
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

HERMANN ROST
Skorokhod stopping times of minimal variance
Séminaire de probabilités (Strasbourg), tome 10 (1976), p. 194-208
<http://www.numdam.org/item?id=SPS_1976__10__194_0>

© Springer-Verlag, Berlin Heidelberg New York, 1976, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1976__10__194_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SKOROKHOD STOPPING TIMES OF MINIMAL VARIANCE

by H. Rost

Université de Strasbourg
Seminaire de Probabilité

Introduction. .

One of the many possible ways of stopping one-dimensional Brown-

ian motion in such a form that the stopped process has a desired

distribution is due to ROOT ([5]) . In that article, the author

introduces the notion of a barrier as a subset B of Rx R+, for

which (x,t)E:B, t’>t implies (x,t’ ) E B , and establishes the

following theorem :

Let be Brownian motion on R , , Xo = 0 ; let V be a

probability measure on R satisfying 

Then there exists a closed barrier B such that the stopping

time T : = inf ~t: the following properties:

X T has distribution B~ and ~T = .

The question of uniqueness of the barrier B given V has not

been treated by ROOT, but a theorem of LOYNES([3]) says that at

least the time T is uniquely determined by V (with probability

one, of course ) .

In a paper of KIEFER((~2]) on Skorokhod embedding of a random

walk into Brownian motion the conjecture is made that among all

stopping times S satisfying

(1) X has distribution V and £,S = 

the time T constructed by ROOT has minimal second moment and

hence is the most appropriate candidate for Skorokhod embedding

(provided ~T2~ oo or, equivalently, - ~o ) .

The aim of the present paper is to prove that conjecture and to
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state the theorem in a general, merely potential theoretic,

form. The key notion thereby will be that of a stopping time

of minimal residual expectation, which in the discrete time

case has been introduced by the argument can be

summarized as follows:

a) suppose one has a stopping time which in the class of all

times satisfying (1) minimizes for each the expecta-

tion 

~ SSt du = P (S > u> du ;

then it minimizes for all p > 1 the moments
00 00 ~)

~ Sp = p(p-1)  tp-2dt P (S > u) du) ;

b) such a time exists; call it stopping time of minimal resi

dual expectation with respect to V . It is obtained by a

construction like that of a reduite, from which it turnes

out that it even minimizes all integrals of the form
S ~~

= on R .

In this paper we will carry out the construction of those times

in a quite general framework in Theorem 1. The proof of the

theorem yields a possible potential theoretic interpretation

of the family of distributions of X , for such a time

T . . The main result of this article is contained in Theorem 2 , ,

*)By the way, it maximizes for 1 the moments

~Sp = p(1-p) . tp-2dt( ~S - P(S>u)du) ,

in particular ~S½ , the expected quadratic variation of the
martingale 
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which states that every first hitting time T to a barrier - in

an obvious generalization of ROOT’s definition - is of minimal

residual expectation (with respect to the distribution of X )
and hence of minimal second moment if it exists; any time S

satisfying

~S fXu du = ~T fXudu for all f  0
S/Bt 

u 
Tat 

~ 

is almost surely equal to T (Corollary to Th.2). This implies

that under the assumptions of ROOT’s theorem any stopping time

S satisfying (1) and of the same variance as ROOT’s time T is

equal to T (if the variance is finite).

Conversely, any stopping time of minimal residual expectation

with respect to some measure is essentially of the ROOT type :

it can be included between the hitting times corresponding to

two barriers which differ only by a "graph" , i.e. a set of the

form (x,t(x) ) : x in the state spacer (Theorem 3). It is easy

to see that in the Brownian motion case, more generally, if the

one-point sets are regular for the process, these two hitting

times coincide and hence any time of minimal residual expecta-

tion is the first hitting time to a barrier (Corollary to Th.3).

(Technical remark : in order to simplify notations we will for-

mulate and prove the results only for transient processes; so,

rigorously speaking, KIEFER’s conjecture will only be proved,

in the case of a measure ~ of bounded support, because in this

case we pass to Brownian motion killed after leaving some 
finite

intervall. But it should be clear that all definitions and state-

ments make still sense in the recurrent case if we limit our-
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selves to the class of stopping times T for which the measure
T

f ~ ~fXudu is -finite.)

2)Basic assumptions and notations.
We consider a Borel set E in a compact metric space; denote

by ~+ the positive Borel measurable functions on E . (X ) t 
is a Markov process on E which we assume to satisfy the "right

hypotheses" (right continuous paths, strong Markov property); we
00

denote by (Pt) > its transition semigroup and by U = Pdt its~ Ot
potential kernel. On (the Borel sets of) E we are given a pro-

bability measure ~. with 6-finite potential .

