q-matrix
[ o4 o __ 0 _9_ ...
[ - ..
/ o! o b, b,
B . (al—ﬁ) —ai (o]
I - - i
B ! (32 B) o] a, eee
1

. . . . P, /
(The dotted lines separate out the components involving A .) Again the Q-matrix
determines a unique honest transition function on {A,O,l,z,..gf . We shall always
work with the PO law of BY: that is, we suppose that BY starts at O.

An excursion path w ( ) of ﬁY from O will start at some value w (0+) JeEN
and then will either die at some finite time Z_, (w ) because BY Jjumps to O or

will jump to A at some finite time Z_', (w ) in which case Z_,o(wo) = 0. The

excursion law ﬁvo of B at O 1is specified by the two equations:
ﬁ . o —aJ-t
(16) uO{wO. wo(o+9 =3; ;o(wo) € dt} = bj(aj-ﬁ)e ,
] . . -a.t
(17) vofwo H w0(0+) =3; ;A(wo) e dt} = bjﬁe J
From (17), we see that
B . - - =
(18) vO{wo.éo(wo) =0} = a = B'Z b./a_.
This means that jeXN

(19) the total time
T = meas.ft : 5Y(t) = 0}
spent by BY at O 1is exponentially distributed with rate «.

It is also clear from (17) that

(20) the probability that BY Jumps to A from state j is
p./h(N) = ﬁuj/&

where pu is the measure on N with p p({g}) =b_ /a,.

Further, (16) and (17) imply that 7

(21) the expected total time spent by BY in state jE€ N is

B_luj/u(ﬂ) = a_luj-

A  PATH~DECOMPOSITION RESULT
Define
Y = supfit: BY(t) = 0}.

Construct a process X starting at O with ITO excursion law at O which
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is the restriction of Bvo to the set {éo(wo) < 00} . Then X will be a
Kl(bn- an/an ,an) chain. Let L(:,0) denote the 'local' time spent at O
*
by X. With (19) in mind, let T denote an exponentially distributed variable
independent of X and with rate . Set
* *
y = infft:L(t,0) >T}.
*
Then {X(t): t <y } is identical in law to {BY(t) : t < Y} o We can therefore

construct a chain identical in law to the chain {BY(t) tt < Y; by inserting

appropriate excursions into the interval [O,I‘) which represents the growth of

local time at O for BY. The chain fﬁY(td-Y) tt 2 0} is independent of the
chain {BY(t) : t < Y} and is easily described. Indeed, the chain

{ﬁY(t+Y) tt 2 O} starts at a point j of N chosen according to the
distribution in (20), stays at j for an exponentially distributed time of
rate a_,, and then jumps to and stays in A. Hence

(22) given an exponentially distributed random variable I of rate o we can

* P
construct a 6I.§K1(bn,an) chain ﬁY such that the time spent by fSY"'< at O

is EQUAL TO (not just identical in law to) T. Of course, we shall have to

expand (1 by taking products Q->0x0 (say)) in this construction but we
must extend I by T(w ,(E) =T(w) .

Part 4. Proof of Theorem 2

We say that I is tree-labelled if I is labelled as the set of vertices

of the tree

o ~TT—
- \ T
o1 02 03 U~
~ ~ AN U™
/] \\ ~ / \\ - PEEN PN
O11 012 013 021 022 /4N

s AN VARUEN
2N P '
s

We then write Zi for the set of immediate successors of i so that we have

the following local picture of i U Zi:

i
N

1 ~

}\\
e

i1 i2 i3 Z,
i

We also write =n: I\ O-> I for the immediate predecessor map so that Zi = w-lfif .

SEYMOUR's lemma (Lemma 9 in [QMP 1]) implies that under the hypotheses of

Theorem 2, I may be tree-labelled in such a way that

(23) c(i) = jii[qij—q‘ij] <@

where



513

o]
]

ij = qij if je iV Zi

O otherwise.

We now suppose that the hypotheses of Theorem 2 hold and that I is already

tree-labelled as just described.

LEMMA 2. There exists a probability measure uy on I such that
(24) Zc(i)p(i) <

and a positive recurrent chain X (with minimal state-space I) with p as

an_invariant measure and with generator A satisfying A~ c Qj.

EXTENDING THE LEVY SYSTEM
Before proving Lemma 2, let us see why it implies Theorem 2 .

