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THE Q-MATRIX PROBLEM

by

David Williams

Université de Strasbourg

Seminaire de Probabilites

Part 1. Introduction

(a) One object of this paper is to prove a theorem (announced in [20])
which solves the "Q-matrix problem for Markov chains’ for the case when all

states are instantaneous. The solution for that case is amazingly simple.

That is all very well, but if this paper has any value, it derives from

the following considerations. The proof of the ’necessity’ part of our

theorem is rather ’new-fangled’ in that it involves RAY compactifications.

By contrast, the proof of the ’sufficiency’ part is in the ’bare-hands’

spirit of (what many would regard as) the ’good old days’ when probabilistic

intuition, free from technicalities, guided LEVY’s work and the ’analytic’

work of FELLER, KENDALL, NEVEU and REUTER. The fact that ’our theorem is

tight (that is: our conditions are both necessary and sufficient) does

something to fuse the ’old’ and ’new’ traditions. It is interesting that

we have to go back to the quite astonishing 1958 paper [8] by KENDALL in order

to find the necessary escape route from the tyranny of last-exit decompositions

modulo a finite set.

It is obvious that the ’tightness’ of our theorem means that "nothing can

be thrown away at any stage of the argument". However, I respectfully ask

the reader to bear this in mind throughout. (Thus, for example, the local

character condition, which is an essential feature of the RAY topology, must be

reflected in the later ’bare-hands’ construction.)

Acknowledgements. P.D SEYMOUR proved the very important combinatorial Lemma 9.

I could only prove it under an extra hypothesis.

G.E.H. REUTER’s comments and questions on early drafts of this paper have

been a great help.

P.A. MEYER and J. NEVEU invited me to talk in France and thereby gave a

sense of urgency to my attenpts at the ’if’ part of the theorem. Otherwise, I

would have taken my time about it. (I knew the ’ only if’ part in 1967 - it is

implicit in [l6].)

(b) Let I be a countably infinite set. Let (P(t)) be a (subMarkovian)
transition function (TF) on I with coefficients
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P(t;i,j) ~

(The symbol "=’ will signify "is defined to be equal to" .) We always make

the usual assumption that (P(t)) is "standard" in CHUNG’s sense:

1 (Vi).
t v 0 11

The Q-matrix, Q, of (P(t)) is the componentwise derivative Q ; p’ (0).
We normally write q.. 0 for Q(i,j) and q. for -q... In detail,

qi ~ -qii ~ lim t-1[1-pii(t)] ~ 03C9;
_

~ ~~ 
0 

~~

= lim (i ~ j).
"~ ~~

It is well known that the DOOB-KOLMOGOROV limits q ij exist and satisfy the

(DK) conditions:

(i ~ j~ ,

DK(2) Z 

A state i in I is called stable (for Q, (P(t)), or the associated chain

X) if and instantaneous if 

We shall concentrate on the case of chains which are totally instantaneous,

that is, which satisfy the hypothesis

(Vi).

One detail of notation before we state our theorem : for i E I and

J ~ IBi , we write

Q(i,J~ - L q.,.j E J 1J

Note. The sense in which Q(’,’) is a restrictio n of the true LEVY kernel

of X will be explained shortly.

THEOREM. Suppose that Q is an I x I matrix satisfying

(TI) : (Vi)
and iiand

O ~ qij  ~ (i ~ j).

(Condition DK(2) is then automatically satisfied.) Then Q = P’(0) for
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some subMarkovian TF(P(t)) if and only if the following two conditio ns (N)
and (S) hold:

(N) : E q Aq 
 ~ (Va,b: a ~ b);

(S): there exists an infinite subset K of I such that

(Vi).

Further, (P(t)) may be chosen to be "honest" in the sense that

P(t)1 - 1, 

Notes. (i) For us, the old term "honest" is much better than "(strictly)
Markovian". We wish to be able to say that " X is honest" (which amounts
to saying that X has almost surely infinite lifetime). "Conservative" has

a special meaning in chain theory (see Proposition 8).
(ii) The "N~’ is in deference to NEVEU in whose work condition (N)

is implicit. The "S" stands for "safety factor’ : there has to be a big set

K which is fairly safe from hits.