The process is defined on a fixed probability space (Q,~,?~’
r

and Markovian with respect to a family (f t) of 6-fields; the dis-

tribution of Xo is . We assume that F admits a random variable

with atomfree distribution and independent of the process. The

notion of stopping time is always understood with respect to $§>;
all stopping times T are normalized so that T = o0 on the set

where § is the lifetime of the process. 0
The measure is defined as usual by

~T , f ~ - f ~ ~+,
( = if we make the convention foXt = 0 for t = oo ).

If A is an almost Borel set in E we denote by the meas-

ure PDA, where DA = inf {t: t  0 , Xt  A} .
We will use the following characterization of balayage order,

which holds under these assumptions (see e.g.~4~):
Every finite measure V on E with v U ~-finite admits a decom-

position V = 03BD + 03BD~ , where 03BD~U is the réduite of ( v - )U and
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B~ is of the form PT ’ T a stopping time. Further, there ex-

ists a finely closed set A which carries V~ and for which

V~= or (v-~~ HA 0. In the special case one

has y~ = 0 and v = f or some T. .

3) Stopping times of minimal residual expectation.
Definition 1. Let 03BD be_a measure on E with 03BD U ~ U . We say

that a stopping time T is of minimal residual expectation (m.

r.e.) with respect to V , if = V and if for all S such

that v one has

foXudu for all f ~ ~+, t ~ R+,

(or, equivalently, for all t E R+ ) .

Theorem 1. If a measure V satisfies vU _ then there exists

a stopping time of minimal residual expectation with respect to v.

Proof. 1) One introduces in E X R the semigroup of the space-

time process 

Pt(x,r; Pt (x,A) E B ~ 
on E x R one defines the measure M by

M(AxB) = where Mt = .

Let S be a stopping time with ~PS = v (such a time exists

under our assumptions); then the measure L on ExR is defined by

Lt (A) dt where Lt= ~.U . 1 ~t~D~ + °

It is easy to see that L  M holds and that L is (Pt)-exces-
sive. If one writes the (Pt)-reduite M of M in the form

M (A) dt wi th M. decreasing, right continuous

the theorem will be proved, because of , if we can show
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that there exists a stopping time T satisfying

M ~ = v and = ~ 

2) As in [j6~ one sees that the second condition in (~) can be sa-

tisfied if there exists a family t, t~R. , of measures with

o   ; sPt  t+s , t,s  O ;

= t  O.

For then one chooses a T such that t,f>=~ fXt.1{T>t} for

all f~~+. Now, the existence of the family ( t) follows from

the following inequalities, ifweset t = -d dt t :
t dt t*

~~ ~t+s~~t ’ ~~s-~0 ;
(b) U - t  t Psds , t  O ;

(c) (t - t+s)Pu  t+u - t+u+s , t,u,s  O .
So the problem is reduced to make evident these inequalities.

(a) holds, since M. is a decreasing family;

(b) is true because M is excessive, what implies

~t~ ~t = ~- ~~ ~
(c) follows from a possible construction for a reduite :

M = ~lim M’" , where M"’= the sequence

M’ ’ is recursely defined by

(k)o = U , (k)n+1 = 03BDU  (k)n P2-k for nO .
The relation (c) follows in the limit from

((k)n - (k)n+1)P2-k  (k)n+1 - (k)n+2 ,
what is obviously true.

3) The proof is complete if we show that the second condition

in (*) implies the first one, or that 03BDU = ~lim M.. Let S be
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the stopping time introduced in 1). Because of

Mt
we get, passing to the limit t ~ ~ ,

PSU = 03BDU  ~lim t .
The converse inequality follows from

M - lim Mt - vU for t > 0.

4*)ROOT stopping times.
Definition 2. A subset B of Ex R+ ’ which is nearly Borel

with respect to the space-time process t ~--~( X,~,t) is called

a barrier, if (x, t) E B and t’> t implies (x, t’ ) E B (or, equi-

valently, if the family of its sections Bt = ~x: (x,t) EB)
is increasing in t ).

Definition 3. If B is a barrier, the time

T = inf ~ t : = inf 0~~
is called the ROOT stopping time defined by the barrier B.

A stopping time is called simply ROOT stopping time if it is

the ROOT time for some barrier.