Define

t
o(t) = J co X;ds,
0

where c is defined at (23). From (24), it follows that ¢ is a (finite-
valued) CAF of X . Define a new process X which agrees with X up to

the time 61 of the first "new' Jjump of i, where

Plo.>t | X] = exp[-¢(¢)],
< LY o _ \—-1 -
P[X(0)) =3 | X0, =) =1] = c(1) [a;;-a7;]-
Define further "new’ Jumps 62,63,... in the obvious way. Then X, defined
for t < Oy = 1imoh, is a Markov chain with generator i c a. If Op = 00

(almost surely), then X is honest and Theorem 2 is proved.

Note that
= inf{t: X(t) ¢ X(t-) U 2~ .
61 { (t) & x( ) X(t-%
Hence the "new' Jjump times Gi,cé’ao. of X are stopping times relative to the
family of o-algebras §t = 0{}52 s < t} (completed in the usual way). Suppose

that X is made into an honest process 'iA by the usual adjunction of a coffin

state A. Then

~ A

XHo) = b on fo, <ol .
But, in the standard RAY-KNIGHT compactification of I associated with X
(see [Qup 1]),

A

exists and satisfies

1= B¥No,) = 0 1% )] = B0iX’(o-) )

on {q@ < m}. (This follows from the quasi-left-continuity property appropriate
to RAY processes. See GETOOR [5].) Hence &AQ%D—) =A on {qm <®©}. We can

therefore modify X to an honest process X with generator AEE R by making
X agree with X up to time o, , butting (say) X(qm) =0 on qu <o}, and

letting X run again (when necessary).
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Proof of Lemma 2

The proof of Lemma 2 takes up the remainder of the paper.

We may as well simplify notation by writing Q instead of Q—. We therefore

suppose that Q is an I X I matrix satisfying (DK),(TIZ) and the further

condition:
>0 <=> J .
Q) 9 jez,
(The "<=' condition in (QL) is easily shown to be harmless.)

Remarks (i) It is not surprising that the condition (Qi) determines the crucial
case of Theorem 2. Readers unfamiliar with FREEDMAN's book [4] might find it
rather difficult to arrange for a chain satisfying (Q&) and (IQ*) to be able
to return to state O (more or less immediately!) after leaving it. It is in
puzzling out such things that much of the charm of chain theory remains.

(ii) I have an alternative proof of Lemma 2 based on the properties of
branch-points of RAY processes. This alternative proof makes it easier to
understand intuitively how certain chains satisfying (Qi) and (ICL) are able
to return to O. However, I believe that the present proof is 'better' (in a sense
which I hope to clarify in [QMP 3]). The alternative proof is no shorter than

the one given here.

CHOICE OF INVARIANT MEASURE u
Define
b, = Q(x(1),1), ie1\o.
Let ¢ be a given non-negative function on 1I. (Of course, this function c¢

now plays the role of the 'correction term' c¢ in (23).) Then

(24) there exists a probability measure p on I such that

(241) by > O vVk), ?icipi < o,
and
b
" Fx(J)

(241ii) s vJ'eI\[ouzo].

p(ZJ.) <% AL .
x(3) x(3) 'm0 x(J)
To prove (24), first choose a totally finite measure v on I with
Vi >0 (Vk) and such that Z‘.civi < 00. Then make an obvious recursive use of

the following elementary proposition.
*
PROPOSITION.  Suppose that v* and b are measures on N with
* *
(o]
vk > , bk
on N such that

* *
>0 (Vke E) and 1 < b (ﬁ) < . Then there exists a measure u

* * . * * * .
0 < py <y V3, uj/u (M) < by v3) .
[Proof of proposition. Choose 1 such that 1 <n < b*(y). Let N be a

-1 %
probability measure on N with O < Xk $m by (Vk) . Choose K so that
Ai1,2,...,K}) > q7l.
Set
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k<K

<minvi>h] AT (3>x).1]
k<K J J
THE CHAINS X(i)

Our matrix Q continues to satisfy (DK),(TIZ) and (Q\L) Let u be

“3 = <minvz)')\j (j < x),

il

any probability measure on I satisfying (24 ii) . By splicing together various

chains X(i , Wwe shall construct a positive recurrent chain X with minimal
state-space I, with generator A satisfying A C § and with (necessarily unique)
invariant probability measure u .
X i will be a chain on i U Zi but we may consider i U Z:_L as naturally
labelled via the correspondence
i <=> 0,il1 <=> 1,i2 <= 2,....