(c) This section (c) of the Introduction can be skipped on a first reading.
It summarises in coded form the present state of knowledge about "Q-matrix

problems’. Here is the key to the code: _

(~): existence; (11): uniqueness; (d~): honest;

(TI): totally instantaneous; (TS): totally stable.

Thus, for example, Problem reads: "find a necessary and sufficient

condition on an I  I matrix Q satisfying

(TS): qi  oo (Vi)
for there to exist (~) a unique (U) honest transition function with

Q-matrix Q".
were solved long ago by FELLER.

were recently solved in HOU [6]. REUTER [14] gives

a much better proof of HOU’s results.

are solved by our theorem.

are nonsensical because there is no possibility of

uniqueness under hypothesis (TI).
The (~Ll ) problem is completely solved because it reduces to the 

problem solved by HOU. I have ’effectively’ solved the problem and

shall discuss it and the general (~) problem elsewhere. The nice (~) problem
under the assumption that X is purely discontinuous and Q is the full LEVY

kernel of X will also be treated.
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Part 2. Proof of the ’ only if’ part of the theorem

MARKOV CHAINS AS RAY PROCESSES

Let (P(t)) be a ("standard") strictly honest transition function on the
countable set I. Let U03B1 be the resolvent of (P(t)). Let ¿ be the smallest

A-stable cone, stable under the kernels UB containing the constant function 1

and the functions Then 4 separates points of I. Let E be the

compactification of I r elative to d. Then (P(t)) extends to a RAY transition

function on ’the’ RAY-KNIGHT (RK) compactification E of I relative to (P(t)).
Let

E = 1, 
and let D be the set of non-branch points in E. Then D is a Polish space

containing I.

The space E is the RAY-NEVEU-KNIGHT-DOOB- ... state-space of a right process:
X - (Xt~et~~t~~t~~ 0 , ~~P : x x E E~

with transition function (P(t)) such that

l(ii) X t- (00) exists in E (Vt > 0, ’ Voo). ’

The fundamentals of the theory of RAY processes md right processes have now
attained their definitive form in GETOOR [4] and GETOOR-SHARPE [5]. Brief

indication of the equivalence of RAY-KNIGHT, NEVEU [l3] and DOOB [2]. E-spaces for
chains is given in my paper 17~ .
Definition. Points of DBI are called fictitious states of X.

[[Two confessions. (i) There is an obvious error in the definition of V in

the discussion of R-K compactification on page 298 of my expository paper [l9].
(ii) In my earlier paper ~17~, the definition of the RAY-NEVEU (= RK) topology
is correct but my conjecture about its probabilistic significance is little short
of idiotic. LAMB and ARCHINARD quickly gave counter-examples.]]

Q-MATRICES AND EXCURSIONS 
_

X and (P(t)) have the same meanings as above.

The probabilistic significance of Q = pi (0) is perhaps best explained as
follows:

2(i) qi - 

2(ii) q.. = E V. : w.(O+) = j} (j ~ i) .

Here Vi is the space of excursions wi from i. A typical element wi of Vi
is a map

1 (O~~i(wi) ) ’~ J
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from a ’random’ interval (0,~ (w, ~ ~ to which satisfies conditions
i i

analogous to those at (1~:
3(i~ > w,(t+~ - w,(t~ (0  t  ~ i (w,~ S ~~,
3(it) wi(0+) exists in D and wi(t-) exists in E for 0  t  03B6i(wi).

We define the 03C3-cylinder algebra ’V on V , as usual. ITO ([ 7]) showe d that
i i

in terms of the local time L( . , i~ at i :

(4) = meas~ s _ t : X = 
s

the excursions from i form a ’Poisson’ point process with values in 

He defined the ITO excursion law v. at i as the ’characteristic measure’ of

this point process. MAISONNEUVE [9] has a fine treatment of excursions and of

the important related concept of incursions.