Theorem 2. Every ROOT stopping time T is of minimal residual ex-

pectation (with respect to 

Proof. Let T be defined by the barrier B. We suppose without

loss of generality B to be finely closed for the space-time

process, what implies that the sections Bt are finely closed for

the original process. Set

and Nt = 

N(Ax C) = 

Let M and M be as in the proof of theorem 1. Then the asser-
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^
tion of theorem 2 is equivalent to M = N , I or

/~ n 

M > Nt for t > 0 . 
_

The proof is carried out by proving three auxiliary results.

Proposition 1. For fixed t E R+ define -

‘S t + vU.1‘S> t ’ I
Mt (A x C) - SMS t (A) for A C E , C G R ;

let Mt be the of Mt and ts defined by

x C) = (A) . 1 
c 
ds I right continous.

Then the following estimate is true

^t ~ 
_ 

^

Mt+s  Mt+s + (Nt- Mt)Ps , s  0 .

Proof. The measure N , I defined by

j 
, n

" 

C 
is (Pt)-excessive and greater than hence it is also greater

than The proposition follows by "desintegration" .

The following lemma is of some interest in itself and sounds

rather plausible; in the special case B = for some A c E

it is exactly the statement of the theorem.

Lemma. Let A be a finely closed subset of E and D = DA
(the first hitting time to A). If S is any stopping time

satisfying PSU  PDU then S  D 

Proof. The inequality PSU  PDU implies under our general

assumptions that there exists a stopping time D’ with

D~> S and - 

(If necessary one has to enlarge for this the basic probabi-

lity space; but the wanted result S ~ D holds in Q if it is

true in the enlarged space.) Since a.s. and 
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is carried by A ; this means a.s. and therefore

D’> D by definition of D . From equality of the potentials

follows that D’ = D a. s . and so D~S a.s.

Proposition 2. lim t,1> lim t-1 U - Nt,1 > .
Proof. Apply the lemma with A = B (section of B at t = 0)
and S some stopping time of m.r.e. with respect to v = 

(The assumptions of the lemma are satisfied, because of

D  T , what implies PDU  F’TU = The lemma gives us

D >, S and therefore Mt = fPD"tU for all 

So it suffices to prove

lim t-1 U - PD^tU,1>  lim t-1 U - Nt,1>.
But this follows from

lim t-1 Nt - PDt U,1> = lim t-1 ~ (Dt - Tt) 

lim P (T  t, D > 0) = P (T = 0, D > 0) - XoJ.B)= 0
( { D > 0 } = {Xo ~ Bo} because Bo is finely closed . )

Only a notational generalization of Proposition 2 is

Proposition 2: For all tER+ one has

lim h-1 
Nt - tt+h ,1> ~ lim h 1 Nt - Nt

+h ,1 > .
Proof of the theorem (continuation) : We consider the two func-

tions on R , m and n , defined as

m(t) t,1>, n(t) = U - Nt,1 ">
and show, that m ~ n . This will complete the proof.

Since both functions are Lipschitz-continuous and t~(0) = n(0),

it is sufficient to compare the right derivatives :

dsn tt+h,1> 
S=t 
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_ d m t+h- (Nt- t) Ph ,1> lim h- 1 t- t+h ,1> =
" 

where the first inequality holds by Prop.2’ and the last by

Prop.1 . So the theorem is proved.

Corollary. (Uniqueness of the ROOT stopping time). Let T be

a ROOT stopping time and S of m,r,e with respect to L*P .Then

one has S =T 

Proof. Since T is also of m,r,e. with respect to by the

theorem, we have for all t~-0

~S.t" = 
°

It follows

~ S^to fXudu = ~ T^to fXudu , f~~+, t  0
~ SoF(Xu,u)du = ~ ToF(Xu,u)du , F  O on E  R+ .

Now we apply the lemma to the space-time process (because T

is the first hitting time to a finely closed set) and obtain

S ~ T a.s. (P~) . But since M-PqU = ~P~ U one has S = T .

Remark. are stopping times , ~- = wP~ = ~ ,

and T is of m,r,e, then obviously S is of m,r,e., too, if

for some strictly positive all 

~r~> r~~ ~ ~
This holds, in particular,with f = 1 if

o~ ~ ~~ *~

~S~ = du ) = du) =~T~ .because for
o M ~ 

. 1B: -~-

each t the inequality 6~ ~ ~ is true by

the m,r,e. property of T . So we get from the corollary the

final result : if a ROOT time T with ~.P- = ~ exists and

, then any time S with nP = B~ and = is
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equal to T a.s. . 