This labelling allows us the obvious interpretation of the following set-up:

(25) x(o) is of type Kl(bj, a.: je zo) ;
(26) x(l) is of type Bilzim(bj, a;: je zi) (i e 1\O);

(27) faj: Jje I\O} is defined recursively via

b, .
2.4
a, .
3 Hx(3)
(28) {ﬁi: ie I\O} is defined via the consistency condition:
a, = a, = B, X b./a,.
i i 1J_€Z:.L b}

For 1ie I\O, we now regard X(l) as a killed chain with state-space
iV Zi (not as an honest chain with state-space i U Zi U A) . For (26) to make

sense, we must have

> : -
aj > By Gez)
and this is exactly guaranteed by 24(11) .

SPLICING THE CHAINS X(l) TO OBTAIN X

Define - I_ = {0} , I =2

o o’ and, generally,

-1
I = .
(O) n+1 n In (n 2 O)
fi X = . - 3 .
Define [0] X The state-space of X[O] is OU I1 , of which state O
is instantaneous and states in I1 are stable. (Important. We start X[O]
at O, so we always work with the P(O) law of X[O] )
Each visit by X[o] to a state i in Il is exponentially distributed

with rate a, defined by (27). Define

L = M4 =

[OJ(t,k) meas {s< t x[o](s) k} (ke oy 11)
and

Tlo] = inf {t : L[o](t,0)> 1} .
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The number of visits by X[O] to a state i in I1 before time T[

o]
has (the Poisson distribution of) mean bi. Hence

i = b = i .
(29) EL[o](T[o]'l) i/ai “i/“o (ie Il)
Formula (29) confirms DOEBLIN's interpretation of the fact that u restricted
to O U I1 is the (unique modulo constant multiples) invariant measure for the

positive recurrent chain X[O]'

As already mentioned, each i-interval (i c Il) of X[ (that is: each

o]
to state i) is exponentially distributed with rate a, .

(1)

of X . , the total time spent by X * at i also has the exponential

visit made by X[O]

Because of (19), the consistency formula (28) arranges that under the P law
distribution of rate a, -
Because of the path-decomposition result described at the end of Part 3, we

can therefore build up from any i-interval (i = Il) of X[ a chain with the

. . 0]
P(l) law of X(1 by inserting suitable excursions (into Zi) throughout this
i-interval. It is important that one excursion has to be inserted immediately

after the right-hand end-point of the i-interval.

We now assume that for each i in Il' each i-interval of X[O] is built

into a chain with the P(i) law of X(i) in the manner just described. This

operation produces a chain X[l] on OU I1 Ul for which states in O U I

2 1
are instantaneous and states in 12 are stable. For each path,
(30) X1 (t) = Xpyq0rg,(8)),
where
YOl(t) = inf{s: L[l](s,IO U 11)> t},
L[l](t,J) = measfu < t: X[l](u) e J}

for JC IO U I1 U 12.
Set
Ty = inf{t:L[l](t,ob 1}.
Then for i€ Il’ L[l](T[l]'l) = L[O](T[o],l), so that from (29),
EL[I](T[l]’l) = Hi/’uo (ie Il).
An easy calculation based on (21) confirms that this last equation also holds
for i€ 12. Thus the restriction of p to I0 V) I1 V) 12 is invariant for X[l]'
Proceed in the obvious inductive fashion to produce a chain

X[n] on IO U I1 U ... U In U I

L | n+1
instantaneous stable
with invariant measure p restricted to U{Ik: k < n+ 1}. The sequence

(X[n]: n = 0,1,2,...) is time-projective in the obvious sense which generalises (30),

and we have arranged that

znzInEL[n](T[n],i) = “(I)/po < .

I now claim by analogy (1!!) with the situation studied by FREEDMAN in Chapter 3 of
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[4] - and if you will not accept analogy, you can systematically reduce our case
to that considered by FREEDMAN - that the projective 1limit chain X on I exists.
The chain X 1is positive recurrent with unique invariant probability measure p

i i i it is i U I ees I .
and X[n] is simply X observed while it is in I0 1 U n+1

PROOF THAT X SATISFIES A C @

Define
. = . . . = 1 - . j e I\O).
EJ Bw(g)/aJ » My EJ (3 \ o)
Suppose
ieIl, jeIz, kels,
=(3) = i, =x(k) = j.

Let us draw (the off-diagonal elements of) the Q-matrix Q[n] of X[n] for

n=20,1,2. The general pattern will then be clear. The following pictures

explain why we chose the X * as we did. (The actual calculations of the Q[n]

are left as amusing exercises.)

b,
Q[O] : o] J 5 3
N/
i
bj bj
Q[l] : [0} > i > /J
/s
s Nepy
bi bj b
Q[z}: (o} i > >k

> J
a g g . agmn. a ///
N Ny e

Recall that Q has the picture
bi b, bk
Q: [¢] > i J J >k >N

We see that Q[n] - Q (componentwise) as n - 0.