Equation 2( it ) is equivalent to FREEDMAN’s result (~3~~ on ’pseudo-jumps’.

(5~ ~(EXA.MPLE (FELLER-MCKEAN-LEVY~. Let I be the set of rational numbers.

Let m be a probability measure on I with > 0, Vi. Let B be Brownian

motion on R and let l be its jointly continuous local time Put
N 

= E B ° Y 1(t~ .
iE I

Then X is a Markov chain on I and, from (2) ,

qi 
= ~ (~i), q.. 

= 0 (di,j: i ~ j).]]

The interpretation (2) allows us to derive some simple necessary conditions

for a matrix to be a Q-matrix. Here is an example. For i ~ j,

v q, .e .

Z i i 1J

Hence - q.t
03BDi{03B6i > t} ~ 03A3 qije -qjt.

But v. ° ~ 1 is the classical LEVY-BLUMENTHAL-GETOOR measure associated with
i i 

--

the local time at the regular state i of X. Hence

(6) qij(qj+1)-1 ~ ~0 e-t03BDi{03B6 > t}dt  ~ .

Results like (6) explain why it is natural to impose hypothesis (TI) in our theorem.

Every result which may be obtained by the type of argument just used is an

immediate consequence of NEVEU’s analytic work on entrance laws and excursion

laws. Result (N) is a more subtle consequence of NEVEU’s theory. We shall

soon see why this result reflects the Hausdorff property of the RK topology.

THE LEVY SYSTEM OF X

The theory of LEVY kernels provides a simple probabilistic interpretation

of the off-diagonal elements qjk (j ~ k) of Q.
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For j , k E I wi th j ~ k , define

so that J t (j,k) is the number of jumps from j to k during time t. Then

for i E I, 

t p..(s) 
Important discussion. The full LEVY kernel N of X is defined on E x D .

(See BENVENISTE-JACOD C 1~ for the latest and best account of LEVY systems.) It

is extremely important that the kernel N carries much more information than the

Q-matrix which is the restriction of N to I x I. The way in which (in general)
we force

N(i, D~ I) > 0

in our construction for the ’if’ part of the theorem should be especially noted.

THE ’LOCAL CHARACTER’ CONDITION

The following simple lemma, which is reminiscent of local-character

conditions for establishing continuity or right-continuity of paths, is the key

to the application of the RK topology to the study of Q-matrices.

(7) LEMMA. Let G be an open subset of E and let h E G n I. Put

Gc == EB G . Then 
’

l)  oo.

Note. The analogous result for the LEVY kernel N would be more natural.

Proof. Since G is open, the equations

X (t  T _ 
t t ~ s

= a (t 2 Tc~ ,
G

define a "standard" Markov chain XG on (G n I) U (3 . .

On applying DK(1) to the Q-matrix of XG, we obtain

~ > lim t-1Ph[XGt = ~] ~ liminf I)

~ Q(h,Gcn I ) .

Proof of (N). Let a,b be distinct points of I. By the Hausdorff property

for E, there exist disjoint open subsets G , G of E with a E G , b E G .
But then 

qaj ^ qbj ~ Q(a,Gca) + Q(b,Gcb)  ~ .

(8) PROPOSITION. Suppose that H is a finite subset of I such that

8(i) liminf Z q > 0.

j 
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Then every i in IB H is both stable and ’conservative’ in the sense that

qij = qi  ~ (~ i ~ IBH).

Proof. It is clearly enough to consider the case when H is minimal subject

to the requirement 8(i). Then every state in H is instantaneous and, by

right continuity of paths, is an accumulation point of I. Let G be an open

subset of E which contains H. Then Lemma 7 and hypothesis 8(i) imply that
Gc contains only finitely many points of I. Thus I is homeomorphic to the

disjoint union of H ~ copies of N U ~oo~ and is already compact : I = E. In

particular, X takes all its values in I.