5) The converse problem.
Under general hypotheses the following theorem does not yield

very strong estimates for a stopping time of m.r.e. It is easy

_ 

to construct examples of a deterministic process and a measure

V where the upper and lower estimate for a m.r.e. time with

respect to V are and 0 , respectively. The corollary, how-

ever, makes sure that for a nontrivial class of processes the

ROOT times are exactly the times of m.r.e.

Theorem 3. If T is of m.r.e. with respect to PT then there

exists a barrier B (with sections Bt) such that

inf{t: inf{t: Xt ~ Bt} aoso(p/’B ,
where B = 

0

Corollary. If the one-point sets are regular for the process

(Xt) any time T of m.r.e with respect to PT is a ROOT time.

Proof of the corollary. We apply the theorem to a given T of

m.r.e.; we assume that B is finely closed in space-time (pas-

sage to the fine closure of B does not change the upper bound

for T , whereas the lower bound can only decrease). If we show

that Bs+C Bs then we see that both estimates agree and that T

is defined by the barrier B.

Now let x be in B s+ ; this means (x,h) ~ B for all s ~ h .

The regularity of the set ~x~ implies that almost all paths of
the space-time process starting from (x,s) in an arbitrary

small time intervall hit the set ~(x,h) : h ~ s ~ and hence B.

Since B is finely closed we have (x,s) E B or x 
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Proof of the theorem. Let T be of m.r.e. with respect to 

define the measures and for t by

B.f~ = ~X~.1~~ . ~f~= 
(The idea of the proof is to show that If: and are something

like disjoint; choose B as a carrier of ~ which is not
charged by t and B as the set with sections Bt; B is

a barrier since ~ is increasing and decreasing in t.)
First we prove two propositions.

Proposition 3. Let t ~ R~. be fixed; for any stopping time S

the measures f - and are disjoint.

Proof. 1) If the assertion is wrong then in a suitably enlarged

probability space there exists a stopping time S with

t~ST in {s c~
and a time H with

PH = 
’ H = T t in (n  ~ } ;

finally, by our interpretation of balayage order, a time K with

K~H . ~~~.l~~~du = 

Here the set A:= ~HK~ ~ {~~t) is disjoint to B : =

= ~So~ , since Tt on A and T>t on B ; P~(A)
and P~(B) are strictly positive. We define a new stopping

time T~ by setting

T" = K on A, T" = S on B, T" = T elsewhere.

2) We shall show that = and 

what contradicts the m.r.e. property of T. Let us suppose f

~c.. is ~U-integrable; then one has
T’ T

f) = ~ (fXudu - fXudu) =
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= 1g. = 0 ;

if in addition f is strictly positive we have
T~-t- ~~

~> = =

= ~ (1 A . foX du - du) = (since S^t = T^t = t

on B ) = ~ (1A. K^tfXudu )> 0 , since HK^t on A and

Proposition 4. Let p , V be finite measures on E and W a

stopping time, for every stopping time S (even in a enlarged

probability space) the measure disjoint

to V . Then there exists a finely closed carrier A of v for

which a.s. °

Proof. 1) Let ACE be a finely closed set for which

(*) 03BDs~ U : = = (03BD - s)HAsU
for each fixed s c(o,l) . 
Since V 

S 
is carried by A and 03BDs~ tends to V as s tends to

0 , 03BD is carried by A’ := lj A and hence by A, the
s rational

fine closure of A’ ° Since D = D .= inf rationale
it is sufficient to prove that W ~ ’ for every 

s

2) Fix s and choose a time R so that 

it follows v~ = ’ hence, in virtue of (~.),

s . PRHA
s 

= 
. This leads to pH U and finally

by our lemma to R a.s. (P*).
s

3) To conclude the proof we show that W ~ R a.s.

From B?~ it follows

S-~V,f~~.X~1~~ , f ~



207

and, by hypothesis on W ,

= 0 for all fC~ , i.e. w ~ R a.s. (PP) . °

Proof of the theorem (continuation). From the propositions we get

by setting P = ~.~ , V - ~ t : ’

there exists a finely closed set At such that

(i) At carries .~t , ’ (ii) T  t + a.s. .

If one defines B by B:= ~~) then B is a barrier
t rational

and (ii) implies

T  inf (t : t? 0, Bt~ a.s.

Conversely, by (i) we have for almost all 

XT 6 At for all t rational, 

and, because of At C Bt for t rational,

T (w) - u ;

this means T ~ inf ~t ; 
as was to be proved.
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