FREEDMAN's convergence theorem, Theorem (1.88) in [4], now identifies Q as the

Q-matrix of X. (For the reader's convenience, we provide a simple direct proof
of FREEDMAN's theorem in the next section.)

We do not need Freedman's convergence theorem because we can argue directly
the desired stronger result that A c ri) The pictures of Q[O] , Q[l] , Q[z] y veo
are not necessary either but they may help clarify the following argument .

Suppose that i€ In (n 2 1). Then each excursion from i made by X[n—l]

will begin at some predecessor of i. The splicing which takes X[n 1] to X[n]
will remove the possibility of a jump from i to a predecessor of i. Every

excursion wi from i made by X[n] will satisfy wi(Oiﬁ S Zi and we shall

have
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vibw (04) = 3] = a (3ez)
for the process X[n]. Further splicings X[n] i X[n+1] > ... will not change
the measure v, °© wi(0+)"1 . Hence X satisfies ACH.

AN ANALYTIC APPROACH

There may be readers who are prepared to accept that for b e In’ X[m] (m 2 n)
satisfies .
(31) vplw(on ezl = 0, v fwlos) =3} = a,
but who will hesitate to accept that we can 'let n - ® to deduce that (31) holds
for x". In such circumstances, we can resort to analytic methods which leave no
room for doubt. (CHUNG, FREEDMAN and I believe however that it is best to tighten
the probabilistic reasoning.) We shall deal analytically with the problem of (31)
in a moment. First, let us test out the analysis by giving a short direct proof
of FREEDMAN's convergence theorem.

ﬂProof of FREEDMAN's convergence theorem. Let X be any chain on a countable

set I. Let (Jn) be an increasing sequence of subsets of I with union 1I.
Let X be "X observed only while it is in Jn". Let p(t;i,3),Q(i,3),.--
(instead of pij(t)’qij) refer to X and let pn(t;i,j), Qn(i,j),.o. refer to
Xn' We must prove that

Q(i,4) ~» Q(i,4) (n > o).

We know that

t
J p(s;i,3) ds

(0]

is the P(i)—expected time that X spends at j before X-time t. Hence

t t
(32) J p_(s;i,3)ds | J p(s;i,3) ds, (n) .

n v

(0] (o]
Since
(33) Q(i,3) = 1m A[B(;1,3)-8, ]

: A foo J

we have

Q (1,3) | Q(1,3) 2 a(i,3) (=)
By an obvious 'holding-time' argument, Q0§i,i) =Q(i,i),Vi. It is therefore

enough to prove that Q(b,j) 2 Qaﬁb,j) when j ¥ b.
From (32),
B (n1,3) - B0i,3) .
Hence, from (7) and (8),
B si,3) - B0,1,3), B (p,3) > B(Mb, ) .

But, from (3),

g (sb,3) 2 @ (b,3). B (h:5,3)
Let n-> o to find that

Ae(hsb,3) 2 Qb 3. B(r;3,3)
and now let N { ®© to get the desired result. See KINGMAN [10] for a deeper

convergence theorem.]
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Warning. It is very important that the monotonicity in (32) only takes effect

after n is so large that i,j € Jn' (Otherwise, one could prove some

extraordinary results.)
Discussion of (31). Assume that X[m] satisfies the appropriate version of (KBE)
for each m. Fix b and j and restrict attention to those m such that both

b and j belong to U{Ik k< m} . By Proposition 1,

By (hiad) = 3 ey B (Oi,g)
ie Zb
As m? , we have strict monotonicity (see Warning above) on the right-hand-side.
Hence
A . A L
(34) g;b,3) = 2o, BOiLG) .
ie Zb

Since (34) holds for all b and j, X satisfies (KBE).
We can of course try to carry the analysis the whole way by defining explicitly

the generator A of our chain X. Compare KENDALL [7] .

THOUGHT ON BRANCH-POINTS OF X
Suppose that i(0) = o, i(l), i(2), ... € 1 and that
i(k+1) € Z; (k) vk .
It seems intuitively plausible from our pictures of the Q[n] that if

£, > 0,
ny g i(n)
then, in the RAY-KNIGHT compactification of X, the sequence (i(n)) converges

to a branch-point x of X with

P(O;xr{o§) = It Ei(n) ’
n22
P(O;x, [10}) = my(,y) B (k> 1).
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