Now fix i in IBH . Then i is isolated in the RK topology. By right

continuity of paths, i is stable. An excursion path w, from i must

satisfy w.(O+) E I because I = E. Further wi(0+) ~ i (for obvious

topological reasons and for the probabilistic reason that w,(0+} = i would

contradict the strong Markov property). Hence w. (0+) E IN {i} and

q. 
= = E v i {wi:wi(0+) = j} E qij 

.

j~i 
In other words, i is conservative.

Notes, (i) One can adapt NEVEU’s methods to prove that 8(i) implies that each

i in IBH is stable. However, I can not give any analytic’ proof that each

i in IBH is conservative.

(ii) A number of ’analytic’ results about Markov chains can be obtained

by similar use of the RK topology. Among these are the result quoted at the

very end of my paper [18] on Markov groups and Theorems 1, 2 and 3 of REUTER-

RILEY [15].
(iii) The above proof of Proposition 8 modernises that given in my 1967

paper [16].
Proof of (s). Now assume that (TI) holds. Then by Proposition 8 , the

following statement is true: (S) : for every finite subset H of I ,

lim inf 03A3 qhj 
= 0.

Condition (S ~ is easily shown to be equivalent to condition (S). For

imagine I labelled as the set N of natural numbers. Then condition (S~~
implies that there is an infinite set

K = ~k(l~,k(2~,k(3~,...~ C I

such that 

qi,k(n)  2-n (~n).

Then

(S): Q(i,KBi)  00 (Vn).

That (S) => (S*) is trivial.
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Notes. (i) We have now proved the ’only if’ part of our theorem under the

assumption that (P(t)) is honest. But all the more is it true if (P(t)) is

not honest 1

(ii) The full strength of Proposition 8 was not needed for proving (S) but

will become important during proof of the ’if’ part of the theorem. See the

remark following below.

Part 3. Sketched proof of the ’ if’ part of the theorem.

Proof of the ’if’ part of the theorem is much more difficult, both for

technical reasons and for reasons of greater substance. I give here the gist
(but not the technical details) of a proof based on "KENDALL’s branching procedure’.
To be honest, I have to say that my proof of the more technical parts (I shall
indicate these below) is too clumsy to inflict upon readers.

I hope to publish later in Proc. London Math Soc. either a complete and tidy

account of the entire branching-procedure proof or a totally different proof based

on diffusion theory. My first attempt at a proof via diffusion theory failed

but I am determined to have another shot at it after Professor MEYER independently

suggested the diffusion approach. _

As I see things now, the combinatorial Lemma 9, for which the present branching-

procedure proof provides the motivation, will have to be used in any diffusion

approach. Lemma 9 provides the only way that I can see of picking out the ’correct’

RAY topology from Q. The hope that a ’diffusion’ proof will work rests in part

upon the theorem that every countable metric space without isolated points is

homeomorphic to the rationals. Lemma 9 guarantees that we c an imbed I in R
in a manner consistent with the local character condition.

We now suppose that I is a countably infinite set and that Q is an I x I

matrix satisfying conditions (TI), (N) and (S~ of our theorem.

We construct explicitly an honest chain X with Q-matrix Q.

Though a desire for clarity has persuaded me to separate out the statement of

the combinatorial Lemma 9, I have presented the remainder of the proof in the order

in which I thought it through. I apologise to those readers who would have

preferred the ’systematic’ approach, but I never did like those elementary analysis

books which begin proofs: "Suppose e > 0 and choose

1

8  E ( 163~~ + ~~c2~-137 , .. " . .

A COMBINATORIAL LEMMA

The motivation for Lemma 9 will become clear in the next section.

We shall say that I is tree-labelled if I is labelled as the set of
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vertices of the infinitely ramified tree:

We shall then write Z(i) for the set of immediate successors of i so that we

have the following local picture of i U Z(i) :

(9) LEMMA (P.D. SEYMOUR). I may be tree-labelled in such a way that for every

i in I,

9(i): there exists an infinite subset K(i) of Z(i) such that

Q(i,K(i))  ~;

9(ii) c(i)= [qij - q-ij]  ~,

where

q-ij ~ qij if j ~ i ~ Z(i),

~ 0 otherwise.

The point of 9(i) is that the safety set K of hypothesis S is big enough

to allow local safety. Note that the only 
" 

I to I jumps" permitted under Q

are from a state to an immediate successor. Condition 9(ii) states that the pair

(Q,I) may be "approximately tree-ordered": Q differs only "finitely’ from Q .

The function c(.) on I should be remembered as a correction term.

SEYMOUR’s proof of Lemma 9 is deferred until Part 4(b) so as not to interrupt

the probabilist ic construction. We therefore assume now that I is already tree-

labelled in accordance with Lemma 9. We write I for the n-th level of the tree
20142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014 n

so that

10 = I1 - £01,02,03, ... ~ ,
and generally for n ~ 1,

In = nî . °
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THE BASIC IDEA: KENDALL’S BRANCHING PROCEDURE

For each i in I we shall later construct an honest chain (of a
certain special "LEVY-FELLER (LF)" type) having minimal state-space i U Z(i) ,
and with Q-matrix satisfying

10(i) q(i)i = 00, qi,j (j E Z(i)),

10(ii)  oo, = 0 ( j E E Z(i)]Bj).

Note that by Proposition 8, condition 9(i) is necessary for the existence of an

honest chain with Q-matrix Q satisfying conditions (10). It follows from

arguments similar to those used to prove Proposition 8 that is necessarily

a very complicated chain with infinitely many fictitious states. But let us

not look for difficulties.

Let us

(i) assume that "suitable" exist,

(ii) see how to piece them together via KENDALL’s branching procedure,

(iii) collect together all the properties which the various must have

in order that the branching procedure will work,

(iv) finally prove that suitable do exist.

By KENDALL’s branching procedure we mean the ingenious probabilistic idea

which motivated the analysis in KENDALL’s 1958 paper ~8~. . That remarkable paper

should be compulsory reading for all who are interested in LEVY systems and their

relation to infinitesimal generators. The paper has a nice RAY-KNIGHT

compactification too:

The chains are our basic building-blocks. We piece them together

as instructed by KENDALL. Begin with which has minimal state-space

0 instantaneous

01 02 03 stable

(Important: we shall start X(0~ at 0, so we always work with the law

Each visit by to its stable state 01 will be exponentially

distributed with some rate aOl. . During each such visit to 01, , replace X(0~
by a chain with minimal state-space

01 instantaneous

011 012 013 stable

and with the law of (In effect, each of these chains

is killed at rate aOl but it is essential that for each w the "lives of the
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chains are exactly the visits by to 01. This is a matter of paths,

not merely of laws.) The resulting ’wedge’ or ’join’ of and is

a Markov chain with minimal state-space

of which states 0 and 01 (and only these) are instantaneous. (I take the
Markov property just asserted as intuitively obvious. It is:) Note that the

wedging operation has " transf erred a certain proportion of the time originally

spent at 01 down to the set Z(Ol)" .
We now apply the obvious induction to fill out the entire tree I. o We must

ensure however that (almost) no time is pushed right off the end of the tree.
(This statement is formulated precisely in the section below entitled "Invariant 

a

Measures: filling out the time" .) Then the resulting limit process X- should

be a Markov chain with minimal state-space I and with Q-matrix Q* . . Of course,

equ ations (10) arrange that the various Q fit together to produce Q-. .

INCREASING THE LEVY SYSTEM

Bef ore we begin an attempt to make the branching procedure rigorous, we must

take account of the f inal step in the proof of the theorem. This involves
’ 

"increasing the LEVY kernel" so as to produce f rom X (which has Q-matrix Q )
a chain X with Q-matrix Q.

Def ine 
t

( 11) 

Define 

cp(t) _ t0 c 0 X’ds
where c(.) is the correction f unction at 9(ii). We shall have to choose the

so as to guarantee that cp is a (finite-valued) CAF of I. Define a

new process X which agrees with X- up to the time ~’1 of the first " new’ jump

of X, where

> t ( x-J = exp(-cp(t)) ]

= j I X(~1-I = i] = 
.

Introduce further "new" jumps ~... 
0 in the obvious way. Then X, defined

for t  = lim n) , , will be a Markov chain with Q-matrix Q. .

Provided that we do not wish to insist that X is honest, we are home:

take X = X. The only way that I can see of obtaining an honest X involves an

elaborate trick. I now sketch it f or those who are interested. (Those who
are not c an proceed to the next section.)



227

Adjoin to I a new (instantaneous) state a to produce I U {03B1}.
Extend Q to an I x I matrix Q by

qa ~’ (i E I) .

Then Q on I satisfies the hypotheses of the theorem. By Lemma 9, , we can

tree-label I and find c~ , Q ’ etc., etc.. We can obtain X** (with Q-matrix
Q ) with minimal state-space I . Define

(p * (t) / B = 2 f c  o x *- ds. .
Now produce a definitely honest chain X via

I x~-J - 

pCX~(~1) _ ~ ~ X~(~1-) > = i) - 2~~(i) ICQi .- qi ) ~
P[x~o-~=a)X~~-)=i]=~, , 

~ 
etc.. Then X does not necessarily have Q-matrix Q but the Q-matrix of X
will agree with Q on I x I o Now time-transform X by ignoring the time spent

by X in state a . . This produces an honest chain X with Q-matrix Q. . The

state a becomes a regular fictitious state of X. .

INVARIANT MEASURES: : FILLING OUT THE TIME

We now return to the problem of ensuring that " almost no time is pushed off

the end of the tree". First we must formulate this idea precisely.

Let [n] J 
be the chain (starting at o) with minimal state-space

IUIU...UIUI In+1
which is obtained after applying KENDALL’s branching procedure down to the n-th

level. The states in I0  I 1 U ... U In are instantaneous for i and the

states in In+1 are stable f or [n]. Note that

(12) => 
~ 

Thus, on the set

EE  Ik }
n 

~-’ ksn 
we may define

X (t) - limK[nJ (t) , ,
n 

" -’

the limit existing in the discrete topology of I . . What we have to do is to

choose the X(1) in a way which guarantees that

(l3) is of full measure.

Define

= meas{s ~ t: [n](s) = i } (i ~ U 1 ..~~ ’" B ksn+1 "/
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Then, f or i E I ,

[m](t,i) = (t,i) (say) ,

and, f or j E ,

(14) ~ (t’J~ S ~

It is clear that (13) amounts to the same thing as the statement:

(15) [n] (t,j) ~  (n~~) , a.s.. .

Set

T =E inf ~t : ~ (t,0~ > 1~.
If we can ensure that

(16) 2 ,(16) ](’t,j) ~ 
I 0 (n too),

then (15) is guaranteed and moreover (if for’the moment we take the Markov property
of X for granted) X will exist as a positive recurrent Markov chain.
DOEBLIN’s result that

) - (j E I)
then defines the unique invariant measure ~, for X normalised via the condition

~, f 0 ~ - 1

tells us how to obtain the necessary c ontrol over the : control their

invariant measures: We need to know that we can do this.

(17) LEMMA. Fix i in I . be any totally finite measure on

i U such that

= 1 ’ , ~(l~~j~ ~ 0 (j E Z(i~ ~ . . 
’

Then there exists an irreducible, positive-recurrent chain with Q-matrix
and invariant measure ~,

The proof of this lemma (which is the most illuminating part of the paper)
i s def erred t o Part 4(a). .

We are now free to choose the ~.(1~ in any way we wish. Can we choose them

so that (16) holds and (11) does define a CAF of X ? Yes, we can. Absolutely

straightforward calculations confirm the formula

(18) jn~ ~j~ ~ ,
where

j1,j2,..o,jn+1 E N
and

j = E n+I °

The intuitive reason for (18) is clear. From (18), we c an easily see (and prove)
that the ~,(1~ may be chosen so as to arrange both that (16) holds and (recall
(14~~ that

(19)  oo. .
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The inequality (l9) guarantees that (p at (ll) ~ a CAF of X*. .

USE OF FREEDMAN’S METHOD

How can we prove rigorously that X is indeed a Markov chain with

Q-matrix Q 7 .

We can certainly do this by utilising the method in Chapter 3 of FREEDMAN’s

book [3]. . (Note that our use of (l6) mirrors an idea used very effectively by
FREEDMAN.) However, FREEDMAN’s method is unnecessarily complicated for our

situation in which the logic of (l2) makes things simple.

Giving a neat rigorous proof of the Markov property of X" is one of the

main "technicalities" which I would like to think further about before publishing
a more complete account of Q-matrices. It would be advantageous

(i) to exploit martingales,

(ii) to consider superposition operations more general than the wedging operation
of the branching procedure.

Note. The conjecture about the (§’) problem for Q-matrices at the end of §3.2 in
[3] ("The following statements have a good chance to be right ...") is very wrong.

Exercise. Give a counter-example to FREEDMAN’s conjecture by considering the

non-existent FELLER-McKEAN chain (see (5) above) based on the inallowable measure
m on the set I of rationals with

m(i) E 1 (Vi) .

Part 4. Proofs of Lemmas 17 and 9

a) PROOF OF LEMMA 17

Now everything becomes clear. 

Recall the set-up. Fix i ~ I . . be any totally finite

measure on i U z(i) such that

/~i~ 1, , t/~j~ > 0 (j~Z(i)). . 
We wish to prove that there exists an irreducible, positive-recurrent chain X
with (J. as invariant measure and with Q-matrix Q~’ satisfying (lO):

q~ = 03, q~ = q~ (j~ z(i)),

q~ = oo, q~ =0 (j~ z(i) : ’ k~ [i U Z(i)]Bj).

We know that we can only hope to do this because the local safety condition holds:

there exists an infinite subset K(i) of z(i) such that

 oo. .

Set up a one-one correspondence p of i U z(i) with the entire set Q~
of non-negative rationals in such a way that p(i) ==0 and p(z(i)B K(i)) has
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no point of accumulation other than 0 . o We can do this recisel

because is infinite.

Let us regard p as an identification. We may then think of

as the measure ~; N _ o p 
1 

,

as the function N _ q(1~ 0 p 
1 

.

. ~. 1. P

(Notation. We write ++ for the set of strictly positive rationals. )
By our choice of P , , we have arranged that q0 satisfies the local

+
character condition with respect to the Euclidean topology of g~ :

. 

(20~ Q(0,~x,o~~~ - 
jE .~ + n 

 oo > 0~ .

We can now drop annoying superscripts (i~ by thinking about Y = P o X(1~ and

reformulating Lemma 17 as follows.

LEMMA 17~. . L- be a totally finite measure such that

= 1 ~ 0 (j E ~++~ . o
- q0o be a function on ~1++ which satisfies the local character condition

(20~. . Then there exists an irreducible positive-recurrent chain Y with

mi~ nimal state-space ~l+, , with invariant measure N ~ and with Q-ma rix QY_ _
satisf ying

qY0 = ( j E Q++),

 oo, 0 (j E ~ , ~ kE~ ~. .
The full state-space of Y will be the entire half-time (O,oo~ , o First ,

we choose the full LEVY kernel

N( . ) = 
of Y at 0. .

Choose for N ~ measure on ( ( O,o~~ , ~ ( O,oo ~ ~ ) such that

21(i~ 0   oo (x > 0~ ,
21(ii~ ,

21(iii~ ) N~ ( j E ~++) . .
We can choose such an N because of (20~ . .

Next define

(22~ ~~,7~ l 1N 
It follows from standard theory that there exists a simple (but not strong:) )

Markov process Y with state-space such that .

23(i~ Y spends almost all its time in ~+ and so is a chain with minimal state-

space ~+ ;

23(ii~ each j in ~++ is a stable state of Y with rate qY; ;- 

J
23(iii) the paths of Y are continuous and non-increasing on the set t : 0~ ; . ’
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23(iv) state 0 is an instantaneous (but not fictitious) state of Y;

23(v) NY(0,.~ - N(.). .

Properties 23 completely characterise the law of Y. The idea of using chains with

random Cantor functions as paths is due to LEVY. The way to build-in the LEVY

system at 0 is due to FELLER (in ’analytic’ work which was developed by NEVEU
and REUTER).

We ’cooked’ q~ . - N q~ . . ( j via 21(iii~. Since Y can move from

j in ~++ to k(t j) J in J ~+ only via countably many other rationals, it follows

that

( 24) qYk = 0 ( j E Q++ , k E Q+).
The picture

and DOEBLIN’s description (see the discussion before (17~~ of invariant measures

make it clear that the unique invariant measure  Y of Y satisfying = 1

is given by

Thus (22) ’cooks’ t the resul t: Y = .
The proof of Lemma 17 is complete, but one further comment might be helpful.

It is easy to " split each rational" so as to obtain the RAY-KNIGHT version of Y.

On leaving a "true" state of j in , the RK version of Y will jump to

a non-branch fictitious state in the D-s ace for Y. Of course, (24) rules out
the possibility of a jump from j to . The fact that in general we are

forced to choose

N(L0,°°~~~+~ > 0
further emphasises that the construction only works because we allow jumps to

fictitious states.

b) SEYMOUR’S PROOF OF LEMMA 9.

Since the diagonal elements of Q play only a nuisance role, we may as well
modify things a little (and simplify notation too).

So suppose that I is the countable set ~0,1,2,.,.~ of non-negative 

Suppose that Q is an I x I matrix with

0 S q.. for all pairs (i,j). .

We shall now use the kernel notation Q.(’) in preference to Q(i,.).
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Our assumptions are the following:

(N) qaj n qbj  oo (’da,b : ’ a ~ b) ;
J

(S) there exists an infinite subset K of I with

Q i (K)  ~ , di .

We may and shall assume that

0 ~ K. .

We wish to show that I may be tree-labelled in such a way that for each i, ,

25(i) there is an infinite subset Ki of Zi = such that )  oo;

25(ii~ Q  oo.
i i

(Recall that Z _ is the set of immediate successors of i.~i

Proof . For a ~ b , , put

{j: qaj  °

Then , by property (N), , for a ~ b , ,

so that 
~ > 

E ,J qaj n qbj = Qa(Tab) + 
’

 ~ 
’ Qb(  °

Hence (for a ~ b) there exists Sab C Tab with TabB Sab finite such that

2 b , ’ Qb( I~  °

Put

Then 

W _ IB S . .
(26) Qa(IBWa) S E  o0

~ ~ 
c~a 

and for b ~ a

~27~  t oo.

For each i , , put

J, i = fl (W. i U ~ i + 1 ~ ~ . ~
Then

UJi 2 ~~S
i 

Note that (by ( 26 ~ ~ ) for each i , ,

(28~ (KU Jiy ) S  o0

and (by (27~~ ) for each i ~ h, ,

(29~ Jh~ S S + 1~  oo.

Now put

Ji = ~ j > ~ U Jh .hi 
..

Then J~ , J~ , J2 , ’ ... ° are disjoint and

J-i = IBK .

i
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Further , for each i , ,

(30) Qi(JiBJ-i) ~ Qi({ j : J  i}) + Jh)  oa

from (29) . hi

Express K as a disjoint union

K - UK,
i

where each K, is infinite and
i

. K 
i 
C ~j: j>i~. .

Put

Zi ~ J-i  Ki ~ {j:j>i}.

Then Z O Z1 , ZZ , , ... are disjoint and 
,

Zi = IB{0} .

It is clear that the Zi induce a tree-labelling of I (more precisely: a

family of tree-labellings of I~ ) and that all that remains is to prove that

Qi(IBZi)  ~.

However,

5 + Ji~~
S + +  o0

from (28~, , (30~ and our assumption that  oo.
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